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ESTIMATING INVARIANT LAWS OF LINEAR PROCESSES
BY U-STATISTICS

By ANTON ScHick! AND WOLFGANG WEFELMEYER
Binghamton University and Universitét zu Kdln

Suppose we observe an invertible linear process with independent mean-
zero innovations and with coefficients depending on a finite-dimensional
parameter, and we want to estimate the expectation of some function under
the stationary distribution of the process. The usual estimator would be the
empirical estimator. It can be improved using the fact that the innovations are
centered. We construct an even better estimator using the representation of
the observations as infinite-order moving averages of the innovations. Then
the expectation of the function under ttationary distribution can be written
as the expectation under the distribution of an infinite series in terms of the
innovations, and it can be estimated b¥/ sstatistic of increasing order (also
called an “infinite-ordelU -statistic”) in terms of the estimated innovations.
The estimator can be further improved using the fact that the innovations are
centered. This improved estimator is optimal if the coefficients of the linear
process are estimated optimally. The variance reduction of our estimator over
the empirical estimator can be considerable.

1. Introduction. There is a large literature on estimation in ergodic time
series driven by independent innovations. In the last fifteen years, optimality
guestions have also been addressed. Efficient estimators for the parameters of
ARMA-type processes are constructed by Kreiss (1987a, b), Jeganathan (1995),
Drost, Klaassen and Werker (1997), Koul and Schick (1997) and Schick and
Wefelmeyer (2002a). For invertible linear time series, the innovations can be esti-
mated, and linear functionals of the innovation distribution can then be estimated
by corresponding empirical estimators based on the estimated innovations; see
Boldin (1982) and Kreiss (1991). Simple and efficient improvements of these es-
timators are possible if the innovations are centered; see Wefelmeyer (1994) and
Schick and Wefelmeyer (2002b).

Here we are interested in estimating functionals of the stationary law. Such
functionals can be estimated in a straightforward way from observations of
the time series. Linear functionals of the stationary law can be estimated by
corresponding empirical estimators. The stationary density can be estimated
by a kernel estimator; see, for example, Yakowitz (1989), Tran (1992) and
Honda (2000).
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604 A. SCHICK AND W. WEFELMEYER

These estimators are “nonparametric” in that they do not exploit the information
that the time series is driven by independent innovations. In this paper we show
how to use this information in order to construct efficient estimatordifiear
functionalsof the stationary law of causal and invertible linear processes with
coefficients depending on a finite-dimensional parameter. We restrict attention
to estimation of expectations of smooth functions. Examples are moments,
absolute moments, the characteristic function and other transformations of the
stationary law. One of the applications would be testing for Gaussianity. Under
stronger conditions on the time series, one could prove corresponding results
for expectations of step functions, for example, the distribution function. An
application would be estimating the value at risk in financial mathematics.

In the simplest such time series, a moving average process of order 1, Saavedra
and Cao (1999, 2000) show that the specific structure of the model allows
the stationarydensityto be estimated at the parametric ratel/2. Schick and
Wefelmeyer (2004) prove that the estimator of Saavedra and Cao is efficient.
Analogous parametric rates can also be obtained for estimatarenafitional
expectationssee Mdller, Schick and Wefelmeyer (2003) for a result in nonlinear
autoregressive processes. Such estimators could be combined with the estimators
in the present paper in order to efficiently estimate functionalpiot laws of
linear processes, for example, autocovariance functions.

A cautionary remark: unlike the usual empirical estimators for functionals of
the stationary law, our efficient estimators use the full structure of the model, in
particular, the independence of the innovations. Like all efficient estimators, they
are therefore sensitive against misspecification of the model.

Specifically, consider observatioffs, . . ., Y, from a causal linear process

o0
Yz=Xz+Z5th—s, t €7,
s=1

with independent and identically distributed innovatidfs: € Z, with mean 0

and finite variance. A simple estimator of a linear functioldh(Yp)] of the
stationary distribution is the empirical estimat#E?zlh(Yj). It does not use

the fact that the process is linear and centered. We shall show how to construct
better estimators if the process is invertible,

0
X, =Y+ Y, tel.
s=1

The idea is to express the function@lh(Yo)] as E[h(Xo + > oo18:X—s)] and

to estimate it by d/-statistic of increasing order based on estimated innovations,
taking into account the constraint that the innovations have mean 0. We do this for
a situation often encountered in applications: the coeffici&n®, ... and hence
alsoys, y2, ... depend on an unknown Euclidean paraméter
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The construction of our estimator involves several steps. Let us illustrate them
with the simplest example, a linear autoregressive model of order 1,

Yt:ﬁYt_1+Xt, [EZ,

with ¢ belonging to the interval—1,1). Our result is new, and nontrivial,
even for this simple case. The model is a semiparametric model with one-
dimensional parametet and infinite-dimensional parameté#r, the distribution
of the innovations. The stationary distribution of this process thus depends on the
pair (¢, P).

We want to estimate the linear functiorfalliz (Yp)] of the stationary distribution.
The obvious estimator is again the empirical estim%t@’}zlh(l(,). It is known
that the empirical estimator is a least dispersed regular estimator in Markov chain
models with completely unspecified transition distribution; see Penev (1991),
Bickel (1993) and Greenwood and Wefelmeyer (1995). Here, however, we are
dealing with a semiparametric submodel. Thus, we should be able to improve upon
this estimator.

Before we describe our estimator, let us briefly describe a simple improvement
of the empirical estimator, obtained by exploiting the fact that the innovations, and
hence the observations, have mean 0. This is a linear consfrgipi = 0 on the
stationary distribution. For any< R we obtain a new estimator f&[x(Yp)]:

—Zh(Y)—cY)

j=1

For general Markov chain models, Midller, Schick and Wefelmeyer (2001b)
determine the constamt which minimizes the asymptotic variance of the new
estimator. For our autoregressive model, this constant becomes particularly simple
if 4 is a polynomial. For example, for the stationargriance E[YOZ], that is,

h(y) = y?, the optimal constant is

I

A+ Ppu2’

with g = E[X’i]. This optimalc, depends OIP and?® and must be estimated. We
estimatey by the least squares estimaty= Z Y;_ 1Y,/ > Y/ 1, the

innovations byyY; — ﬁ*Yj_l andu by its emplrlcal estlmator based on estimated
innovations:

Cy =

L1 3
(1.1) ==Y "(¥; =Y.
n =1
The resulting estimator faE[Y2] is

(-

A

1+ ﬁ*)uz g )
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This simple improvement of the empirical estimator does not use the autore-
gressive structure of the chain. As mentioned above, this structure is exploited by
a U-statistic of increasing order. Improving the empirical estimator then involves
three steps. In the first step, we assumas known and exploit the structural rela-
tionY; =9Y;_1 + X;. In the second step, we use the information that the innova-
tion distribution has mean 0. The last step consists of replatibng an estimator.

The key step is the first one: we represent the observations as an infinite series
of the innovations:

oo
V=) %X, teL
s=0

Suppose first that the parameteis known. Then we can calculate the innovations
X; =Y, —vY;_1,t =1,...,n, from the observations. Sinc®) has the same
distribution asS = 2, 95~1X,, the problem is now reduced to estimating the
functional

E[h(Yo)] = E[h(S)]

(5]

from i.i.d. observations X1,...,X,,. This expectation is approximated
by E[h(S"™)] with §¢™ =" 951X, if m increases with. This suggests
using the following variant of & -statistic as an estimator fa&[x(S)]. Form
the sums

m m
Si) =Y X =D 0 (Yigs) — ¥Yio-1)
s=1 s=1
forinjective functions from {1, ..., m} into {1, ..., n}. These sums are distributed
as S™. Hence we estimateZ[h(Yp)] by an average over these sums, the
U -statistic

. (n —m)!
RO == Zh(Si(ﬁ)),
ied
where® denotes the set of all injective functions frddy ..., m} into {1, ..., n}.

We can show, via Hoeffding decomposition, thaki= m (n) increases with at
an appropriate rate, then tbestatistick (¢) is asymptotically linear

1 n
k(@) =E[h(Yo)l + — 3 h(Xj) +o0p(nY?),
j=1

with influence functioth,. = "2 1 hy, Wherehg(x) = E[h(S)|X; = x]1— E[h(S)].
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For fixed m, the U-statistic x () is a least dispersed regular estimator of
E[h(S"™)] = E[h(X™ ,9*~1X,)] if nothing is known about the distribution of
theX ;. See Levit (1974), or argue via the asymptotic equivalence dftiseatistic

and the von Mises statistic and efficiency of the empirical distribution function
[Beran (1977)]. Optimality is preserved if we let tend tooco at the appropriate
rate. ForU-statistics of increasing order, see also Shieh (1994) and Heilig and
Nolan (2001).

In Section 2 we prove these results for functionals of the more general
form E[h(}-72, BsX)] with summable coefficientgs, B2, .... The results are
of independent interest. For simplicity, we do not prove them under minimal
assumptions on the functioh. In our applications to linear time series in
Sections 4 and 5, we shall need stronger assumptions anyway. The assumptions
are general enough to cover moments and absolute moments and other smooth
functions.

Now we turn to the second step of the construction of our estimator,
exploiting the fact thatX, has mean 0. This is a linear constraint of the form
E[Y1, — 9Yo]l = E[X1] = 0. The simple improvement of the empirical estimator
%Zf}zlh(Yj), described above, has used the linear constrAiii;] = 0 on
observations from a Markov chain. Here we use the constrAj¥X;] = 0
on the observed innovations, which are i.i.d. This simplifies improving our
estimatork (). Similarly, as above, we form, for anye R, the estimator

. . 1
R(@,a)=RW) —a=Y (Y;—0Y;_1),
nia
which has influence function— h.(x) — ax. It is easy to check that the choice
E[X1h+(X1)]
A=0x="1~37
E[X{]
yields an estimator with smallest asymptotic variance in this class of estimators.
The optimala, stems from projection ofiX1]. It depends onP and must be
replaced by an estimator. A consistent estimator is
T (Y; =91 3L H (D)

ax(9) =
" T (Y —0Y;1)?

’

where

(n —m)! .
Hej0) =37 Yo h(Si®),  s=1...m j=1....n.
Tiedi(s)=j

This leads us to the estimator

1 n
R (D, 4(9) =k (D) = @)~ (¥; = 9Y;j-1).
j=1
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We show that this is a least dispersed regular estimatbfofYy)] in the submodel
with knownparametei?. For a related efficiency result in such i.i.d. models with
linear constraints, but for simpler functionals, see Levit (1975). In Section 3 we
generalize these results to functionals of the f&f (3_2 4 Bs X;)].

The third and last step of the construction of our estimator consists of
replacings by an estimato®, leading to thesubstitution estimato (9, 4, (%)).

It then follows from thesubstitution principlethat the substitution estimator is
efficient for E[h(Yo)] = E[h(3_524 951X if % is efficient for®. Conditions

for this principle to hold were first formulated by Klaassen and Putter (2001) in
models with independent and identically distributed observations, and generalized
to Markov chain models by Mdiller, Schick and Wefelmeyer (2001a).

In Section 4, rather than checking the conditions for the substitution principle,
we calculate directly the influence function of the substitution estimator for func-
tionals E[h(3_52, a5 () X,)] from observations which approximai€y, ..., X,.

In Section 5 we apply the results of Sections 2—4 to estimate stationary expecta-
tions E[h(Yp)] from observations of causal invertible linear processes. Efficiency
of our estimator follows from Schick and Wefelmeyer (2002a) who character-
ize efficient estimators for arbitrary differentiable functionals in such time series
models.

In Section 6 we compare the asymptotic variances of the empirical estimator,
the improved empirical estimator and our estimator for the stationary variance
in AR(1) models. In this situation the asymptotic variances of the estimators can
be calculated explicitly. For innovation distributions far from normal the variance
decrease can be considerable.

2. Estimating the distribution of an infinite series. Let X3, X»,... be
independent and identically distributed random variables with
(2.1) E[1X1/?"] < 00

for somep > 1 and with unknown common distributioR. Let 81, B2, ... be
known real numbers such that

o0
(2.2) > 18] < 0.
r=1
Then the series
o0
S= Z lngr
r=1
converges almost surely andin,,. Letz be a function fronR to R such that
(2.3) |h(x)] < C1(1+ |x|P), x eR,

(24)  |hx+y) —hx)| < C21+ X))yl +1y17),  x,yeR,
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for some finite constants; andC». Then the expectatiof[/(S)] is well defined.
Examples of functiong that satisfy (2.3) and (2.4) are polynomialsyror |x| of
degree at most and Lipschitz continuous functions.

We are interested in estimatirgfx(S)] from the observationX, ..., X,,. Let
us introduce our estimator. It follows from (2.1)—(2.4) that the infinite sum

well approximated by the finite sus{™ = Y™, 8, X, for moderately largen.
Indeed, the Minkowski inequality yields that
b q b q
(2.5) E[ D BiX; } < E[IXllq]<Z Iﬂ;l) : l<a<b,1<q=<2p.
Jj=a j=a

In view of (2.4) and the independenceSf S ands™,
E[|n($) —h(s")["]
< C3E[(1+ 8™ ")) (E[(|S — ™| + s — s™")?]).

It is now easy to see that there exists a conskastich that

00 2
(2.6) E[|h(S)—h(S(m))|2]§K2< > Iﬁrl)
r=m+1
and hence
2.7) [ERS)] = E[A(S")]I <K Y 181
r=m+1

Actually, the constank can be chosen to be

o0

2p-1
K= 2C2<1+ 3 |ﬂr|) (1+ E[XZ] + E[|X1/27]).
r=1

Recall that® denotes the set of all injective functions frofd,...,m}
to{1,...,n}. The random variables

m
Si = ZﬁrXi(r), i€d,
r=1

have the same distribution 8§ . Hence an unbiased estimator®fi(S™)] is
given by

_ |
Py n!m)‘ gh(S,-).

The estimator can be written ad/astatistic,

-1
n
(m) > km (Xi@ys - - - Xiam))»

1<i(D)<---<i(m)<n
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with symmetric kernek,, defined by
1
ki (61, %) = 0 B h(Baxiy + -+ BuXion), X1, X €R,
Tiell
with IT the set of permutations ¢1, . . ., m}. Using standard’ -statistic techniques
[see Serfling (1980), page 178, Lemma A and page 184, Lemma B], we obtain

n
R =k + % > mkm1(X;) + R,
j=1
where
Kkm = Elkn(X1, ..., Xm)] = E[R(S™)],
ki 1(x) = Elkpm (x, X2, ..., Xin)] — ks x eR,
and the remainder satisfies

m 2 -1
E[R2]§Z<’;‘> (’:) EM2 (X1, ..., X,
r=2

It is easy to check tha[k2 (X1, ..., X,)] < E[h?(S"™)]. Usingm!/(m — r)! <
m” andn!/(n —r)! > (n — r)", we obtain, fom —m > m?,

moq m2 \"
2 2(g(m) _
E[R?] < E[h%(S )]rgzr!<n_m)

SE[hZ(S(’”))]< m? )2.

n—m

Note also that

mkn 1 () = Y (E[R(S™)1X, =x] - E[1(S™)]).  x€R.
r=1
Now let
hy(x) =E[h(S)|X, =x]— E[h(S)], xeR,r=212,....

With the help of (2.4) and the Cauchy—Schwarz inequality, we verify that
/thP <4E[(h(S) — h(S — B:X1))?]

<A4C3E[(1+1S — B, X, 1"ZE[UB- X, + |8 X,17)?).

This and the Minkowski inequality show that there exists a consfasuich that,
for all sufficiently largem andk, m < k,

/( Xk: h,)zdpgc( Xk: |ﬁ,|)2.

r=m+1 r=m+1
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Thus the serie&, = > 22, h, is well defined inLa(P) and is theLy(P)-limit
of Y 4 hy:

2
m
2.8) /(h _ Zh,) dP—>0  asm— oo,
r=1

It follows from the Cauchy—Schwarz inequality and (2.6) that

2
m
/<mkm,1 - Zh,) dP < 4mE[|h(S) — h(S"™)[*]
(2.9) r=1 . )
s%m¢<§j|m0
r:m+1
for largem. We arrive at the following result.

THEOREM2.1. Suppose we can chooge= m(n) such that

o0
(2.10) m*/n—0 and n*? Y |g.|—0.
r:m+1

Leth satisfy(2.3)and(2.4). Then the estimator

(=l [
= nzm Zh(ZﬂrXim)

ied r=1
is asymptotically linear foi [ (S)] with influence functioth, = > 1 A,

X

1 n
R =EhS)]+ > Y hi (X)) +o0,(n ).
j=1

In particular, & is asymptotically normal with variancgh2d P.

We have phrased this and the following theorems about estimators as asymp-
totic linearity results. The reason is that asymptotic linearity is useful for obtaining
other, more familiar results about estiet: they are then seen to be asymptot-
ically normal, their asymptotic variances are easily calculated and we can check
whether they are regular and whether they are efficient in the sense of being least
dispersed among regular estimators.

REMARK 2.1. Let us briefly discuss the choicermafin two special cases:
1. Suppose that the coefficiertg B2, ... decay exponentially, say
Bjl<Col,  j=12...,

for a finite constaniC and a positive numbef, ¥ < 1. Then the require-
ment (2.10) is satisfied ifn*/n — 0 andn/29™ — 0. The latter holds if
log(n)/m — oco. If & < e~1/2 it even holds fomn = log(n).
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2. Supposg; =0 for j > p. Then we can take: = p. We should point out that
in this caseh, = hy + --- + h, is a finite sum and (2.8) holds even though
does not go teo. This is the classical result for fixed-degr@estatistics.

As it is very time consuming to calculakefor largem, it is advantageous to
choosen as small as possible.

REMARK 2.2. If the coefficients do not decay fast enough, we may not be able
to satisfy (2.10). For example, ff; = j~1¢, j =1,2,..., for some positivez,
thenm needs to satisfyn?/n — 0 andn/m% — 0. But this is only possible
if a > 2.

Let us now show thak is efficient. For this it suffices to show that[/(S)]
is differentiable at the true? with canonical gradient equal to the influence
function &, of our estimatork. Since we will have to look at distributions near
to, but different from, the true®, it will occasionally be convenient to express the
dependence of expectations on the underlying distribution by wriipgor E.
Note thatkx(P) = Ep[h(S)] defines a functional on the set of all distributions
with finite 2pth moments. We introduce a local model at the tRu@as follows.
Let L.(P) denote the set of all measurable functiopdrom R to R such
that [ gdP =0 and [ g2d P < co. To eachg in L.(P) associate a sequengg
in L,(P) such that

(2.11) lgnl < nt® and /(gn — g)zdP — 0.

A possible choice ig, = g1[2|g| < n¥/®] — [ g1[2|g| < n'/8]dP. Let P, , de-
note the distribution withP-density 1+ n~%/2g,. Since 0< 1+ n~%?g, and
[(A+n"Y2g,)d P = 1, the function 1 n~1/%g, is indeed a probability density.

THEOREM 2.2. Suppose we can choose= m(n) such that(2.10) holds
Leth satisfy(2.3)and(2.4). Then the functionat (P) = Ep[h(S)] is differentiable
at P with gradienth, =322 h,:

nY2(ic(Pag) — k(P)) — /h*g dP.

PROOF Letm =m(n) satisfy (2.10). LeG, o= 1 and

k
Gui=[]A+n Y2 (X)), k=12....
r=1

Since

k k k
n2Gur =D =Y Guro18n(X) = gn(X:) + > gn(X:)(Gpre1— 1)
r=1 r=1 r=2
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and
E[(Gnix — D2 = E[G2 ] - 1= (L+n*E[g2(XD])" -1
k_ o 12 k-1
< CElgh(Xnl(L+n ElgZ(xp])

we get by an application of the Cauchy—Schwarz inequality and the independence
of X, andG, ,_1 that

n2E[h(S)(Gpm — D] — E[h(S) Zgn(xr)”

r=1

< S (EIP(HIELG2(XENGr—1 — D22, 0,
r=2

Since/ g, d P =0, we find that
E[h(8)gn(X,)] = E[(E[R(S)|X;] — E[h(S)])gn(X)]
=/g,,h,dP.

Thus, in view of (2.8) and (2.11),

E[h(S)Zgnom} = [e X har— [gh.ap.
r=1 r=1

This shows that

(2.12) nY2E[R(S) (G — )] — /gh*a’P.

Note thatEp, [1(S"™)] = Ep[h(S"™)G ], O thatc (P, o) — k(P) equals

Ep, [h(S) = h(S"™)] + E[(h(S™) = h($))Gnm] + ETA(S)(Gpm — 1.
The desired result now follows from (2.12) and (2.10) because
o0
n*?|Ep, [1(S) —h(s™)]| =0 (nl/ > |ﬁr|)
r:m+1
by the same argument that yields (2.7), and
o0
() ~ )Gl = 0 3 150)
r:m+1

by (2.6) andE[G2, 1 — 1. O

n,m



614 A. SCHICK AND W. WEFELMEYER

Theorems 2.1 and 2.2 imply thatis least dispersed among regular estimators
of Ep[h(S)] if nothing is known aboutP. For an appropriate version of the
convolution theorem, see Bickel, Klaassen, Ritov and Wellner [(1998), page 63,
Theorem 2, and page 65, Proposition 1].

3. Estimation with constraints. In the setting of Section 2, we can find better
estimators forE[h(S)] = E[h(} 724 B-X,)] if additional information about the
distribution P is available. Suppose we know that

(3.1) /de =0

for some measurable function from R to R such that/ ¢?d P is finite and
positive. An important case is the choiggx) = x. This just means thaP has
mean O.

Under the constraint (3.1) we can consider the estimator

- 1
@)=k —a> > o w(X))

j=1

for real ¢ and verify that it has influence functioh, — ay if m = m(n)
satisfies (2.10):

~ 1 n
k(@)= EhS]+ 3 (h(X)) — ayr (X)) + 0, (0~
j=1

Its asymptotic variance is minimized for the choice
_ JhpdP
~ [y2dP’

which is the coefficient of the projection éf, onto,. Let us now construct an
estimator ofz, that is consistent ifn = m(n) satisfies (2.10). Our candidate is

L X (X)X Hr
o1 Y2(X ;) '

= dy

ay =

where

—_m)!
Hr~=(n m)! Z h(S;), r=1,...,m,j=1,...,n.
YT =1
i€d,i(r)=j

Recall thatS; = >4 B, Xi() for i € ®. In view of the law of large numbers, we
need only show that

1 n m 1 n
(3.2) =Y VDY Hej = Y B (XY (X)) +0p(D).
j=1 r=1

j=1
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GivenX1, the random variablé, 1 is aU -statistic (of degree: — 1 in the variables
Xo, ..., X,). Thuswe have, for=1,...,m andn —m > (m — 1)2,
E[(H.1— E[H,1/X1])?]

m—1

=ewsmn L () (1)

k=1
2(m — 1)?
n—m '

< E[R?(s™)]

From this and the Cauchy—Schwarz inequality, we get

2
1 n m
E [; > ( > (Hyj— E[Hr,<,-|x,-])) }

j=1l\r=1

m

<my_ E[(Hy1— E[H.1|X1])?]
r=1

= O(m4(n — m)_l).

Thusm?/n — 0 implies that

2
1 n m
(3.3) - Z(Z(H,,‘,- - E[Hr,,-lX‘,-])) =o0,().

j=1\r=1

From this and another application of the Cauchy—Schwarz inequality, we can now
conclude that

1 n m 1 n m
=Y WX Y Hej==) ¥(X;) ) ElH;j|X;]140,(2).
n - n -
j=1 r=1 j=1 r=1
It is easy to check that
m
(3.4) Y E[H, j|X;]1=m(km + kn,1(X)).
r=1
As mk,, = o(n/?), we obtain from the central limit theorem that
1 n
=Y W (X micn = 0,(1).
=

In view of this, (2.8) and (2.9), we can now conclude the desired (3.2). Let us
summarize this in the following theorem.
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THEOREM 3.1. Suppose we can choose= m(n) such that(2.10) holds
Leth satisfy(2.3)and(2.4). Then the estimator

A . 1
K(ax) =Rk —ax=Y_ ¥(X))
n j:l
is asymptotically linear fok (P) = Ep[h(S)] with influence functioth, — a.y:

R(ay) =k(P)+ = Z[h (X)) = axr (Xj)] + 0p(n ).
] =1

In particular, < (4,) is asymptotically normal with variance

2
E[(h(X1) — ax¥ (X1)? /hzdp - %

It is straightforward to check that, — a1 is the efficient influence function
for estimators ofE p[h(S)] under the constrainf ¢ d P = 0; see Levit (1975).
It follows from Theorem 3.1 thak(d,) is a least dispersed regular estimator
of Ep[h(S)] whenP is unknown except fof v d P = 0; see again the convolution
theorem in Bickel, Klaassen, Ritov and Wellner [(1998), pages 63 and 65].

4. Estimated coefficients and perturbed observations. Let X1,..., X, be
i.i.d. random variables with distributio® satisfying (2.1). We want to estimate
the expectatiorE[2(3"72 1 B, X,)]. In the applications to time series we have in
mind, the coefficient$1 = a1(99), B2 = a2(¥9), ... depend on an unknown para-
meterdg, and the random variableg,, ..., X,, are the unobservable innovations
of a time series. In this case, both the coefficients and the innovations must be esti-
mated from the time series using estimatorg®fThis will be done in Section 5. In
preparation, the present section considers general estinﬁé{@@‘), e, X,,,,,(ﬁ‘)
of X1, ..., X,,. Theorem 4.1 shows asymptotic linearity ot/astatistic based on
observationan,l(ﬁ), . Xn,n(ﬁ); Theorem 4.2 treats the case with constraint
[ dP = 0. As the underlying parameter space we take an open sebseR?.

We assume thaty, ay, ... are continuously differentiable functions froento R
such that, for some > 0,

(4.1) Z|ar<ﬁo>|<oo and Z sup  Jlé, (9] < oo,
r=117—=%0ll<n

wherea, denotes the gradient of.. Note that this implies that

[e.e]
(4.2) > sup Jor(®)| <o
r—1l2—oll<n



ESTIMATING INVARIANT LAWS 617

for the same; as in (4.1). We consider random variablEg 1(9), ..., X, ,(9)
such thatX,, ;(¥) approximatesX ; if ¥ is close todo: there ared-dimensional
random vectorgy, &», ... such that

(4.3) fng[nsjnZ] < o0,
(4.4) rp;xn‘l/znsjn =0,(D),
n
(4.5) ”tS”u<pT _Zl(xn, JWo+n Y2 = X; —n Y2 TE) =0, (1)
- J=
for all finite T'.

REMARK 4.1. Conditions (4.3) and (4.4) are implied by uniform integrability
of the variableg|£1|12, ||£2]12, . ... The former is obvious; the latter follows as

P( max n~Y?|g;|| > n)
1<j<n

1 n
oz 2 ELIEIP201Es ) > /2]

<

j=1
<2 max (& 117101181l > n/2n1] n>0.
TPasjze T T ’

Thus, if the random vector§s, &2, ... are identically distributed, then (4.3)
and (4.4) follow from E[||£1]|%] < oco. Sufficient conditions for (4.5) are the
asymptotic differentiability ofX,, ; atdg in the sense that

n
(4.6) ”tS”u<F; 3 (X j o+ 120 = X, jB0) — YT X, j(90))? = 0,(1)
=l j=1

for all finite T together with

172 .
(4.7) - > X, j(00) — &2 = 0,(D),
j=1
(4.8) 3 (X, (90) — Xj) = 0,(D).
j=1

In applications to time seriesy, ;(%) is a truncated series representation of
innovations; see (5.5).
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For® € ® andi € @, set now

S@W) =) o)X,

r=1

m
Si®) =Y oM Xig),
r=1

Sn,i W) = Z (073 (ﬁ)Xn,i(r) (ﬁ)
r=1

SetS = S(¥p) andS; = S; (Vo). These are the series in Section 2. Thinkspf (v)
as an approximation df; (). Next define

—_m)!
R(0) = ("ni‘m) Y h(Sui@).  Peo.
ied
Thenk (9g) is an “estimator” ofE[4(S)] and defined as in Section 2, but now with
X1, ..., X, replaced byX, 1(90), ..., Xu.n(90). Let ? be an estimator ofy. In
this section we calculate the influence functioré6f). The result will be used in
Section 5.

AssuMPTION H. The functioni satisfies (2.3) and (2.4) and is absolutely
continuous with an almost everywhere derivatiwehat is almost surely continu-
ous with respect to the distribution §fand satisfies the growth condition

|h' (x)] < Ca(L+ x4, x €R,
for some constar@'s and some; € [0, p].

Examples of functiong: that satisfy Assumption H are again polynomials
in x or |x| of degree at most and Lipschitz continuous functions.

THEOREM 4.1. Suppose assumptiorid.1)—(4.5)hold, # satisfies Assump-
tiop H and we can choosa = m(n) such that(2.10) holds with 8, = «;(90).
If 9 is n1/2-consistent fordg, then

(4.9) RD) =& + A} (D — Do) + 0,(n"Y/?),
where
(n—m)! ,
Ap=——"> h(S)HDi,
n! ied

m

Di =) [6, W) Xi() +or(P0)&ir]. i€
r=1
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ProoOE Fori € @ set

m

Dyi=Spi (@) — S =Y [0r(®) Xn,it (@) — o (90) Xir)]-
r=1

Sinceh is absolutely continuous, we see that

(n—m)!

R 1
‘@) — k= S D, /O B (Si + 2Dy ) dz.
ied

The desired result can now be written as
(n—m)! L, T A / ~1/2
Z D, h'(S; +2zDy ;)dz — D; (0 —00)h'(S;) | =0p(n ).
icd 0
But this is a consequence of the following statements:

n!

n!

— |
(4.10) = n"")' Y (0 (S)% = 0,(D),
: ied
(n —m)! 2
(4.11) —— 2_IIDil* = 0,(D),
: ied
— | N
(4.12) (n n!m). Z;:(Dn,i - D (¥ — 290))2 =0,(n" b,
— | 1
@13 n!’")' Z/O (W' (Si +2Dn.) — B'(S))2dz = 0, (1).

ied
Of course, (4.10) holds because its left-hand side has an expectation that converges
to that of E[//(S)?] by the properties of’. Next, we have

m 2
E[ID; )21 < 2(2 ||dr<z>‘o)||) E[X?]
(4.14) r=1

m 2
- 2(2 |ar<ﬁo)|) max ELlI§; 1%

r=1
by the following version of the Cauchy—Schwarz inequality:

2
(Zarbr) <> larl Y larlbf.
r r r

Relation (4.11) follows from (4.14) and assumptions (4.1)—(4.3). To obtain
relation (4.12) use the formula

2 2
& n'm Z(Z|arbi(r)|> =< (Zlar|> ; X;-bjz
]:

ied \r=1 r=1
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to bound the left-hand side of (4.12) by

2
m R 1 n R
3(2 oy () — ar<z>‘o>|) - > g 12119 — doll?
j=1

r=1

n

2
n ~ 1 ~ ~
+ 3( > |ar(z>‘)|) S (X () = X —&] (0 —90)
r=1

j=1

m 1 . 2
+3(Z/O Ho'tr(ﬁo+z(z9—z90))—dz,(z?o)Hdz) Z|X 1219 — 9ol

j=1

The desired (4.12) is now immediate in view of (4.1)—(4.5) andrtHé-consis-
tency of. Note that the:'/2-consistency of, the continuity ofx, and (4.1) yield

Z/o létr (90 + 2(B — D0)) — & (90)| dz = 0, (D).
r=1

We also have
(4.15) D, =max|D, ;| =o0,(1).
ied

This is a consequence of (4.12) and the fact that

maxn—l/an I < Z & (9011 max n—1/2|x |
r=1

+ Z o (90)| max n—l/zns, [
r=1
=0p,(1).

Thus it suffices to prove (4.13) with,, ; replaced byD,;"’l. = D, i1[|D, | <1]. It
follows from Assumption H that

1
Z””:/o (W (Si + 2D ) — W' (S))2dz <4C2Q2+ |S)%,  ied.

Since S; has the same distribution a&"™ (99) = > ; &, (¥0)X,; and S™
converges inLy, to S, we see that the random variablgs, ; :i € ®,n > 1} are
uniformly integrable. Thus (4.13) will follow if we can show that, for evédry

@16 = m)

/ 2
_ ; =0,(1).
E / L/\ h(S +zD i) h(S-)) dz=o0,(1)

ied

Fix L. Define a mapH from @, the set of all probability measures on the Borel
o-field of R2, into [0, L] by

H(Q) = f LA G) - 0))?0dx.dy)., Qea.
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With the aid of this map, we can write the expected value of the left-hand side
of (4.16) as

—m)! 1
(n—m)! S [ HQ: ) dz,
f’l' 0 n,t

: ied
whereQ;, ; is the distribution of the bivariate random vector

Yi, =(Si+2zD} ;.5

Endow @ with the topology of weak convergence. This topology is generated
by the Prohorov metrip. By the properties of’, the mapH is bounded and
continuous atQg, the distribution of(S, S)T. Note also thaiH (Qg) = 0. Hence
for ¢ > 0O there exist$ > 0 such thato(Q, Qo) < é implies |H(Q)| < ¢. It thus
suffices to show that

(4.17) sup{p(QZ ;. Qo):i € ®,z€[0,1]} — 0.

n,i’

For this we use the following simple property of the Prohorov metri& HndY
are two bivariate random vectors with distributio@sand R, then p(Q, R) <
n+ P(|X — Y|l > n) for eachy > 0. Now letY; = (S}, S¥) T with

(e e]
;= Si+ ) tmar (90 Xusr
r=1
ThenY; has distributionQo and||Y;}; — ;|| < v/2|S; — Sf| + |D}: ;| forall z €
[0, 1] and alli € ®. The desired (4.17) is now immediate.]

REMARK 4.2. Fori € @ set

m m

Si=>"a 00X and Ti=)_ o0&,
r=1 r=1

so thatD; = S; + T;. Under the assumptions of Theorem 4.1, one can show that

(n—m)!
n!

(4.18) D WSS =n+0p(D),
ied
wherew = E[h/(S)S] with S = 3%, &, (90) X,
One also expects that under mild additional assumptions,
(n—m)!
n!

(4.19) S R (SHTi =v+0,(D)

ied
for some vector € R¢. Then (4.9) simplifies to

R =R+ (u+v)" @ — Do) +0,(n"?).
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In the following lemma we formulate a set of sufficient conditions for (4.19)
that is useful for the applications we have in mind.

LEMMA 4.1. Suppose Assumptiod holds m*/n — 0, the random vec-
tors &1, &o, . .. are stationary withE[||£1]2] < oo and
(4.20)  SUPE[||& — E[&1X,—s,.... X,_1]I?] > 0  ass — oc.

r>s

Then(4.19)holds with

v=E[N(S)])_ a0 E[£1l.

r=1

PrROOF Without loss of generality, we may assume thiat 1. Lets denote
the integer part of L log(n). Let ®; denote the set of all in ® such
thati(q) > s and|i(g) —i(r)| > s forall g,» =1,...,m andq # r. Set§, s =
E[&|X,_s,...,X,_1] forr > s and

m
Ti,s = Zar(ﬁO)gi(r),& ie€d.
r=1

Since m*/n — 0, we have that:”/(n — ms)™ — 1. This shows that the
cardinality of @, is of the same order as that &. Hence the cardinality of the
complementd\ ®; of &, with respect tod is of ordero(n!/(n — m)!). We now
use this and (4.20) to show that the left-hand side of (4.19) differs from

(n—m)!
D=—— 3% W(S)Ts
n: .
ied;

by a term of ordep,(1). Indeed, the expected value of the absolute value of this
term is bounded by

— |
n ”")‘< ) E[Ih/(Si)Ti|]+ZE[lh/(Si)(Ti,s—Ti)l])

1
n: D\ Dy ic®,

Now use the fact that the expected valugig'(S;)?] and E[Tl.z] are uniformly
bounded and thak [(T; ; — T;)%1*? < Y324 |or; (P0)| SUR-.( (E[II&, — &-s[2DY2,
to conclude that this bound tends to 0.

It is easy to check that two summand§s;)7; , and h'(S;)T; of D are
independent if their indicesand j satisfy|i(r) — j(r)| >sforallr =1,..., m.
This shows that the variance &f goes to 0, so thaD = E[D] + o0,(1). Since
S; and T; ; are independent foi € ®;, and S; has the same distribution as
S =" | &, (90)X,, We have

_ |
ELD] = E[i' (sm)y =t S EITil.

|
o,
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The properties ok’ imply E[h'(S"™)] — E[h’(S)]. From (4.20) and (4.1), we get

SUP|E[T; ] — Y ar(90)E[£1]| — 0.
iedg r=1

We can now conclude thd@[D] — v. This completes the proof.[]

Let us now turn to the constrained setting of Section 3, with function such
that [ d P = 0 and y?d P finite and positive. Fot € © consider

R 12
K (0, a:(9)) =k () — 51*(13‘); Z V(Xn,j(0)),
j=1

where
T ¥ (X, j(0) X7y Hy, ()

A>x< ¥) = s
@) V2K (9)

(n —m)! .
H,,j(f}):m Yo h(Si®),  r=1...mj=1..n.
T ied,i(r)=j

We now write a,(d9) for the a, of Section 3 to stress the dependence on the
parameter.

THEOREM4.2. Suppose the assumptions of Theo#efrhold. Suppose also
that v is Lipschitz with an almost everywhere derivative that is continuous
P-almost surelylf 9 is n/2-consistent for, then

1 A A
- Y @Y (Xn, j (D))

j=1
12 R
= a*(l‘/‘o); Z ¥(X;)+ a*(ﬁo)r‘;(ﬁ — %) + Op(n—l/z)’
j=1
with
14,
Lh== ) ¥ (X)E.
n ]

If, in addition, the random vectorgy, &o, . .. are stationary and satisfi@.20),then
(4.21) Ty = E[ (XDIE[£1] + 0, (D),

and hence < = 2 (9, 4,()) equals
. . 12
G = k@) = ax(Bo)~ > w(X))
=1

— a,(90) E[Y (XDIE[E] 1D — 90) + 0,(n~Y?).
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PROOF Since (4.21) is easy, we prove only the first conclusion. It suffices to
show that

(4.22) 4, (3) = ax(M0) + 0,(1),

1 N
(4.23) ;Z(w(xn,jw))—w(m wa )E] (& — 00) + 0p(n?).

j=1 ] 1

The latter is a special case of Theorem 4.1 wviitreplaced by anda1(?) =1
and o, () =0 for r > 2. As ¢ is Lipschitz, we obtain from (4.4), (4.5) and
then/2-consistency of} that

(4.24) Wy = max W (X0 j (D)) — ¥ (X)) = 0,(D).

In view of (3.2) and (4.24), the desired statement (4.22) will follow from

(4.25) Z X ;@) =¥ (X)) Y Hy,j(00) = 0,(D),

r=1
1 m
(4.26) ;Zw(xn,jw) Z H, ;j(®) — H, ;(90)) = 0,(1).
j=1 r=1

It follows from (2.9), (3.3) and (3.4) that

2
1 n m
- Zl<m/<m -> H,,‘,-(z‘}o)> =0,(D).
]:

r=1

It follows from (4.23) that
- Z X, j () = ¥ (X;))micm = 0,(D).

Together with (4.24), these statements yield (4.25). Next bound the absolute value
of the left-hand side of (4.26) by

—m)! " .
S '")Z S (X (3))|Ca(+ IS + 1 Dui 9| Dyi|

r=1 ! j=1ied,i(r)=j

n—m)!
§C4Z( ,)Z Y AHIX+U)AH S+ D) Dy il
=1 ™ iDliedin=j

whereD,, ; and D,, are as in the proof of Theorem 4.1 a@d is a constant. An
application of the Cauchy—Schwarz inequality now shows that the square of the
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left-hand side of (4.26) is bounded m?C2U, V,,, where
(n—m)!
Up=— > Dz,

ied
13 (n—m
V== Z( ! Z Yo AHIX+Y)RA+ S|+ D).
m !
r=1 j=1lied,i(r)=j
It follows from (4.11) and (4.12) thatU,, = O, (1). It follows from (4.24), (4.15)
andg < p —1thatV, = 0,(1). As m2/n — 0 we obtain the desired (4.26)0

5. Application to semiparametric linear processes. Now we apply Sec-
tions 2—4 to real-valued causal invertible procesées € Z, with infinite-order
moving average and autoregressive representations

o0

(5.1) Y =X+ ) 80Xy, 1€,
s=1
o0

(5.2) Yz=Xz—ZVs(19)Yz—s, teZ,
s=1

where the innovationgX;, ¢ € Z} are i.i.d. with distributionP which has mean 0
and finite variance, and the paramefewaries in an open subsét of R?. We
assume thabi, 32, ... and yy, y2, ... are continuously differentiable functions
from ® into R with the following growth conditions at the true parametet .
for a finite constan€ and positive numberg anda < 1,

(5.3) sup [18, |+ 18, M)I<Ca”, r=1,2,...,
19—l <n

(5.4) sup [ly, )|+ lprlll<Ca”,  r=12,....
19 —Doll<n

Heres, is the gradient o8,, andy, the gradient of,.

ExamMpPLE 5.1. For the AR(1) procesg = X; + 9Y;_1, take® = (-1, 1)
and sety1(¥) = —9 andy, () = 0 for s > 2. The infinite-order moving average
representation holds wity () = 9*.

EXAMPLE 5.2. For the MA(1) procesg, = X; + 9 X,_1, take® = (-1, 1)
and set§1(¥) = ¢ and é,() = 0 for s > 2. The infinite-order autoregressive
representation holds with () = (—9)".

ExXAMPLE 5.3. For the ARMAL, 1) processY; — %1Y;_1 = X; — 92X, 1,
take ® = {(¥1, ¥2) : 91, P2 € (—1, 1), 91 # ¥2}. The infinite-order moving aver-
age representation holds with(?) = (91 — ﬁz)ﬁj‘l, and the infinite-order au-
toregressive representation holds witlid) = (92 — 15‘1)195_1.
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In the following, we will occasionally writ&; () for representation (5.1) df;,
andE p for expectation wherP is true. We want to estimate the functional

K (8, P) = Ep[h(Y1(®))]

from observation%y, ..., Y,. Since the true innovation distributiah has mean 0,
we have the linear constraifitr P (dx) =0, thatis,Ep[y¥(X1)] =0 fory (x) = x.

Note that if we observe onlyy,...,Y,, we cannot estimate the first few
innovations so well that (4.5) holds. However, (4.5) can be achieved if we also
observeY_, ), ..., Yo for a properly chosen sequencé:) of integers. For
exampler(n) = p—1 works for AR(p). In general, we must have Assumption 3in
Schick and Wefelmeyer (2002a), which under our assumption (5.4) holdswith
proportional talogn)1t¢ for somes > 0. We will assume in this section that those
additional observations are available. Otherwise, renumber the observations.

We apply Section 4 witha, = 6,1, r = 1,2,..., where §o = 1, and
take X, 1(9), ..., X, »(9) to be truncated versions of the representation (5.2) of
the innovationsXy, ..., X, in terms of the observations:

r(n)+j
(55)  Xu;M=Yj+ Y y@®Yj—, j=1....n 9e€0O.
s=1
It is easy to see that assumption (5.3) implies assumptions (4.1) and (4.2). Let us
now show that (5.3) and (5.4) imply (4.3)—(4.5) with

o0
=Y @)Y,  j=12...

s=1
Aséq, &, ... are stationary and square integrable by (5.4), we obtain (4.3) and (4.4)
from Remark 4.1. To prove relation (4.5), we verify the sufficient conditions
(4.6)—(4.8) with Xn,j(ﬁ) = ZZ(:”F] ys(#)Y;_s. Conditions (4.7) and (4.8) are
easy consequences of the choicerof) and assumption (5.4). We bound the
expectation of the left-hand side of (4.6) by

n r(n)+j 2
ZE( > sup|ys<z>‘o+n—1/2r>—yswo)—n—l/zﬁy's<z>‘o>||¥,_s|)
j=1 s=1 ltI=T

0o 2

< E(Yf)(Z sup lys Do +n"2) — y,(90) — n‘l/zﬁy'swon) .
s=11Izll=

We have used the Minkowski inequality here. Singey», ... are continuously

differentiable, each term in the last series converges tosOtaads toco. Hence

the sequence of series converges to 0 since the dominated convergence theorem

applies by (5.4). This proves (4.6) and completes the proof of (4.5). Finally,

assumptions (5.3) and (5.4) imply relation (4.20).
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Now set

Sni(®) =8 _1(9) Xui(n(®),

r=1

(n—m)!
H, ;(9) = h(Sn.i (9)),
J (n—1)! ied>tX(;):j

Toa(Yj —0Y 1) 3 Hr j (D)

A>x< ¥) = ,
@) (Y — 012
fo.ay= " m) S h(Si () —a= Z(Y DY 1).
! ied

Since the random vectogs, &, ... are stationary wnh'ip[gl] =0, Theorem 4.2
implies

’é(l9 a*(ﬁ))—/((l?)—a*(ﬁo) ZX +0p(n—1/2)’
] 1

and Theorem 4.1, Remark 4.2 and Lemma 4.1 imply
k@) =& + Ep[l (Y1(90) 1(90) "] — Do) + 0, (n V2,
with ¥1(90) = 2%, 8, (90) X1_,. By Theorem 2.1 we have

3 1y
& =0, P)+ 3 hu(X)).
j=1

We arrive at the following result.

THEOREM 5.1. Suppose assumptiorfs.3) and (5.4) hold and# satisfies
AssumptiorH [with Y1(¢9) playing the role ofS(¥o)]. Choosem = m(n) such
thatm?/n — 0 andlog(n)/m — 0. If & is n¥/2-consistent fory, then

R(D,a,(3)) = kDo, P) + Ep[h' (Y1(80)) Y1(%0) T ] (B — o)

+ = Z[h (X)) — as(P) X1+ 0p(n~?).
j =1

Computations are faster iz is small. We may choose: proportional
to (logn)1*¢ with & > 0.

Let us now show thak (3, a.(9)) is efficient for E p [ (Y1(90))] if ¥ is efficient
for 9. Schick and Wefelmeyer (2002a) give conditions for local asymptotic
normality and characterize efficient estimators for differentiable functionals in
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causal and invertible linear processes. We need only check that the functional
k (0o, P) = Ep[h(Y1(90))] is differentiable in an approprlate sense, with efficient
influence function equal to the influence functlonctoﬁ‘ 4 (D)).

We assume from now on th&t has finite Fisher informatiof(P) for location;
that is, P has an absolutely continuous densityand I (P) = [¢2dP < oo,
wherel = f’/f. We also assume that the matix) = Ep[glng] is positive
definite.

Local asymptotic normality and differentiability require a local model. It is
introduced in Schick and Wefelmeyer (2002a) as follows. Set

G:{geL*(P):/gszfxg(x)P(a’x)=0}.

Forg in G defineP, , by its P-density 14 n~1/2

-1
8n=28n— /gnyn dP(/)’nV dP) Yns

wherey (x) = (1, x) " andy, (x) = (1, —nY8v x AnY/8)T and
% =/g1[|g| <n'®(x —n8)p(y) dy,

with ¢ the standard normal density. S&t, = 99 + n~/% for r € R¢. The
arguments of Theorems 2.2 and 4.1 yield the following result.

gn With

THEOREM 5.2. Suppose assumptiorS.3) and (5.4) hold and . satisfies
AssumptiorH [with Y1(%9) playing the role ofS(%g)]. Then for each(s, g) €
RY x G,

nY2(k (9.1, Pu.g) — k (90, P)) — Ep[h' (Y1(90))Y1(90) "]t +/h*gdP.

Schick and Wefelmeyer [(2002a), Section 5], construct a least dispersed regular
estimatory, for ¥o. Itis asymptotically linear,

D=0+ = ZV(zS‘o)I(P)) Le (X)) +0,(n~Y?).
] 1

By Theorem 5.1, the substitution estimafod., 4. (d.)) is also asymptotically
linear,

£ (D, ax(D))
=90, P) + = Z[Ep (V1(90)1(%0) ]
] 1

x (V@) (P)) '6(X)) + ha(X ) — a.(90) X, |

+ op(n_l/z).
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By the characterization in Schick and Wefelmeyer [(2002a), Section 2], Theo-
rem 5.2 shows that the efficient influence function ¢#, P) equals the influence
function of the substitution estimatél(ﬁ*, &*(19*)), so that the latter is least dis-
persed and regular far(g, P) = Ep[h(Y1(0))].

6. Variance reduction in a special case. We illustrate our results with
the autoregressive example considered in the Introduction.Ypet ., Y, be
observations from the AR(1) moddl; = ¥oY;_1 + X, with |99 < 1 and
independent and identically distributed innovatioks with distribution P,
density f, mean 0 and finite fourth moment4, where u; = kaP(a'x),
k=2,3,4. We also assume thdt has finite Fisher informatiodi (P) = [ZZdP
for location, where = f7/f.

We want to estimate the stationary variance

2
o? =« (o, P)= E[Y{] = [(}:ﬁo )}.

Hereh(x) = x2. The stationary variance reduces to
2 n2
o = .
1-93

We consider the following estimators. The empirical estimataris
2
==Y
j=1

and has influence function
1

1-02

(v? —19 X% — ua).

Theimprovedempirical estimator 062 is

) 18 2 ll3
o=V~ ——=—;).

n j=1 A+ )2

with [i; as defined in (1.1) and, the least squares estimator:

n er Y._ 1Y'

19‘* = /nl I~ .

-1 Y
The improved empirical estimator has influence function
1
1-— 190

For these results we refer to Example 2 in Muller, Schick and Wefelmeyer (2001b).

(y T S - T ﬁox>)
w2
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Finally, we write 62(9) = £(9,a,(9)) for our estimator ofo2. Suppose
that ¢ is asymptotically linear with influence functian. Then by Theorem 5.1
our estimator is asymptotically linear with influence function

1 (2190M2
2 2

wx, )+ (v — x)? — pa — %(y - 1‘/‘0)6))-

The least squares estimatdy has influence function
&
x(y — PYox).

w(x,y)=

An efficient estimatorx has influence function
2

w2l (P)

w(x,y)= O x(y — dox).
If we use an efficient estimatods, then the estimatoﬁ,f(é#) is efficient
by Section 5. In the particular case of estimating moments, simpler efficient
estimators are given in Section 6 of Schick and Wefelmeyer (2002a). In particular,
a simpler efficient estimator @f? is

3

Mo ,bL3 ~
< With 15 = flo — ——fL1.
1- 52 2 fi2

The estimator is obtained by replacipng anddg in o2 = u2/(1— 190) by efficient
estimators. The efficient estimata} of .o uses the constraipt; = 0. Of course,
both efficient estimators f0d5'2 are stochastically equivalent. This can be seen
directly by S|mpI|fy|ng a#(z?#) More generallyuz/(l — 9?) is stochastically

equivalent ta52(1) for anyn'/?-consistent estimatat of .
Next we determine the asymptotic variances of these estimators. The empirical
estimators2 has asymptotic variance

gl g )
Theimprovedempirical estimatoé? has asymptotic variance

1 2 > 9§ 3
s ma— s+ 4u ——)-
1— ﬁ§)2< 2T 92 e

One calculates that the estimatca?ré(é*) and 5/(1 — 5‘3) have the same as-
ymptotic variance. Finally, the efficient estimata$(dx) andi5/(1 — 92) have

asymptotic variance

1 2 Auodb u%)
s | Ha— U e — 2 )
(1—195)2( ETIR@-9))  m
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The relative asymptotic variance increase of the empirical estind&taver the
efficient estimator is
1(PY(1— 933/ 2 + 40§ua(pal (P) — 1)
I(PY(L— 0§) (1a — 5 — 3/ 12) + 40512

For the improved empirical estimatat?, the relative asymptotic variance
increase is

498ma(uzl (P) = 1)
1(P)(1— 08)(a — u5 — u5/ 1) + 40512

These estimators are efficient for valuesigfand P for which the corresponding
ratios are 0. The second ratio is O if and onlyif= 0 or u27 (P) = 1. The latter
happens if and only i? is normal. Thus the improgkempirical estimato:%*2 is
efficient if and only if9g = 0 or P is normal. The first ratio is O if and only if
u3 =0 and alsodg = 0 and 2/ (P) = 1. Thus the empirical estimat@? is
efficient if P is the normal distribution. For other distributions, it is efficient if
and only if9g = 0 anduz = 0. The two ratios are the same if and onlyuif = 0,
which is the case for symmetrie.

If 99 is close to 1, both ratios are closeue! (P) — 1. Note thatuI (P) —11is
the relative variance increase of the sample mean versus the efficient estimator in
the location model generated ®y It is well known thatuo! (P) — 1 can be large
if P is not normal.

Acknowledgments. We thank the referees for helpful comments and sugges-
tions.
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