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AND MODEL COMPLETENESS1

BY GUOBING LU AND JOHN B. COPAS
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This paper provides further insight into the key concept of missing at
random (MAR) in incomplete data analysis. Following the usual selection
modelling approach we envisage two models with separable parameters:
a model for the response of interest and a model for the missing data
mechanism (MDM). If the response model is given by a complete density
family, then frequentist inference from the likelihood function ignoring the
MDM is valid if and only if the MDM is MAR. This necessary and sufficient
condition also holds more generally for models for coarse data, such as
censoring. Examples are given to show the necessity of the completeness of
the underlying model for this equivalence to hold.

1. Introduction. A full parametric model for missing data comprises two
components: one is for the complete data and the other is for themissing
data mechanism (MDM). The former describes the probability distribution that
governs the data generation process of interest, while the latter characterizes the
observation process by which some data may be missing. The parameterizations
of these two processes are often assumed to be separable, and our target is to make
inference about the parameters involved in the complete data model using only the
available incomplete data.

In practice, modelling incomplete data is a very difficult task since in most
cases the incomplete data themselves contain little or no information about the
MDM. The fundamental and most widely used assumption about the MDM is
that it is amissing at random (MAR) model [Rubin (1976)]. The basic idea is
that the probability that a response variable is observed can depend only on the
values of those other variables which have been observed. This concept has been
extensively studied, and effective computational methods for handling missing
data under the MAR assumption have been well developed, for example, using the
EM algorithm. Good references include Tanner (1993), Schafer (1997), Kenward
and Molenberghs (1998)and Little and Rubin (2002) among many others.

A closely related, but logically distinct, concept isignorability. The basic idea
here is that inference based on the joint specification of both complete data and
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MDM models is the same as the inference we would obtain if we used the complete
data model only, simply integrating out the values of any variables which are
missing. It is well known that MAR, together with the assumption of separable
parameters, is a sufficient condition for ignorability of the MDM in likelihood
based inference. It is, however, not a necessary condition.

Although these concepts have been widely discussed, there have been some
inconsistencies between different authors on how they are defined and interpreted,
and in the choice of terminology. The Weblist impute@utdallas.edu gives an
interesting summary of views. We avoid ambiguities by giving some precise
definitions in Section 2.

In Section 3 we show that for models given by a complete family of distribu-
tions, MAR is both necessary and sufficient for ignorability. The result depends on
a heritable property of completeness: that, with suitable reparameterizations, com-
pleteness of a multivariate distribution implies completeness of all conditional and
marginal distributions. Examples are given to show that, for inference in a family
of distributions which is not complete, an MDM can be ignorable without be-
ing MAR.

This necessary and sufficient condition is extended in Section 4 to the wider
concept ofcoarsening at random introduced by Heitjan and Rubin (1991). Here,
ideas for missing data are generalized to other kinds of incomplete data such as
censoring or rounding.

Section 5 offers some concluding remarks.

2. Missing data and likelihood ignorability. Let Y = (Y1, . . . , Yk)
T be

a k-dimensional random vector with probability density functionf (y; θ) on
Y ⊂ R

k , whereθ ∈ � is a d-dimensional parameter of interest. Suppose that
the observation process ofY suffers from missing data and hence, associated
with Y there is also a binary random vectorR = (R1, . . . ,Rk)

T indicating the
observational status ofY , whereRi takes the value 0 when the observation ofYi is
missing and the value 1 whenYi is observed,i = 1, . . . , k. Denote the range ofR
by

R = {
(r1, . . . , rk) : ri = 0 or 1, i = 1, . . . , k

} = {0,1}k.
We assume that the parameterization of the joint distribution ofY andR can be

put into the selection model form

f (y, r; θ,ψ) = f (y; θ)f (r|y,ψ), (θ,ψ) ∈ � × �,(2.1)

in which the parametersθ andψ are assumed to be distinct [Rubin (1976)]. The
conditional densityf (r|y,ψ) characterizes the probabilistic relation between the
data-observation process and the values of the data themselves and hence specifies
a model for the MDM. The joint distribution ofY andR can also be written in the
pattern mixture form [Little (1994)] in which we model instead the conditional
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distribution of Y given R, but the parameterization in (2.1) makes the MAR
condition more transparent for the present discussion.

The pair of random variables(Y,R) induces an observable random variableZ.
Using a notation analogous to that for the coarsening function as defined in Heitjan
and Rubin (1991),Z is

Z = Z(Y,R) = (Z1, . . . ,Zk)
T ,

(2.2)
whereZi =

{
Yi, if Ri = 1,

R, if Ri = 0,
i = 1, . . . , k.

For notational convenience we allow the symbolR to appear in any position
in the vector argument of a multivariate density function, using it to denote the
marginal density of the other variables. For example, supposef (t1, t2) is a density
onT1 × T2 ⊂ R

2 andfi(ti), i = 1,2, are the marginal densities. Then we identify
f (t1,R) with f1(t1) andf (R, t2) with f2(t2). Trivially, f (R,R) ≡ 1. With this
convention the density ofZ can be expressed as

f (z; θ,ψ) =
∫

f (y; θ)f (r|y;ψ)dy(1−r)

(2.3)
= f

(
y(r); θ

) ∫
f

(
y(1−r)

∣∣y(r); θ
)
f (r|y;ψ)dy(1−r),

where1 is thek-dimensional vector with all elements equal to 1,y(r) andy(1−r)

are, respectively, the observed subvector and the missing subvector ofy given by

y(r) = (yi : ri = 1, i = 1, . . . , k)T

and

y(1−r) = (yi : ri = 0, i = 1, . . . , k)T ,

and for each variableyi contained iny(1−r) the integral in (2.3) is over its whole
range.

In the above setting Rubin’s MAR condition [Rubin (1976)]can be expressed
as follows.

DEFINITION 2.1. A MDM is said to be MAR if the conditional distribution
f (r|y;ψ) has the special form

f (r|y;ψ) = hr

(
z(y, r);ψ

)
for all (y, r) ∈ Y × R,(2.4)

where, for any fixedψ andr , hr(·;ψ) is a function mappingR(1T r) into [0,1].

Note that the dimension of the spaceR
(1T r) varies with the value ofr , and

hencehr(·;ψ) is a family of 2k functions indexed by the subscriptr . Under MAR
the MDM depends on(y, r) only through the functionz(y, r), that is, through the
observed part of the sampley.
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A MDM model is ignorable for inference about the parameterθ if the inference
based on the combination of both the complete data model and the MDM model
coincide with the inference based on the complete data model alone. For likelihood
based inference we assume that ignorability is an intrinsic property of the joint
modelf (y, r; θ,ψ) rather than a property of any specific sample realization. Thus
we are interested in frequentist inference from the likelihood function, rather than
inference from the particular likelihood function we get from the observed sample.
To emphasize this we use the termlikelihood ignorable (LIG) in the following
definition.

DEFINITION 2.2. A MDM is said to be LIG if the integral∫
f

(
y(1−r)

∣∣y(r); θ
)
f (r|y;ψ)dy(1−r)(2.5)

is free ofθ for almost all realizations of(y, r) ∈ Y×R and for all(θ,ψ) ∈ �×�.

The contribution of observationz to the likelihood is the product of the two
terms in the right-hand side of (2.3). LIG means that the second term [the integral
overy(1−r)] does not affect the likelihood as far as inference aboutθ is concerned.
Equivalently, the contribution of this second term of the log likelihood disappears
when we differentiate with respect toθ . All that matters is the first term, which
is just the marginal joint density of those components ofY which are actually
observed.

Notice that MAR is a property of the conditional distributionf (r|y;ψ),
whereas LIG depends on bothf (r|y;ψ) and the response modelf (y; θ).

Under the MAR model,∫
f

(
y(1−r)

∣∣y(r); θ
)
f (r|y;ψ)dy(1−r)

=
∫

f
(
y(1−r)

∣∣y(r); θ
)
hr

(
z(y, r);ψ

)
dy(1−r)

= hr

(
z(y, r);ψ

)
,

which is independent ofθ . Hence MAR is a sufficient condition for LIG. We seek
the conditions under which MAR is also a necessary condition for LIG.

3. Necessary and sufficient conditions for LIG. In this section we show that
if the family of density functionsf (y; θ) forms a complete class, then MAR is both
necessary and sufficient for LIG.

First some preliminaries about completeness. Recalling the elementary defini-
tion [e.g., Zacks (1971)], a family of probability density functions{f (y; θ) : θ ∈ �}
onY ⊂ R

k is said to be complete if the identity∫
t (y)f (y; θ) dy = 0 for all θ ∈ �
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implies thatt (y) = 0 for almost ally ∈ Y.
Now let Y (1) be a subvector of the random vectorY , and let Y (2) be

the corresponding complementary subvector. Denote the sample spaces ofY (i)

by Y(i), i = 1,2. Then the joint familyf (y; θ) can be decomposed into

f (y; θ) = f1
(
y(1); θ

)
f2|1

{
y(2)

∣∣y(1); θ
(
y(1)

)}
,

whereθ(y(1)) is a function:Y(1) �→ � [see Arnold, Castillo and Sarabia (1999)].
We remark that, in general, even if the joint density family can be identified by the
parameterθ , neither the marginal density familyf1(y

(1); θ) nor the conditional
family f2|1{y(2)|y(1); θ(y(1))} is identified by the same parameter. However, there
is always a many-to-one function:φ1 :� �→ �1 ⊂ � such that{

f1
(
y(1);φ1

)
:φ1 ∈ �1

} = {
f1

(
y(1); θ

)
: θ ∈ �

}
,

and the new parameterφ1(θ) is identified. Similarly, for any giveny(1), the
conditional familyf2|1 can be identified byφ2(θ;y(1)). Detailed discussion of
the problems of reparameterization and identification will in general call for a
topological group structure in the parameter space�, but for the purpose of
describing completeness we merely borrow the form of the parameterization to
make the representation clear.

The following lemma says that completeness is a heritable property from the
joint density family to its marginal and conditional density families.

LEMMA 3.1. Suppose that {f (y; θ) : θ ∈ �} is a complete density family.
Then the following hold:

(a) the marginal family [f {y(1);φ1(θ)} : θ ∈ �] is complete;
(b) for almost all y(1) ∈ Y(1) the conditional families [f2|1{y(2)|y(1), φ2(θ;

y(1))} : θ ∈ �] are complete.

See the Appendix for the proof of Lemma 3.1.
Now we apply Lemma 3.1 to the conditional density familyf (y(1−r)|y(r); θ)

to yield the following theorem.

THEOREM 3.1. For the selection model (2.1)assume that {f (y; θ) : θ ∈ �} is
a complete family. Then the necessary and sufficient condition for LIG is that the
MDM is MAR.

PROOF. We only need to verify that LIG implies MAR. From Definition 2.2
LIG implies that the integral (2.5) is independent ofθ for any givenr and almost
all y(r). Denoting its values byw(y(r), r;ψ), we have the equality∫ {

f (r|y;ψ) − w
(
y(r), r;ψ

)}
f

(
y(1−r)

∣∣y(r); θ
)
dy(1−r) = 0.(3.1)
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Because of the inheritance property of completeness,f (y(1−r)|y(r); θ) are
complete density families for allr ∈ R, and hence, for any values ofr andψ ,
(3.1) implies

f (r|y;ψ) = w
(
y(r), r;ψ

)
.

Thus the MDMf (r|y;ψ) depends ony only throughy(r) and so must have the
form of hr(z(y, r);ψ) in (2.4). That is, the MAR condition holds.�

The following examples show that, for an incomplete density family, LIG does
not guarantee MAR.

EXAMPLE 3.1. Consider the bivariate normal density family

Y =
(

Y1
Y2

)
∼ N

{(
θ

θ/2

)
,

(
1 1/2

1/2 1

)}
, θ ∈ R.

Clearly this is not a complete family sinceE(Y1 − 2Y2) = 0 for all values ofθ .
Suppose thatY1 is always observed butY2 may be missing. The MDM is then

characterized by the functions

h(1,0)(y;ψ), h(1,1)(y;ψ) = 1− h(1,0)(y;ψ), h(0,0) = h(0,1) = 0.

The MAR condition demands thath(1,1)(y;ψ) as a function ofy = (y1, y2) is
independent ofy2 for all ψ ∈ �. However, in this example the conditional density
of Y2 givenY1 is independent ofθ . Hence, forr = (1,0) and any arbitrary function
h(1,0)(y;ψ), the integral∫

f
(
y(1−r)

∣∣y(r); θ
)
f (r|y;ψ)dy(1−r) =

∫
f (y2|y1)h(1,0)(y;ψ)dy2

does not depend onθ . Thus in this caseany MDM is LIG.

EXAMPLE 3.2. Now extend Example 3.1 by supposing thatY1 or Y2, but not
both, may be missing. Suppose that the MDM is

f (r|y;ψ) =




h(1,1)(y;ψ), whenr = (1,1),

h(1,0)(y;ψ), whenr = (1,0),

h(0,1)(y2;ψ), whenr = (0,1),

h(0,0) ≡ 0, whenr = (0,0),

where ∑
i,j

h(i,j )(y;ψ) = 1

for all y andψ . Sinceh(1,0) depends on bothy1 andy2, the MDM is not MAR.
However, becauseh(1,1), h(0,1) and h(0,0) satisfy the MAR condition, we only
need to check the LIG condition forr = (1,0). However, this is just the same
as Example 3.1, so the LIG condition holds.
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EXAMPLE 3.3. Let Y = (Y1, Y2, . . . , Yk)
T be i.i.d. N(θ,1). Then S =

1
k

∑k
i=1 Yi is a sufficient statistic and the vector of sample differences

A = (Y1 − Y2, Y2 − Y3, . . . , Yk−1 − Yk)
T

is an ancillary statistic forθ . These statistics are independent, so we have

f (y; θ) = f (y|s)f (s; θ) = f (a)f (s; θ).

Similarly, for any givenr with 1T r < k − 1, we can define the corresponding
statisticssr andar for the subvectory(1−r).

Now suppose that the MDM takes the form

f (r|y;ψ) = hr

(
ar , y

(r);ψ
)
.

Clearly this is not MAR becausehr depends ony(1−r) throughar . However,∫
f

(
y(1−r)

∣∣y(r); θ
)
f (r|y;ψ)dy(1−r)

=
∫ ∫

f (ar)f (sr; θ)hr

(
ar , y

(r);ψ
)
dsr dar

=
∫

f (ar)hr

(
ar , y

(r);ψ
)
dar,

which does not depend onθ . Hence this MDM is LIG.

4. Extension to coarsening at random. The coarse data model of Heitjan
and Rubin (1991) is a more general way of describing incomplete data problems.
HereZ, the observable outcome, is a measurable subset of the sample space, such
as a half line (when a life time is known to exceed a censoring time) or a finite
interval (when an observation is rounded). The notion ofcoarsening at random
(CAR) was introduced by Heitjan and Rubin (1991) as a natural extension of MAR
to coarse data and was further studied by Heitjan (1993, 1994, 1997) and Jacobsen
and Keiding (1995).

Following Heitjan and Rubin (1991), a random variableG, the so-called coars-
ening variable, defines the measurable subsetZ asZ = Z(Y,G). Equation (2.2)
is the special case of this whenG = R. The conditional distribution ofG givenY

defines the coarsening data mechanism (CDM)

f (g|y;ψ) = h(g, y;ψ),

where, again, the parameterψ is assumed to be distinct from the parameterθ in
the main modelf (y; θ).

With the CDM h(g, y;ψ), the conditional distribution ofZ given y can be
expressed as

κ(z, y;ψ) =
∫
{g : Z(y,g)=z}

h(g, y;ψ)dg.
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For a rigorous expression for this conditional density in the case whenG is
continuous, see Jacobsen and Keiding (1995).

The following definition of CAR is due to Heitjan and Rubin (1991).

DEFINITION 4.1. The CDM is CAR if, for any fixed observed subsetz, and
for each value ofψ , κ(z, y;ψ) takes the same value for ally ∈ z.

The likelihood function forθ based on an observedz is proportional to the
probability that(Y,G) falls in the set{(y, g) :Z(y,g) = z}, which can be written
as ∫

z

∫
{g : Z(y,g)=z}

f (y; θ)h(g, y;ψ)dg dy =
∫
z
f (y; θ)κ(z, y;ψ)dy.

This leads to the following definition.

DEFINITION 4.2. The CDM is said to be LIG if, as functions ofθ ,∫
z
f (y; θ)κ(z, y;ψ)dy ∝

∫
z
f (y; θ) dy.(4.1)

The generalization of Theorem 3.1 is as follows.

THEOREM 4.1. If {f (y; θ) : θ ∈ �} is a complete family, then a necessary and
sufficient condition for LIG is that the CDM is CAR.

That CAR implies LIG is immediate. For the converse, if the CDM satis-
fies (4.1), there existsw(z;ψ) such that∫

z
f (y; θ){κ(z, y;ψ) − w(z;ψ)}dy = 0.

We now need a straightforward extension of Lemma 3.1, that iff (y; θ) is
complete, then so is the conditional distribution ofy given y ∈ z (the proof
follows lines similar to the proof of Lemma 3.1 in the Appendix). This implies
thatκ(z, y;ψ) = w(z;ψ) and hence the CDM is CAR.

The following example shows the necessity of model completeness for the
equivalence of CAR and LIG when the coarsening variableG is a continuous
random variable.

EXAMPLE 4.1. Let Y = (Y1, Y2)
T be the logarithms of two life times, as-

sumed to follow the (incomplete) bivariate normal distribution in Example 3.1.
Suppose thatY1 is always observed butY2 suffers from censoring, withG the cor-
responding (log) censoring time in a competing risks framework. The coarsening
function is

Z(y,g) =
{ {y}, if g ≥ y2,

{y1} × (g,∞), if g < y2.
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Suppose further that(Y,G) are jointly Gaussian
Y1

Y2
G


 ∼ N





 θ

θ/2
ψ


 ,


 1 1/2 0

1/2 1 1/2
0 1/2 1





 , θ,ψ ∈ R.

For this model we find

h(g, y;ψ) = φ

(
g + (1/3)y1 − (2/3)y2 − ψ√

2/3

)

and

κ(z, y;ψ) =




∫
(y2,∞)

φ

(
g + (1/3)y1 − (2/3)y2 − ψ√

2/3

)
dg,

if z = {y},
φ

(
g + (1/3)y1 − (2/3)y2 − ψ√

2/3

)
, if z = {y1} × (g,∞),

whereφ(·) is the standard normal density function. Clearly,κ(z, y;ψ) does not
take the same value for ally ∈ z for each value ofψ , and so the CDM is not CAR.
However, it is LIG, because for an observationzo = {yo

1} × (go,∞),∫
zo

f (yo
1, y2; θ)κ(zo, y;ψ)dy

=
∫
(go,∞)

f (yo
1; θ)f (y2|yo

1)φ

(
go + (1/3)yo

1 − (2/3)y2 − ψ√
2/3

)
dy2

∝
∫
(go,∞)

f (yo
1, y2; θ) dy2,

as the conditional density ofy2 giveny1 is independent ofθ .

5. Remarks.

REMARK 5.1. In missing data analysis we will usually assume that the data
arise fromn i.i.d. realizations from the joint distribution of(Y,R) in (2.1). If
the distribution ofY is complete, asking whether the MDM affects inference (in
the sense of LIG) is then equivalent to asking whetherR depends on unobserved
components ofY . In general, however, MAR is a stronger requirement than LIG.
In Example 3.3, for instance,Y itself takes the form of an i.i.d. sample, but the
components ofR may be dependent. NowR can depend in a arbitrary way on
ancillary statistics without upsetting inference aboutθ .

REMARK 5.2. Many familiar statistical models used in practice involve
replication and i.i.d. residuals and are not complete, such as Example 3.3. In
normal linear models more generally, ignorable MDMs can still depend on the
standardized sample residuals.
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REMARK 5.3. When covariates, sayX, are involved in incomplete data
analysis, we may wish to model conditionally onX, and hence the equivalence
between LIG and MAR requires the completeness of the conditional model
f (y|x; θ) for almost allx ∈ X. If X is fully observable, then Theorem 3.1 still
holds. However, ifX may also be missing, the equivalence of MAR and LIG
requires more strongly that the joint density of(Y,X) belong to a complete
parameter family. This situation has already been included in the above discussion,
since some components ofY can be treated as covariates. However, caution must
be taken for the model parameterization, as in general the parameterization for the
joint distribution of(Y,X) is distinct from that for the conditional distribution ofY

onX.

REMARK 5.4. A special case occurs whereY is a scalar random variable and
no covariates are involved in the model. Herer is just 0 or 1, and MAR requires
that f (0|y;ψ) is independent ofy. However, thenf (1|y;ψ) = 1 − f (0|y;ψ)

must be independent ofy too, and soY andR are statistically independent in the
usual sense. This is the missing completely at random (MCAR) condition [Rubin
(1976)]. So in this special case the conclusion of Theorem 3.1 is that for complete
families

LIG ⇔ MAR ⇔ MCAR.

APPENDIX

PROOF OFLEMMA 3.1. Suppose thatf1(y
(1);φ1(θ)) is not complete. Then

there existst (y(1)) �= 0 such that∫
t
(
y(1)

)
f1

{
y(1);φ1(θ)

}
dy(1) = 0 ∀ θ ∈ � (or, equivalently,∀φ1 ∈ �1).

Then ∫
t
(
y(1)

)
f (y; θ) dy

=
∫

t
(
y(1))f1

(
y(1);φ1

) ∫
f2|1

{
y(2)

∣∣y(1), φ2
(
θ;y(1))}dy(2) dy(1)

=
∫

t
(
y(1))f1

{
y(1);φ1(θ)

}
dy(1)

= 0 ∀ θ ∈ �,

contradicting the completeness off (y; θ). Hence (a) is established.
Now suppose that (b) does not hold. Then there exists someA ⊂ Y(1) with

nonzero probability under the marginal distribution ofY (1), such that for any
y(1) ∈ A the family of conditional densitiesf2|1{y(2)|y(1), φ2(θ;y(1))}, θ ∈ �,
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is not complete. There must then exist some functionw(y(1), y(2)) �= 0 defined for
y(1) ∈ A andy(2) ∈ Y(2) such that∫

w
(
y(1), y(2))f2|1

{
y(2)

∣∣y(1), φ2
(
θ;y(1))}dy(2) = 0 ∀ θ ∈ �.

Now define

t (y) =
{

w
(
y(1), y(2)

)
, y(1) ∈ A,

0, otherwise.

Clearly t (y) �= 0, but∫
t (y)f (y; θ) dy

=
∫
A

f
(
y(1);φ1(θ)

) ∫
Y2

w
(
y(1), y(2))f2|1

{
y(2)

∣∣y(1), φ2
(
θ, y(1))}dy(2) dy(1)

= 0 ∀ θ ∈ �.

This again contradicts the completeness off (y; θ). �
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