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SENSITIVITY ANALYSIS OF VECTOR EQUILIBRIUM PROBLEMS

Kenji Kimura and Jen-Chih Yao*

Abstract. In this paper, we introduce a type of parametric vector equilibrium
problem on topological vector spaces. This problem includes parametric vector
variational inequality problem and ε-vector equilibrium problem and so on, as
special cases. Existence and some continuity properties for the of solution
mapping of the parametric vector equilibrium problem are established.

1. INTRODUCTION

Let X be a real Hausdorff topological vector space, and X a nonempty subset
of X. For any subset K of a topological space, we let intK, cl K and Kc denote
the topological interior, closure and complement of K, respectively. A subset C of
a topological vector space Z is called a cone if τx ∈ C for all z ∈ C and τ ≥ 0.
The cone C is called solid if intC �= ∅. C is called pointed if C ∩ (−C) = {θZ}
and C is called proper if C �= Z, where θZ denotes the zero vector of Z. Let Z

be a real topological vector space with a solid pointed convex cone C ⊂ Z. Let Γ
and Λ be two (index sets) nonempty subsets of two Hausdorff topological spaces,
respectively. Suppose that f : Γ × X × X → Z is a parameterized vector-valued
function, and that A : Λ → 2X \ {∅} is a constraint mapping. We consider the
following parametric vector equilibrium problem (PVEP, in short): for given p ∈ Γ
and λ ∈ Λ,

(PVEP)
find x ∈ A(λ) such that
f(p, x, y) /∈ −intC for all y ∈ A(λ).
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The solution mapping Ω(p, λ) of PVEP is a set-valued mapping from Γ × Λ to
2X defined by

(1) Ω(p, λ) = {x ∈ A(λ) : f(p, x, y) /∈ −int C, for all y ∈ A(λ)}.

If A is a constant mapping, say A(λ) = K for all λ ∈ Λ, and f(p, x, y) =
g(x, y) for all p ∈ Γ, x, y ∈ K, then PVEP reduces to the following vector
equilibrium problem (VEP, in short):

(VEP)
find x ∈ K such that
g(x, y) /∈ −intC for all y ∈ K.

For VEP and its generalizations, we refer to [1-3, 14] and the references therein.
Liou et al. [10] introduced a weak PVVI as follows: for a given x ∈ E ,

(PVVI)
find y∗ ∈ A(x) such that
∇yϕ(x, y∗)(y∗ − v) /∈ −intC for all v ∈ A(x),

where ϕ = (ϕ1, . . . , ϕp) : E × K → Rp, ϕ(x, ·) is differentiable in A(x) for a
given x ∈ E . It is clear that weak PVVI is a special case of PVEP.

For given ε ∈ intC, the ε-vector equilibrium problem is to find x ∈ K such
that

(ε-VEP) g(x, y) + ε /∈ −intC, for all y ∈ K.

The solution mapping S(ε) is defined by

(2) S(ε) = {x ∈ K : g(x, y) + ε /∈ −intC, for all y ∈ K}.

This problem studied in [8] is also a special case of PVEP.
The main purpose of this paper is to investigate some continuity properties of Ω.

To this end, we will give some preliminaries which will be used for the rest of this
paper in Section 2. We will establish some existence results of PVEP in Section 3.
Sections 4-6 give some results on upper semicontinuity, lower semicontinuity and
continuity of the solution mapping Ω of PVEP, respectively. In Section 7 we give
some applications of the results established in Sections 3-6. Finally we investigate
the differentiablity of the solution mapping Ω of PVEP in Section 5.

2. PRELIMINARIES

We recall the cone-convexity of vector-valued functions by Tanaka [12]. Let X
be a vector space, and Z also a vector space with a partial ordering defined by a
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pointed convex cone C. Suppose that K is a convex subset of X and that f is a
vector-valued function from K to Z. The mapping f is said to be C-convex on K
if for each x1, x2 ∈ K and λ ∈ [0, 1], we have

λf(x1) + (1− λ)f(x2) ∈ f(λx1 + (1 − λ)x2) + C.

As a special case, if Z = R (the set of real numbers) and C = R+ (the set of
nonnegative real numbers), then C-convexity is the same as ordinary convexity.

Definition 2.1. [C-quasiconvexity, 5, 11, 12]. Let X be a vector space, and
Z also a vector space with a partial ordering defined by a pointed convex cone C.
Suppose that K is a convex subset of X and that f is a vector-valued function
from K to Z. Then, f is said to be C-quasiconvex on K if it satisfies one of the
following two equivalent conditions:

(i) for each x1, x2 ∈ K and λ ∈ [0, 1],

f(λx1 + (1 − λ)x2) ∈ z − C, for all z ∈ C(f(x1), f(x2)),

where C(f(x1), f(x2)) is the set of upper bounds of f(x1) and f(x2), i.e.,

C(f(x1), f(x2)) := {z ∈ Z : z ∈ f(x1) + C and z ∈ f(x2) + C}.

(ii) for each z ∈ Z,
A(z) := {x ∈ K : f(x) ∈ z − C}

is convex or empty.

The statement in Definition 2.1 (i) is defined by Luc [11] and the statement (ii)
is by Ferro [5].

Definition 2.2. (C-proper quasiconvexity, [12]). Let X be a vector space, and
Z also a vector space with a partial ordering defined by a pointed convex cone C.
Suppose that K is a convex subset of X and that f is a vector-valued function
from K to Z. Then, f is said to be C-properly quasiconvex on K if for every
x1, x2 ∈ K and λ ∈ [0, 1] we have either

f(λx1 + (1 − λ)x2) ∈ f(x1)− C,

or
f(λx1 + (1− λ)x2) ∈ f(x2) − C;

f is said to be strictly C-properly quasiconvex on K if for every x1, x2 ∈ K and
λ ∈ (0, 1) we have either

f(λx1 + (1 − λ)x2) ∈ f(x1) − intC,
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or
f(λx1 + (1− λ)x2) ∈ f(x2) − intC.

Remark 1. In real-valued function, ordinary quasiconvex function is also
properly quasiconvex. For vector-valued function, we have the following example.

Example 1. Let g be a real-valued function from R2 to R defined by

g(u, v) = u2 + v2.

Let h : (u, v) 	→ (u, v, g(u, v)) and ordering cone C = {(z1, z2, z3) : z1 > 0} ∪
{θZ}. Then h is strictly C-properly quasiconvex.

Recall that a set-valued mapping T : X → 2Y where X and Y are two vector
spaces is said to be convex if for any x1, x2 ∈ X and α ∈ [0, 1], we have

αT (x1) + (1− α)T (x2) ⊆ T (αx1 + (1− α)x2).

The proof of the following proposition is straightforward and here will be omit-
ted.

Proposition 2.1. Let P and X be two nonempty convex subsets of two vector
spaces, respectively, and Z a topological vector space with a solid pointed convex
cone C. Suppose that g : P × X × X → Z is (−C)-properly quasiconvex on
P × X for each y ∈ X and that S : P → 2X is defined by

S(p) = {x ∈ X : g(p, x, y) /∈ −intC, for all y ∈ X}

is nonempty for each p ∈ P . Then S is a convex set-valued mapping.

Definition 2.3. (C-continuity, [11, 13]). Let X be a topological space, and Z a
topological vector space with a partial ordering defined by a solid pointed convex
cone C. Suppose that f is a vector-valued function from X to Z. Then, f is said
to be C-continuous at x ∈ X if it satisfies one of the following two equivalent
conditions:

(i) For any neighbourhood Vf(x) ⊂ Z of f(x), there exists a neighbourhood
Ux ⊂ X of x such that f(u) ∈ Vf(x) + C for all u ∈ Ux.

(ii) For any k ∈ intC, there exists a neighbourhood Ux ⊂ X of x such that
f(u) ∈ f(x)− k + intC for all u ∈ Ux.

Moreover a vector-valued function f is said to be C-continuous on X if f is C-
continuous at every x on X .
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Remark 2. Whenever Z = R and C = R+, C-continuity and (−C)-continuity
are the same as ordinary lower and upper semicontinuity, respectively. In [13, Def-
inition 2.1, pp. 314-315], C-continuous function is called C-lower semicontinuous
function, and (−C)-continuous function is called C-upper semicontinuous function.

Remark 3. By the balancedness of the topology of topological vector spaces,
C of (i) can be replaced by intC. See Proposition 3.2.

Definition 2.4. (see [4]). Let X and Y be two topological spaces, T : X → 2Y

a set-valued mapping.

(i) T is said to be upper semicontinuous (u.s.c. for short) at x ∈ X if for each
open set V containing T (x), there is an open set U containing x such that
for each z ∈ U, T (z) ⊂ V ; T is said to be u.s.c. on X if it is u.s.c. at all
x ∈ X , and also T (x) is compact for all x ∈ X .

(ii) T is said to be lower semicontinuous (l.s.c. for short) at x ∈ X if for each
open set V with T (x)∩V �= ∅, there is an open set U containing x such that
for each z ∈ U, T (z)∩V �= ∅; T is said to be l.s.c. on X if it is l.s.c. at all
x ∈ X .

(iii) T is said to be continuous at x ∈ X if T (x) is both u.s.c. and l.s.c.; T is said
to be continuous on X if it is both u.s.c. and l.s.c. at each x ∈ X .

(iv) T is said to be closed if the graph of T , denoted by Gr(T ), is closed where

Gr(T ) = {(x, y) ∈ X × Y : y ∈ T (x)}.

Remark 4. If T (x) is singleton and u.s.c. at x then T is l.s.c. at x, i.e.,
continuous at x. If T is singleton in a neighborhood of x, then u.s.c. and l.s.c. of
T at x are equivalent.

Definition 2.5. (KKM-map). Let X be a topological vector space, and K a
nonempty subset of X . Suppose that F is a multifunction from K to 2X . Then, F
is said to be a KKM-map, if

co {x1, . . . , xn} ⊂
n⋃

i=1
F (xi)

for each finite subset {x1, . . . , xn} of X .

Remark 5. Obviously, if F is a KKM-map, then x ∈ F (x) for each x ∈ K .

Lemma 2.1. (Fan-KKM; see [6]). Theorem 1.1. Let X be a Hausdorff topo-
logical vector space, and K a nonempty subset of X; and let G be a multifunction
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from K to 2X . Suppose that G is a KKM-map and that G(x) is a closed subset of
X for each x ∈ K. If G(x̂) is compact for at least one x̂ ∈ K , then

⋂
x∈K

G(x) �= ∅.

3. EXISTENCE RESULTS FOR PVEP

First, we give some propositions that will e used in proving existence results of
PVEP.

Proposition 3.1. Let Z be a real topological vector space. Let K and E be
two nonempty sets of Z. Suppose that K is open. Suppose that E is convex and
intE �= ∅. Then

K + clE = K + E = K + intE.

Proof. Clearly K + intE ⊂ K + E ⊂ K + clE . We next show K + intE ⊃
K + clE . Let z ∈ K + clE . Then there exist k ∈ K and e ∈ cl E such that
z = k + e. Since Z is a topological vector space and K is an open set of Z, there
is an balanced neighborhood V of θZ with V + k ⊂ K . On the other hand, since
E is convex and e ∈ clE , for any neighborhood U of θZ , (U + e) ∩ intE �= ∅.
Hence there exists v ∈ V such that v + e ∈ intE . Since V is balanced, −v ∈ V .
Therefore z = k + e = (k − v) + (e + v) with (k − v) ∈ K and (e + v) ∈ intE .
Hence z ∈ K + intE .

Proposition 3.2. Let Z be a real topological vector space with solid pointed
convex cone C. Then

clC + intC = intC.

Proof. By Proposition 3.1, clC + intC = intC + intC. Since C is convex
cone, intC + intC = intC.

Proposition 3.3. Let Z be a real topological vector space and C a solid
pointed convex cone in Z. Then

(clC)c − clC = (intC)c − intC = (clC)c.

Proof. Since (clC)c is open and clC is convex with intC �= ∅, by Proposi-
tion 3.1,

(clC)c − clC = (clC)c − intC.

Since (clC)c ⊂ (intC)c, we have

(clC)c − intC ⊂ (intC)c − intC.
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Next we have
(intC)c − intC ⊂ (clC)c.

Indeed, suppose that there exist z ∈ (intC)c, c ∈ intC and ĉ ∈ clC such that
z − c′ = ĉ. Then by Proposition 3.2, z = ĉ + c′ ∈ intC. This is contradiction.

Finally,
(clC)c = (clC)c − θZ ⊂ (clC)c − clC.

Thus
(clC)c − cl C ⊂ (intC)c − intC ⊂ (clC)c ⊂ (clC)c − cl C,

i.e.,

(clC)c−cl C = (intC)c−intC = (clC)c.

We now establish some existence results for PVEP as follows.

Theorem 3.1. Let X be a nonempty subset of a real Hausdorff topological
vector space X, and Z a real topological vector space with a solid pointed convex
cone C ⊂ Z. Let Γ and Λ be two nonempty sets, respectively. Suppose that A is
a set-valued map from Λ to 2X \ {∅} and that f is a vector-valued function from
Γ×X ×X to Z with f(p, x, x) /∈ −int C for all p ∈ Γ and x ∈ X . Also for each
p ∈ Γ and λ ∈ Λ, we assume the following conditions:

(i) A(λ) is closed and convex for each λ ∈ Λ;
(ii) {x ∈ A(λ) : f(p, x, y) ∈ −int C} is open for each y ∈ A(λ);
(iii) {y ∈ A(λ) : f(p, x, y) ∈ −int C} is convex for each y ∈ A(λ);
(iv) for each λ ∈ Λ there exist a set Bλ ⊂ X and ŷ ∈ A(λ)∩Bλ such that Bλ is

compact and

f(p, x, ŷ) ∈ −int C for all x ∈ (A(λ) \ Bλ).

Then the problem PVEP has at least one solution for each p ∈ Γ and λ ∈ Λ.

Proof. Let G : A(λ) → 2A(λ) be defined by for each y ∈ A(λ)

G(y) := {x ∈ A(λ) : f(p, x, y) /∈ −intC},

where p ∈ Γ and λ ∈ Λ are fixed. Then by f(p, x, x) /∈ −intC and condition (ii),
G(y) is nonempty and closed, for each y ∈ A(λ).

Next, by conditions (iv) and closedness of G(y) for each y ∈ A(λ), for corre-
sponding ŷ ∈ A(λ) ∩ Bλ, G(ŷ) is compact.
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Finally, we show that G is a KKM-map. Suppose to the contrary that there
exists µi ∈ [0, 1], xi ∈ A(λ) i = 1, . . . , n such that

n∑
i=1

µixi = x /∈
n⋃

i=1

G(xi).

Since xi ∈ A(λ) i = 1, . . . , n, by the convexity of A(λ) we have x ∈ A(λ).

Hence f(p, x, xi) ∈ −intC i = 1, . . . , n. This implies that f(p, x,
n∑

i=1
µixi) =

f(p, x, x) ∈ −intC because of condition (iii). This contradicts the fact that
f(p, x, x) /∈ −int C for each p ∈ Γ.

Thus we can apply Lemma 2.1, to get

Ω(p, λ) =
⋂

y∈A(λ)

G(y) �= ∅,

for each p ∈ Γ and λ ∈ Λ.

The following result is an easy consequence of Theorem 3.1.

Theorem 3.2. Let X be a nonempty compact subset of a real Hausdorff
topological vector space X, and Z a real topological vector space with a solid
pointed convex cone C ⊂ Z. Let Γ and Λ be two nonempty sets, respectively.
Suppose that A is a set-valued map from Λ to 2 X \{∅} and that f is a vector-valud
function from Γ ×X × X to Z with f(p, x, x) /∈ −int C for all p ∈ Γ and x ∈ X .
Also we assume the following conditions:

(i) A(λ) is compact convex for each λ ∈ Λ;
(ii) f(p, ·, y) is (−C)-continuous on A(λ) for each p ∈ Γ, y ∈ A(λ);
(iii) f(p, x, ·) is C-quasiconvex on A(λ) for each p ∈ Γ, x ∈ A(λ).

Then the problem PVEP has at least one solution for each p ∈ Γ and λ ∈ Λ.

Theorem 3.3. Let X be a nonempty subset of a real Hausdorff topological
vector space X, and Z a real topological vector space with a solid pointed convex
cone C ⊂ Z. Let Γ and Λ be two nonempty sets, respectively. Suppose that A is
a set-valued map from Λ to 2X \ {∅} and that f is a vector-valued function from
Γ × X × X to Z with f(p, x, x) /∈ −int C for all p ∈ Γ and x ∈ X . Also we
assume the following conditions:

(i) clA(λ) is compact convex for each λ ∈ Λ;
(ii) f(p, ·, y) is (−C)-continuous on cl A(λ) for each p ∈ Γ, y ∈ clA(λ);
(iii) f(p, x, ·) is C-quasiconvex on clA(λ) for each p ∈ Γ, x ∈ cl A(λ);
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(iv) f(p, ·, ·) is C-continuous on X × X for each p ∈ Γ;
(v) for some p̂ ∈ Γ and Γ′ ⊂ Γ, f(p, x, y) ∈ f(p̂, x, y) + intC for each p ∈ Γ′

and (x, y) ∈ X × X .

Then the problem PVEP has at least one solution for each p ∈ Γ ′ and λ ∈ Λ.

Proof. For p̂ ∈ Γ of condition (v), let G : A(λ) → 2A(λ) be defined by for
each y ∈ A(λ)

G(y) := {x ∈ cl A(λ) : f(p̂, x, y) /∈ −intC},

where λ ∈ Λ is fixed. Then by Theorem 3.2,

S =
⋂

y∈clA(λ)

G(y) �= ∅,

for each λ ∈ Λ. Next let p ∈ Γ′, λ ∈ Λ and x ∈ S . Then by condition (v),
f(p, x, y) /∈ −cl C for all y ∈ clA(λ). Since (−cl C)c is a neighborhood of
f(p, x, y) for all y ∈ clA(λ) and (−clC)c + C = (−clC)c, by condition (iv), for
each y ∈ clA(λ) there is a neighborhood U(x,y) of (x, y) such that

f(p, u, v) ∈ (−clC)c, for all (u, v) ∈ U(x,y).

Let U(x,y) = Wy × Vy , where Wy and Vy denote neighborhoods of x and y, re-
spectively. Since cl A(λ) is compact, we can choose a finite subset {y1, . . . , yn} of
cl A(λ) such that

n⋃
i=1

Vyi ⊃ clA(λ).

Let W =
n⋂

i=1
Wyi . Then for any w ∈ W , we have

f(p, w, y) ∈ (−cl C)c, for all y ∈ clA(λ).

Hence
f(p, w, y) /∈ −int C, for all y ∈ clA(λ).

Since W is a neighborhood of x and x ∈ clA(λ), W ∩ A(λ) �= ∅. Thus for all
x′ ∈ W ∩ A(λ)

f(p, x′, y) /∈ −int C, for all y ∈ clA(λ).

Therefore
f(p, x′, y) /∈ −intC, for all y ∈ A(λ).

Consequently, x′ ∈ Ω(p, λ), i.e., Ω(p, λ) �= ∅. The proof is now complete.
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Example 2. Let f : Γ × X × X → Z, where Γ, X, Z are R. Let Γ′ and Λ
be R++ = {t ∈ R : 0 < t}, p̂ = 0 and A(λ) = {x ∈ Q : 0 < x < 2 + λ} and
C = R+. Suppose that

f(p, x, y) = (y2 − 2)2 − (x2 − 2)2 + p.

Then PVEP has at least one solution for each p ∈ Γ′ and λ ∈ Λ.

4. UPPER SEMICONTINUITY OF Ω

In this section, we investigate conditions under which the solution mapping of
PVEP is upper semicontinuous.

Lemma 4.1. Let X and Y be Topological space and Topological vector space,
respectively. Let T be a set-valued mapping from X to 2Y . Suppose that T (x) is
compact at x ∈ X . Then T is u.s.c. at x ∈ X if and only if for any nets {x µ} ⊂ X
with xµ → x and {yµ} ⊂ Y with yµ ∈ T (xµ), there exists a subnet {yν} ⊂ {yµ}
such that yν → y for some y ∈ T (x).

Proof. Suppose that T is u.s.c. at x ∈ X and that {xµ} ⊂ X with xµ → x

and {yµ} ∈ Y with yµ ∈ T (xµ). Let V ∈ V, where V stands for a basis of
neighborhoods of θY . Then

⋃
u∈T (x)

{u+V} is an open covering of T (x). Since T (x)

is compact, there exists a finite subset {u1, . . . , un} ⊂ T (x) such that
n⋃

i=1
{ui+V} ⊃

T (x). Since T is u.s.c. at x ∈ X , there exists a neighborhood U of x such that

T (x′) ⊂
n⋃

i=1

{ui + V}, for all x′ ∈ U .

Because of xµ → x there exists µ′ such that {xµ} ⊂ U for all µ ≥ µ′. Hence for
each µ ≥ µ′, yµ ∈ ui + V for some ui ∈ {u1, . . . , un}. Therefore there exist a
subnet {yν} ⊂ {yµ} and ui ∈ {u1, . . . , un} such that

{yν} ⊂ ui + V .

Let this ui =: uV , corresponding to V ∈ V, i.e., for each V ∈ V there exist a subnet
{yν} ⊂ {yµ} and uV ∈ T (x) such that

(3) {yν} ⊂ uV + V .

Let V2 ≥ V1, for each V1, V2 ∈ V if V2 ⊂ V1. Then V is a directed set and {uV} is
a net of T (x). Since T (x) is compact, there exist V′ ⊂ V and y ∈ T (x) such that
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uV ′ → y, where V ′ ∈ V′. Let V be a neighborhood of y. Since Y is a topological
vector space, there exists V̄ ∈ V such that V̄ + V̄ ∈ V −y. Because uV ′ → y, there
exists V ′′ ∈ V′ such that

uV ′ ∈ y + V̄ , for all V ′ ≥ V ′′.

Hence for any Υ ∈ V′ with Υ ≥ V̄ ∩ V ′′,

{uΥ} + V ′ ⊂ (y + V̄) + V̄ ⊂ V.

Therefore by (3), there exists a subnet {yν} ⊂ {yµ} such that

{yν} ⊂ V.

Thus there exists a subnet {yν} ⊂ {yµ} such that yν → y for some y ∈ T (x).
Suppose that T is not u.s.c. at x ∈ X . Then there exists an open set V containing

T (x) such that for any neighborhood Uµ of x, there is a point xµ ∈ Uµ with
T (xµ)∩Vc �= ∅. Hence there exist {xν} ⊂ X converging to x and yν ∈ T (xν)∩Vc.
Since yν /∈ T (x) for all ν, {yν} doesn’t have subnet converging to some point of
T (x).

From Lemma 4.1, we can establish the following upper semicontinuity property
of the solution mapping Ω for PVEP.

Theorem 4.1. Let X be a nonempty subset of a real Hausdorff topological
vector space X, and Z a real topological vector space with a solid pointed convex
cone C ⊂ Z. Let Γ and Λ be two nonempty closed subsets of two Hausdorff spaces,
respectively. Suppose that A is a set-valued map from Λ to 2 X \ {∅} and that f

is a vector-valued function from Γ × X × X to Z with f(p, x, x) /∈ −intC for all
p ∈ Γ and x ∈ X . Also we assume the following conditions:

(i) A is continuous with compact values;
(ii) f is (−C)-continuous on Γ × X × X;
(iii) Ω(p, λ) �= ∅ for each p ∈ Γ and λ ∈ Λ.

Then Ω is u.s.c. on Γ × Λ.

Proof. Let p ∈ Γ and λ ∈ Λ. By condition (ii), Ω(p, λ) is closed for each
(p, λ) ∈ Γ × Λ. By condition (i), A(λ) is compact for each λ ∈ Λ. Hence
Ω(p, λ) is compact. Therefore we can apply Lemma 4.1. Let (pλ, λα) → (p, λ)
and xα ∈ Ω(pλ, λα). Then for each α

(4) f(pα, xα, yα) /∈ −intC, for all yα ∈ A(λα).
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Since A is u.s.c., without loss of generality , we can assume xα → x for some
x ∈ A(λ).

Suppose to the contrary that x /∈ Ω(p, λ). Then there exists y ∈ A(λ) such that

f(p, x, y) ∈ −intC.

By condition (ii), there exists a neighborhood U of (p, x, y) such that

f(p′, x′, y′) ∈ −int C, for all (p′, x′, y′) ∈ U.

Let U := P ×X ×Y . Since A is l.s.c. and y ∈ Y ∩A(λ), i.e., Y ∩A(λ) �= ∅, there
exists L which is a neighborhood of λ such that

Y ∩ A(λ′) �= ∅, for all λ′ ∈ L.

Since (pα, λα, xα) → (p, λ, x) there exists α′ such that

(pα, λα, xα) ∈ P ×L ×X , for all α ≥ α′.

Hence for each α ≥ α′ there exists yα ∈ Y ∩ A(λα) such that

f(pα, xα, yα) ∈ −intC.

This contradicts to (4). Hence x ∈ Ω(p, λ). Thus Ω is u.s.c. at (p, λ). Since
(p, λ) ∈ Γ × Λ is arbitrary, Ω is u.s.c. on Γ × Λ.

For fixed λ ∈ Λ, we can get the following result.

Theorem 4.2. Let X be a nonempty subset of a real Hausdorff topological
vector space X, and Z a real topological vector space with a solid pointed convex
cone C ⊂ Z. Let Γ be a nonempty subset of Hausdorff space and Λ an arbitrary
set. Suppose that A is a set-valued map from Λ to 2 X \ {∅} and that f is a vector-
valued function from Γ × X × X to Z with f(p, x, x) /∈ −intC for all p ∈ Γ and
x ∈ X . Also we assume the following conditions:

(i) A(λ) is compact for each λ ∈ Λ;
(ii) f(·, ·, y) is (−C)-continuous on Γ × X for each y ∈ A(λ);
(iii) Ω(p, λ) �= ∅ for each p ∈ Γ and λ ∈ Λ.

Then Ω(·, λ) is u.s.c. on Γ for each fixed λ ∈ Λ.

5. LOWER SEMICONTINUITY OF Ω

Next, we investigate conditions under which the solutions mapping of PVEP is
lower semicontinuous.
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Theorem 5.1. Let X be a nonempty subset of a real Hausdorff topological
vector space X, and Z a real topological vector space with a solid pointed convex
cone C ⊂ Z. Let Γ and Λ be two nonempty subsets of two Hausdorff spaces,
respectively. Suppose that A is a set-valued map from Λ to 2 X \ {∅} and that f
is a vector-valud function from Γ × X × X to Z with f(p, x, x) /∈ −intC for all
p ∈ Γ and x ∈ X . Also we assume that the following conditions:

(i) A is continuous at λ0 and A(λ0) is compact convex;
(ii) f is C-continuous on P × X × X for a certain neighborhood P of p 0;
(iii) f(p0, ·, y) is strictly (−C)-properly quasiconvex on X for fixed p 0 ∈ Γ and

each y ∈ X;
(iv) for fixed p0 ∈ Γ and λ0 ∈ Λ, Ω(p0, λ0) contains at least two points.

Then Ω is l.s.c. at (p0, λ0).

Proof. Let V ⊂ X such that V ∩ Ω(p0, λ0) �= ∅. Then there exists x ∈
V ∩ Ω(p0, λ0). Since Ω(p0, λ0) has at least two elements, we can choose x̄ ∈
Ω(p0, λ0) \ {x}. Because of the convexity of A(λ0) and condition (iii), Ω(p0, λ0)
is convex. Then there is an µ ∈ (0, 1) such that x′ := (1− µ)x + µx̄ belongs to V .
Because of condition (iii), for each y ∈ A(λ0),

f(p0, x
′, y) ∈ f(p0, x, y) + intC,

or
f(p0, x

′, y) ∈ f(p0, x̄, y) + intC.

Thus by Proposition 3.3, we have

f(p0, x
′, y) /∈ −cl C for all y ∈ A(λ),

because {x, x̄} ⊂ Ω(p0, λ0). Hence for each y ∈ A(λ0) there exists a neighborhood
Wy of f(p0, x

′, y) such thatW y ∩ (−cl C) = ∅. Because of condition (ii), for each
y ∈ A(λ0) there exists a neighborhood U of (p0, x

′, y) such that

f(p̃, x̃′, ỹ) ∈ Wy + C, for all (p̃, x̃′, ỹ) ∈ U.

Let U := Py × Xy × Yy where Py,Xy, and Yy are neighborhoods of p0, x
′, and y,

respectively. Since
⋃

y∈A(λ0)

Yy ⊃ A(λ0) and A(λ0) is compact, then there is a finite

subset {y1, . . . , yn} ⊂ A(λ0) such that

n⋃
i=1

Yyi ⊃ A(λ0).
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Let P :=
n⋂

i=1
Pyi , Q :=

n⋂
i=1

Xyi , and Y :=
⋃n

i=1 Yyi . Then for each p̃ ∈ P and

x̃′ ∈ Q

f(p̃, x̃′, ỹ) ∈
n⋃

i=1

(Wyi + C) for all ỹ ∈ Y.

Now
n⋃

i=1
Wyi ∩ (−cl C) = ∅, i.e.,

n⋃
i=1

Wyi ⊂ (−cl C)c. Therefore,

n⋃
i=1

(Wyi + C) =
n⋃

i=1

Wyi + C ⊂ (−cl C)c

by Proposition 3.3. Hence for each p̃ ∈ P and x̃′ ∈ Q

(5) f(p̃, x̃′, ỹ) /∈ −intC for all ỹ ∈ Y.

Since Y ⊃ A(λ0) is an open neighborhood of A(λ0) and A is u.s.c. at λ0, there
is a neighborhood L1 of λ0 such that

A(λ′) ⊂ Y for all λ′ ∈ L1.

Since both of V and Q are neighborhoods of x′, V ∩Q �= ∅. Let V̄ := V ∩Q. Since
x′ ∈ V̄ ∩ A(λ0), V̄ ∩ A(λ0) �= ∅. As A is l.s.c. at λ0, there is a neighborhood L2

of λ such that
A(λ′′) ∩ V̄ �= ∅ for all λ′′ ∈ L2.

Let L := L1 ∩ L2. Then A(λ̃) ⊂ Y for all λ̃ ∈ L and Q ⊃ V̄ ∩ A(λ̃) �= ∅.
Therefore (5) implies for each (p̃, λ̃) ∈ P × L which is an open set containing
(p0, λ0), there is x∗ ∈ A(λ̃) ∩ V̄ such that

f(p̃, x∗, u) /∈ −intC for all u ∈ A(λ̃),

i.e. x∗ ∈ Ω(p̃, λ̃) ∩ V �= ∅. Hence Ω is l.s.c. at (p0, λ0).

Corollary 5.1. Let X be a nonempty subset of a real Hausdorff topological
vector space X, and Z a real topological vector space with a solid pointed convex
cone C ⊂ Z. Let Γ and Λ be two nonempty subsets of two Hausdorff spaces,
respectively. Suppose that A is a set-valued map from Λ to 2 X \ {∅} and that f
is a vector-valued function from Γ × X × X to Z with f(p, x, x) /∈ −intC for all
p ∈ Γ and x ∈ X . Also we assume that the following conditions:

(i) A has convex values and is continuous;
(ii) f is C-continuous on Γ × X × X;
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(iii) f(p, ·, y) is strictly (−C)-properly quasiconvex on X for each p ∈ Γ and
y ∈ X;

(iv) Ω(p, λ) contains at least two points for each p ∈ Γ and λ ∈ Λ.

Then Ω is l.s.c. on Γ × Λ.

Remark 6. Lower semicontinuity of solution mapping Ω cannot be guaranteed
even if f is real-valued and A is constant, by assuming only the continuity of f .
See [7, p. 151]Fukushima. Stronger condition is needed, e.g., Ω is single-valued or
condition (iii) and (iv) hold.

Example 3. Let X = R2 and let Γ = [−1, 2], Λ = {0}, A(0) = K = {(x1,
x2) : x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0}, C = R+. Suppose that f : Γ × X × X → R

is defined by

f(p, x, y) =
(−(1 + p)y1 − y2

)−(−(1 + p)x1 − x2

)
.

Then A is constant, f is continuous on Γ × X × X , and

Ω(p, 0) =




{(0, 1)} p ∈ [−1, 0),
K p = 0,

{(1, 0)} p ∈ (0, 2].

It is easy to see that Ω is not l.s.c. at (0, 0).
The next result removes the assumption that Ω(p, λ) contains at least two points

in Corollary 5.1.

Theorem 5.2. Let X be a nonempty subset of a real Hausdorff topological
vector space X, and Z a real topological vector space with a solid pointed convex
cone C ⊂ Z. Let Γ and Λ be two nonempty subsets of two Hausdorff spaces,
respectively. Suppose that A is a set-valued map from Λ to 2 X \ {∅} and that f
is a vector-valued function from Γ × X × X to Z with f(p, x, x) /∈ −intC for all
p ∈ Γ and x ∈ X . Also we assume the following conditions:

(i) A is continuous and A(λ) is compact convex for each λ ∈ Λ;
(ii) f is C-continuous on Γ × X × X;
(iii) f(p, ·, y) is strictly (−C)-properly quasiconvex on X for each p ∈ Γ and

y ∈ X;
(iv) there exist Γ′ ⊂ Γ and p̂ ∈ Γ such that for any p ∈ Γ ′,

f(p, x, y) ∈ f(p̂, x, y) + intC, for all x, y ∈ X ;
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(v) Ω(p, λ) �= ∅ for each p ∈ Γ and λ ∈ Λ.

Then Ω is l.s.c. on Γ′ × Λ.

Proof. Let p ∈ Γ′, λ ∈ Λ, V be an open satisfying V ∩ Ω(p, λ) �= ∅. Let
x ∈ V ∩ Ω(p, λ). Then by condition (iv), there exists p̄ ∈ Γ such that

f(p, x, y) ∈ f(p̂, x, y) + intC, for all x, y ∈ X.

Suppose that x̄ ∈ Ω(p̂, λ) which is nonempty by condition (iv) and that x′ ∈
V ∩ {u ∈ A(λ) : u = µx + (1 − µ)x̄, 0 < α < 1}. Due to condition (iv),
x̄ ∈ Ω(p, λ). Because of the way in selecting x′, by condition (iii), we have

f(p, x′, y) ∈ f(p, x, y) + intC,

or
f(p, x′, y) ∈ f(p̂, x, y) + intC.

Therefore f(p, x′, y) /∈ −clC, for all y ∈ A(λ). Then for each y ∈ A(λ), there
exists a neighborhood Wy of f(p, x′, y) such that Wy ∩ (−cl C) = ∅. By con-
dition (ii), for each y ∈ A(λ), there exists a neighborhood Uy of (p, x′, y) such
that

f(p̃, x̃′, ỹ) ∈ Wy + C, for all (p̃, x̃′, ỹ) ∈ Uy.

Let Uy := Py × Xy × Yy , where Py,Xy and Yy are neighborhoods of p, x′ and
y, respectively. Since A(λ) is compact, there exists a finite subset {y1, . . . , yn}
of A(λ) such that

n⋃
i=1

Yyi ⊃ A(λ). Let P =
n⋂

i=1
Pyi , Q = (

n⋂
i=1

Xyi) ∩ V and

Y =
n⋃

i=1
Yyi . Then for each (p̃, x̃, ỹ) ∈ P × Q × Y

f(p̃, x̃, ỹ) /∈ −intC.

In addition, Y is a neighborhood of A(λ) and Q is an open set with Q∩A(λ) �= ∅.
Since A is continuous, by the same argument as that in the proof of Theorem 5.1
we can show that there is a neighborhood L of λ such that

A(λ̃) ⊂ Y and A(λ̃) ∩ Q �= ∅, for all λ̃ ∈ L.

Hence for each (p̃, λ̃) ∈ P×L which is an open set containing (p, λ), there exists
x̄ ∈ Q ∩ A(λ̃) such that

f(p̃, x̄, ỹ) /∈ −int C, for all ỹ ∈ A(λ̃),

i.e., x̃ ∈ Ω(p̃, λ̃) ∩V �= ∅. Hence Ω is l.s.c. at (p, λ). Since (p, λ) is arbitrary, Ω is
l.s.c. on Γ′ × Λ.
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By similar argument as that in the proof of Theorem 5.1, we can prove the
following result.

Theorem 5.3. Let X be a nonempty subset of a real Hausdorff topological
vector space X, and Z a real topological vector space with a solid pointed convex
cone C ⊂ Z. Let Γ be a nonempty subset of a Hausdorff space and Λ an arbitrarily
set. Suppose that A is a set-valued map from Λ to 2 X \ {∅} and that f is a vector-
valued function from Γ × X × X to Z with f(p, x, x) /∈ −int C for all p ∈ Γ and
x ∈ X . Also we assume that the following conditions:

(i) A(λ) is compact convex for each λ ∈ Λ;
(ii) f(·, x, ·) is C-continuous on Γ × X for each x ∈ X;
(iii) f(p, ·, y) is strictly (−C)-properly quasiconvex on X for each p ∈ Γ and

y ∈ X;
(iv) Ω(p, λ) contains at least two points for each p ∈ Γ and λ ∈ Λ.

Then Ω(·, λ) is l.s.c. on Γ for each λ ∈ Λ.
By the same argument as that in the proof of Theorem 5.2, we can prove the

following result.

Theorem 5.4. Let X be a nonempty subset of a real Hausdorff topological
vector space X, and Z a real topological vector space with a solid pointed convex
cone C ⊂ Z. Let Γ be a nonempty subset of a Hausdorff space and Λ an arbitrarily
set. Suppose that A is a set-valued map from Λ to 2 X \ {∅} and that f is a vector-
valued function from Γ × X × X to Z with f(p, x, x) /∈ −int C for all p ∈ Γ and
x ∈ X . Also we assume that the following conditions:

(i) A(λ) is compact convex for each λ ∈ Λ;
(ii) f(·, x, ·) is C-continuous on Γ × X for each x ∈ X;
(iii) f(p, ·, y) is strictly (−C)-properly quasiconvex on X for each p ∈ Γ and

y ∈ X;
(iv) there exist Γ′ ⊂ Γ and p̂ ∈ Γ such that for any p ∈ Γ,

f(p, x, y) ∈ f(p̂, x, y) + intC, for all x, y ∈ X ;

(v) Ω(p, λ) �= ∅ for each p ∈ Γ and λ ∈ Λ.

Then Ω(·, λ) is l.s.c. on Γ′ for each λ ∈ Λ.

6. CONTINUITY OF Ω

By combining results in Sections 4 and 5, we can derive the following results
concerning the continuity of the solution mapping of PVEP.
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Theorem 6.1. Let X be a nonempty subset of a real Hausdorff topological
vector space X, and Z a real topological vector space with a solid pointed convex
cone C ⊂ Z. Let Γ and Λ be two nonempty subsets of two Hausdorff spaces,
respectively. Suppose that A is a set-valued map from Λ to 2 X \ {∅} and that f
is a vector-valued function from Γ × X × X to Z with f(p, x, x) /∈ −intC for all
p ∈ Γ and x ∈ X . Also we assume the following conditions:

(i) A is continuous and A(λ) is compact convex for each λ;
(ii) f is C-continuous and (−C)-continuous on Γ × X × X;
(iii) f(p, ·, y) is strictly (−C)-properly quasiconvex on X for each p ∈ Γ and

y ∈ X;
(iv) Ω(p, λ) �= ∅ for each p ∈ Γ and λ ∈ Λ.

Then Ω is continuous. on Γ × Λ.

Proof. By Theorem 4.1, Ω is u.s.c. on Γ×Λ. Let p ∈ Γ and λ ∈ Λ. If Ω(p, λ)
is a singleton, then Ω is continuous at (p, λ) because Ω is u.s.c. on Γ×Λ. If Ω(p, λ)
has at least two points, then by Theorem 5.1, Ω is continuous at (p, λ). Hence Ω is
continuous on Γ × Λ.

Remark 7. We observe that the condition that f is both C-continuous and
(−C)-continuous doesn’t imply that f is continuous. See [11, pp.22-23, Theo-
rem 5.3 and Remark 5.4].

Example 4. Let X = l1, Z = l∞, and f : X → Z defined by

f(x) = (y(x1), . . . , y(xi), . . .),

where

y(xi) =




−1 xi < −1
i
,

i · xi −1
i
≤ xi ≤ 1

i
,

1
1
i

< xi,

(i ∈ N);

and let C =
∞⋂
i=2

Ci, where Ci := {z ∈ Z : z1 ≥ 1
i zi, z = (z1, . . . , zi, . . .)}. Then

f is C-continuous at θX for each fixed y and (−C)-continuous at θX , but not
continuous at θX .

Theorem 6.2. Let X be a nonempty compact subset of a real Hausdorff
topological vector space X, and Z a real topological vector space with a solid
pointed convex cone C ⊂ Z. Let Γ be nonempty subsets of Hausdorff space and Λ
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an arbitrary set. Suppose that A is a set-valued map from Λ to 2 X \ {∅} and that
f is a vector-valued function from Γ × X × X to Z with f(p, x, x) /∈ −intC for
all p ∈ Γ and x ∈ X . Also we assume the following conditions:

(i) A(λ) is compact convex for each λ ∈ Λ;
(ii) f is (−C)-continuous on Γ × X for each y ∈ A(λ);
(iii) f(·, x, ·) is C-continuous on Γ × X for each x ∈ X;
(iv) f(p, ·, y) is strictly (−C)-properly quasiconvex on X for each p ∈ Γ and

y ∈ X;
(v) Ω(p, λ) �= ∅ for each p ∈ Γ and λ ∈ Λ.

Then Ω(·, λ) is continuous on Γ for each λ ∈ Λ.

Proof. By Theorem 4.2, Ω(·, λ) is u.s.c. on Γ for each λ ∈ Λ. Let p ∈ Γ and
λ ∈ Λ. If Ω(p, λ) is a singleton, then Ω is continuous at (p, λ) because Ω is u.s.c. on
Γ(·, λ) for each λ ∈ Λ. If Ω(p, λ) has at least two points, then by Theorem 5.3,
Ω(·, λ) is continuous at (p, λ) for each λ ∈ Λ. Hence Ω(·, λ) is continuous on
Γ × Λ.

Theorem 6.3. Let X be a nonempty subset of a real Hausdorff topological
vector space X, and Z a real topological vector space with a solid pointed convex
cone C ⊂ Z. Let Γ and Λ be two nonempty subsets of two Hausdorff spaces,
respectively. Suppose that A is a set-valued map from Λ to 2 X \ {∅} and that f

is a vector-valued function from Γ × X × X to Z with f(p, x, x) /∈ −intC for all
p ∈ Γ and x ∈ X . Also we assume that the following conditions:

(i) A has compact convex values and is continuous;
(ii) f is C-continuous and (−C)-continuous on Γ × X × X;
(iii) f(p, x, ·) is C-quasiconvex on A(λ) for each p ∈ Γ, x ∈ A(λ);
(iv) f(p, ·, y) is strictly (−C)-properly quasiconvex on X for each p ∈ Γ and

y ∈ X .

Then Ω is continuous on Γ × Λ.

Proof. By Theorem 4.1, Ω(p, λ) is nonempty for each p ∈ Γ and λ ∈ Λ. Hence
by Theorem 6.1, Ω is continuous on Γ × Λ.

7. APPLICATIONS

In this section we will give some applications of the results established in Sec-
tions 3-6.
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Theorem 7.1. Let X be a real Hausdorff topological vector space. Let Z be
a real topological vector space with a solid pointed convex cone C ⊂ Z. Suppose
that K is a nonempty subset of X , that g is a vector-valued function from X×X to
Z with g(x, x)=θZ for all x∈X . Also we assume that the following conditions:

(i) clK is compact convex;
(ii) g(x, ·) is C-quasiconvex on X for each x ∈ X;
(iii) g(·, y) is (−C)-continuous on X for each y ∈ X;
(iv) g is C-continuous on X × X .

Then the problem ε-VEP has at least one solution, i.e., S(ε) is nonempty for each
ε ∈ intC.

Proof. Putting, Γ = {θZ}∪intC, Γ′ = intC, Λ = {0}, A(λ) = K, f(p, x, y) =
g(x, y) + p, p ∈ intC, and p̂ = θZ in Theorem 3.3, we get the conclusion.

Theorem 7.2. Let X be a real Hausdorff topological vector space. Let Z be
a real topological vector space with a solid pointed convex cone C ⊂ Z. Suppose
that K is a nonempty subset of X , that f is a vector-valued function from X×X to
Z with f(x, x)=θZ for all x∈X . Also we assume that the following conditions:

(i) K is compact;
(ii) g(·, y) is (−C)-continuous on X for each y ∈ X;
(iii) S(ε) is nonempty for each ε ∈ intC.

Then S is u.s.c. on intC.

Proof. Let Γ = intC, Λ = {0}, A(0) = K and f(ε, x, y) = g(x, y)+ε. Then
f(·, ·, y) is−C-continuous on Γ×X . The result then follows from Theorem 4.2.

Theorem 7.3. Let X be a real Hausdorff topological vector space. Let Z be
a real topological vector space with a solid pointed convex cone C ⊂ Z. Suppose
that K is a nonempty subset of X , that g is a vector-valued function from X×X to
Z with g(x, x)=θZ for all x∈X . Also we assume that the following conditions:

(i) K is compact convex;
(ii) g(x, ·) is C-continuous on X for each x ∈ X;
(iii) g(·, y) is strictly (−C)-properly quasiconvex on K for each y ∈ K;
(iv) S(ε) is nonempty for each ε ∈ intC.

Then S is l.s.c. on intC.

Proof. Let Γ′ = intC, Λ = {0}, A(0) = K, f(ε, x, y) = g(x, y) + ε, Γ =
{θZ} ∪ intC and θZ = p̂. The conclusion follows from Theorem 5.4
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