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CONVERGENCE RATE OF GLIMM SCHEME FOR GENERAL
SYSTEMS OF HYPERBOLIC CONSERVATION LAWS

Tong Yang

Abstract. In this paper, we consider the convergence rate of the deterministic
Glimm scheme for general systems of hyperbolic conservation laws without
assuming either genuine nonlinearity or linear degeneracy on the characteristic
fields. It is shown that the convergence rate is o(1)s

1
4 j ln sj compared to

o(1)s
1
2 j ln sj obtained in [3] for the case when the charateristic field is either

genuinely nonlinear or linear degenerate. Here s is the mesh size in the time
direction.

1. INTRODUCTION

In this paper, we consider the convergence rate of the Glimm scheme to general
hyperbolic conservation laws:

ut + f(u)x = 0;(1.1)

u(x;0) = u0(x);(1.2)

here u = u(x; t) = (u1(x; t); ¢ ¢ ¢ ;un(x; t)) and f(u) are n-vectors. The analysis
depends on the deterministic version of the Glimm scheme introduced in [15] when
nonlinear wave propagation can be simplified locally by linear superposition and
hence the detailed structure of the solution can be obtained, and the error from the
exact solution in L1 can be analyzed. This problem was solved in [3] when each of
the characteristic fields is either genuinely nonlinear or linearly degenerate. Without
this assumption on the characteristic fields, we obtain a convergence rate based on
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the estimation of variation of the wave speed times its strength which is bounded
by the cubic wave interaction potential and the mesh size to some powers. This
estimation was first used in [20] where the consistency of the Glimm scheme for
general systems of hyperbolic conservation laws was studied. The approach here
for the convergence rate is similar to [3] but with more delicate estimate on L1

error caused by nonlinear wave interaction. The analysis in [3] depends on the L1

stability results on the systems of hyerbolic conservation laws with characteristic
fields being either genuinely nonlinear or linearly degenerate, [6, 19].

The system (1.1) is assumed to be strictly hyperbolic, that is, the eigenvalues of
the n£ n matrix f0(u) are real and distinct:

f0(u)ri(u)= i̧(u)ri(u);

li(u)f 0(u)= i̧(u)li(u);

li(u) ¢ rj(u)= ±ij ; i; j = 1; 2; : : : ; n;

¸1(u)< ¸2(u)< ¢ ¢ ¢ < ¸n(u):

(1.3)

When each characteristic field is either genuinely nonlinear or linearly degen-
erate, there is the classical existence theory of James Glimm, [10]. An important
physical example of such a system is the Euler equations in gas dynamics. Other
physical systems, such as those in elasticity and magneto-hydrodynamics, for in-
stance, are not necessarily genuinely nonlinear or linearly degenerate. For such a
general system, a characteristic field i̧(u) may have a linearly degenerate manifold
LGi ´ fu : r¸i(u) ¢ ri(u) = 0g to be neither the empty space, as in the case
of genuine nonlinearity, nor the whole space, as in the case of linear degeneracy.
When each characteristic field i̧(u) has a linear degeneracy manifold LDi either is
the whole space or consists of a finite number of smooth manifolds of co-dimension
one, each transversal to the characteristic vector ri(u), the global entropy solution
was proved in [16, 20] if the initial data (1.2) has sufficiently small total variation.
The main improvement is the introduction of a cubic wave interaction potential
for interaction of waves of the same family which is the product of the strengths
of the two interacting waves and their interacting angle. Since this functional is
weaker than the one consists only product of the strengths of the interacting waves
of the same family for genuinely nonlinear field, the proof of the consistency of the
Glimm scheme relies on a detailed discussion in strong and weak waves, [20]. This
technique will also be used in this paper for the study of convergence rate of the
Glimm approximate solution to the weak entropy solution.

Since the characteristics i̧(u) depends on the variables u, one needs to consider
weak solution to (1.1) because in general there is no global smooth solutions even
for smooth and small initial data.

Definition 1.1. A bounded measurable function u(x; t) is a weak solution of
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(1.1), (1.2) if and only if
Z 1

0

Z 1

¡1
[Átu+ Áxf(u)](x; t)dxdt+

Z 1

¡1
Á(x;0)u0(x)dx= 0(1.4)

for any smooth function Á(x; t) of compact support in
©
(x; t)j(x; t) 2 R2

ª
.

This weak formulation leads to the discuss of a discontinuity (u¡; u+), i.e.
shock, in the weak solution with speed s which satisfies the Rankine-Hugoniot
condition

s(u+¡ u¡) = f(u+)¡ f(u¡);(1.5)

where u¡ and u+ are the left and right states of the discontinuity respectively.
For this, the Hugoniot curves H(u0) passing through a given state u0 is intro-

duced as follows:

H(u0) ´ fu : ¾(u0¡ u) = f(u0)¡ f(u)g;(1.6)

for some scalar ¾ = ¾(u0; u).
The Rankine-Hugoniot condition says that u+ 2 H(u¡) and that s = ¾(u¡; u+).

It follows easily from the strict hyperbolicity of the system that in a small neigh-
borhood of a given state u0, the set H(u0) consists of n smooth curves Hi(u0),
i = 1;2; ¢ ¢ ¢ ;n, through u0 , such that ¾i(u0;u) tends to ¸i(u0) as u moves along
Hi(u0) toward u0. Here we use the notation ¾i(u0;u) to denote the scalar ¾(u0; u)
in Hi(u0). A discontinuity (u¡; u+), u+ 2 Hi(u¡), is called an i-discontinuity.

In general, weak solutions to the initial value problem (1.1) and (1.2) are not
unique. Certain admissibility condition, the entropy condition, needs to be imposed
on the weak solution to rule out non-physical discontinuities as follows, [17].

Definition 1.2. A discontinuity (u¡;u+) is admissible if

¾(u¡; u+) · ¾(u¡;u);(1.7)

for any state u on the Hugoniot curve H(u¡) between u¡ and u+.

If a characteristic field of the system (1.1) is genuinely nonlinear, [12], in the
sense that

r¸i(u) ¢ ri(u) 6= 0: (g:nl:);(1.8)

then the entropy condition is reduced to the Lax’s entropy condition

i̧(u+) < ¾i(u¡; u+)< i̧(u¡):(1.9)
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Besides the shock wave, there are contact discontinuity and rarefaction wave
as basic wave patterns for the hyperbolic system. Since the characteristic field
is not genuinely nonlinear, there are also composite waves, i.e. waves consisting
rarefaction waves and shocks of the same family starting from a common point in
x¡ t plane. The waves of this type in each family give the wave pattern to the
solution of the Riemann problem which has two constant states as initial data, [12,
16].

Recently, there is a great progress on vanishing viscosity limit to hyperbolic
conservation laws, [1]. As a consequence of the result obtained in [1], the standard
Riemann semigroup St generated by (1.1) is unique and Lipschitz continuous in
L1. That is, for two initial data u0(x) and v0(x) with small total variations, the
semigroup St has the following properties:

(1) St is Lipschitz continuous in L1 , i.e., there exists a constant L independent
of t such that

jjStu0¡ Stv0jjL1 · L ¢ jju0 ¡ v0jjL1 ; t ¸ 0;

(2) If the initial data u0 is piecewise constant, then for t > 0 sufficiently small
Stu0 coincides with the solution of (1.1) and (1.2) which is obtained by
piecing together the corresponding Riemann solutions.

Based on the above stability and existence results, we are going to prove the
following main theorem in this paper.

Theorem 1.1. If the total variation of the initial data u0(x) is sufficiently small
and the random sequence in the Glimm scheme is equidistributed and satisfies the
condition in Lemma 2.1, then for any time t ¸ 0; we have

lim
s!0

jjug(¢; t)¡ u(¢; t)jjL1

s
1
4 j lnsj

= 0:

here ug(x; t) and u(x; t) are the approximate solution in the Glimm scheme and the
weak solution generated by the semigroup St with the same initial data respectively.
And s = ¢t is the mesh size in the time direction.

Notice that here we assume that the number of the linear degenerate manifolds
is finite. As for the existence result can be generalized to inifinite number of
degenerate manifolds in [14], the same argument can be applied to this case, but
we will not consider it here. Furthermore, the convergence rate obtained here may
not be optimal and how to obtain the optimal rate is not in the scope of this paper.

The rest of the paper will be organized as follows. In the next section, we will
give some prelimenary results on equidistibuted sequence, wave tracing approxi-
mation, wave interaction potential and some L1 error estimates obtained in [3, 20]
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which are needed for the proof of convergence rate. In Section 3, we will give a
proof of the main theorem by considering different errors in the L1 distance be-
tween the Glimm approximate solution and the unique entropy solution by using the
intermediate approximate solution with simplified wave patterns through the wave
tracing method.

2. PRELIMENARY

In this section, we will include some estimates obtained in [3, 20] on the equidis-
tibuted random sequence and wave tracing approximation for self-containedness.

The Glimm scheme is a finite difference scheme involving a random sequence
µi; i = 0; 1; ¢ ¢ ¢ ; 0 < µi < 1: Let r = ¢x; s = ¢t be the mesh sizes satisfying
the (C-F-L) condition

r

s
> 2j i̧(u)j; 1 · i · n;(2.1)

for all states u under consideration. The approximate solutions u(x; t) = ug(x; t)
depends on the random sequence fµig1i=0 and is defined inductively in time as
follows:

ug(x;0) = u0((h+ µ0)r); hr < x < (h+ 1)r;(2.2)

ug(x;ks)= ug((h+ µi)r¡ 0; ks¡ 0); hr < x < (h+1)r;

k= 0;§1;§2; ¢ ¢ ¢ :
(2.3)

Thus the approximate solution is a step function for each layer t = ks; k = 1;2; ¢ ¢ ¢ :
Between the layers it consists of elementary waves by solving the Riemann problems
at grid points x = hr; h = 0;§1; ¢ ¢ ¢ : Due to (C-F-L) condition (2.1) these
elementary waves do not interact within the layer. Please refer to [10] for more
detailed explanation.

In the Glimm scheme, the random sequence is assumed to be equidistributed in
the following sense.

Definition 2.1. A sequence fµig1i=0 in (0,1) is equidistributed if

B(N; I) ´ j£(N; I)

N
¡jI jj ! 0; as N !1;

for any subinterval I of (0; 1). Here £(N; I) denotes the number of i; 1 · i ·N;
such that µi 2 I and jI j is the length of I .

In particular, we choose a random sequence fµig1i=0 having the following prop-
erty, [3].
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Lemma 2.1. For every integer r ¸ 2; there exists a sequence fµig1i=0 such
that

Dm;n ·
2r¡ 2

n¡m

·
1 +

ln(n¡m)

lnr

¸
;

for any n > m¸ 1. Here,

Dm;n = sup
¸2[0;1]

¯̧̄
¡ 1

n¡m
X

m·l<n
Â

[0; ]̧(µ)
¯̄
;

where Â is the characteristic function and Dm;n represents the discrepancy of the
random sequence.

The Glimm theory for systems of conservation laws is based on the study of the
interactions of elementary waves in the solutions of the Riemann problems solved in
[12, 16]. The random choice method, the Glimm scheme, is introduced to construct
the general solutions using the Riemann solutions as building blocks. A nonlinear
functional, the Glimm functional F [u], is constructed to bound the total variation
of the approximate solutions. The functional yields a global measure of the total
wave interactions, [11], and allows for the consistency study of the wave tracing
method, [16]. This functional is an effective measure of the wave interactions in
that the functional decreases only due to the interaction of the waves next to each
other and that the decrease is exactly of the same order of the waves produced by
the interaction.

The Glimm functional F(J) defined as follows was shown to be non-increasing
in [16, 20].

F (J) ´ L(J) +MQ(J);

where

L(J)´
X
fj®j : ® any wave crossing Jg;

Qd(J)´
X
fj®jj¯j : ® and ¯ interacting waves of distinct

characteristic families crossing Jg;

Qs(J)´
nX

i=1

Qi
s;

Qi
s´
X
fj®jj¯j(¡minf£(®;¯);0g) : ® and ¯

interacting i ¡waves crossing Jg;
Q(J)´ Qd(J) +Qs(J):

(2.4)

Here M is a sufficiently large constant, J is any space-like curve, and £(®; ¯),
called the effective angle between waves ® and ¯ of the same family is defined as



Convergence Rate of Glimm Scheme 201

follows.

£(®;¯) ´ µ+
® + µ¡¯ +

X
µ°:(2.5)

Here µ+
® represents the value of ¸i at the right state of ® minus its wave speed. It

is negative if ® is a shock and is set zero if it is a i-rarefaction wave. Similarly the
term µ¡¯ denotes the difference between the speed of ¯ and the value of i̧ at its left
end state. µ° is the value of ¸i at the right state of the wave ° minus that at the left
state. It is positive if ° is a rarefaction wave and is negative if it is a shock. The
sum

P
µ° is over the i-waves ° between ® and ¯. Interacting waves ® and ¯ of

different families means that the one with larger characteristic speed lies on the left
of the one with smaller speed. Hence, they will interact in finite time only once.

It was also shown in [20] that the waves in a fixed time zone can be partitioned
so that a simplified wave pattern with linear superposition of nonlinear waves can
be used to replace the approximate solutions in the Glimm scheme with controllable
error estimates. The error estimate coming from the partition in the wave tracing
can be summarized in the following theorem.

Theorem 2.1. Let ² be a constant with 1
2 < ² < 1. The waves in an approximate

solution in a given a time zone ¤ = f(x; t) : ¡1 < x <1; Ms · t < (M+N)sg;
can be partitioned into subwaves of categories I; II or III with the following
properties:

(i) The subwaves in I are surviving. Given a subwave ®(t); Ms · t < (M +
N)s; in I; write ® ´ ®(Ms) and denote by j®(t)j its strength at time t; by
[¾(®)] the variation of its speed and by [®] the variation of the jump of the
states across it over the time interval Ms · t < (M+N)s. Then

X

®2I
([®] + j®(Ms)j[¾(®)]) = O(1)(D(¤)(Ns)¡² +T:V:N1+²s² + s):

(ii) A subwave ®(t) in II has positive initial strength j®(Ms)j > 0; but is
cancelled in the zone ¤; j®((M +N)s)j = 0. Moreover, the total strength
and variation of the wave speed satisfy
X

®2II
([®] + j®(t)j) = O(1)(D(¤)+ s); Ms · t < (M +N )s;

X

®2II
([®] + j®(Ms)j[¾(®)]) · 0(1)(D(¤)(Ns)¡² + T:V:N1+²s² + s):

(iii) A subwave in III has zero initial strength j®(Ms)j = 0; and is created in
the zone ¤; j®((M+N)s). Moreover; the total strength and variation of the
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wave speed satisfy
X

®2III
([®] + j®(t)j) = O(1)(D(¤) + s); Ms· t < (M +N)s;

X

®2III
([®] + j®(Ms)j[¾(®)])· 0(1)(D(¤)(Ns)¡² +T:V:N1+²s² + s):

Here D(¤) = F (Ms)¡F ((M+N)s); and T:V: = Tot:V ar:fu0(x)g. And
F (t) is the Glimm functional on the space-like curve at time t.

Later in the next section, the approximate solution consisting only the surving
waves, i.e. waves in the category I, in each time strip, denoted by ul(x; t), will
be used as the intermediate approximate solution between the one in the Glimm
scheme, ug(x; t), and the unique entropy solution. The advantage of this simplified
approximate solution ul(x; t) is that each wave in the corresponding time strip
can be traced and the error from the exact solution can be estimated. That is,
the L1 Lipschitz continuity of the Riemann semigroup can be applied to have the
convergence rate in term of s.

3. PROOF OF CONVERGENCE

The estimation on the convergence rate is based on the L1 Lipschitz continuity
of the semigroup St and the wave partition estimates in Theorem 2.1. The approach
is similar to the one for genuinely nonlinear characteristic fields, cf. [3].

We now come to the proof of the main theorem on the convergence rate. As
mentioned at the end of the last section, we will estimate the L1 distance between
ug(x; t) and ul(x; t), and the one between ul(x; t) and the semigroup on ul(x;¹t)
with ¹t · t. Notice that besides the errors from the equidistributed random sequence
and the approximate waves, like rarefaction shocks in the wave tracing argument,
there are two kind of errors in estimating the L1 distance. One kind of error
comes the new waves created in the wave interaction and the disappearance of
waves in wave cancellation; and another comes from the change of the wave speeds
through interaction which is different from the associated propagation speeds of the
discontinuities in the wave tracing approximation.

Consider the approximate solution up to a time T = Ms without loss of gen-
erality. For a positive constant ± >> s which will be chosen later, we divide the
time interval [0;T ] into some sub-intervals, [ti; ti+1], i = 0;1;2; ¢ ¢ ¢ ;N¡1, and re-
arrange them into two groups E and Ec as in [3]. Here ti = nis, i = 0;1; 2; ¢ ¢ ¢ ; N
with t0 = 0 and tN = T . ti can be defined inductively satisfying one of the fol-
lowing conditions:

1. If F (ti)¡ F (ti+1) · ±, then let ni+1 be the largest integer bounded by N
such that ti+1 ¡ ti · ± and F (ti)¡F (ti+1)· ±.



Convergence Rate of Glimm Scheme 203

2. If F (ti)¡F (ti+1)> ±, let ni+1 = ni +1.

Denote the set of 0 · i · N ¡ 1 satisfying the above conditions by E and Ec
respectively. Since the time we consider is bounded by T and the Glimm functional
is non-increasing and bounded, we know that the numbers of i in the sets E and
Ec are bounded by cT

± and c
± respectively. Now in each time interval [ti; ti+1], the

L1 distance between the approximate solution in the Glimm scheme and the one
generated by the semigroup can be estimated as follows.

When i 2 E, by the simplified wave pattern stated in Theorem 2.1, we know
that error in L1 up to the order of s, comes from either the random sequence or the
wave interaction. For the wave interaction, part of the the error for surving waves is
bounded by the product of the wave strength and the variation of its wave speed and
the length of the time interval. And the error for the cancellation and new created
waves is bounded by the change of the Glimm functional times the length of the
time interval.

Following the partition estimates in Theorem 2.1, we have the following L1 esti-
mates on the approxiamte solutions ug(x; t) and ul(x; t) in each time strip [ti; ti+1],
0 · i · N ¡ 1, [3].

jjug(¢; ti+1)¡ ul(¢; ti+1)jjL1 = 0(1)(F (ti)¡F (ti+1))(ti+1 ¡ ti);
jjul(¢; ti+1)¡ Sti+1¡tiu

l(¢; ti)jjL1 = 0(1)f(F(ti)¡F (ti+1))
¡²

+T:V:(mi+1¡mi)1+²s² +
1 + ln(mi+1 ¡mi)

mi+1 ¡mi
+ sg(ti+1 ¡ ti):

(3.1)

By Lipschitz continuity of the semigroup St, if i 2 E, then

jjug(¢; ti+1)¡Sti+1¡tiu
g(¢; ti)jjL1 · cf(F(ti)¡F (ti+1)) + (F (ti)

¡F(ti+1))
¡² +T:V:(mi+1 ¡mi)

1+²s²

+
1 + ln(mi+1¡mi)

mi+1 ¡mi
+ sg(ti+1¡ ti);

(3.2)

where For i 2 Ec, the error can be bounded by the time length as the total strength
of waves in bounded.

jjug(¢; ti+1)¡Sti+1¡tiu
g(¢; ti)jjL1 · cs:(3.3)

where the constant c may depend on the time T .
By (3.2) and (3.3), the L1 distance between ug(x; T) and STu(x;0) can be
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estimated as follows.

jjug(¢; T)¡ STu(¢;0)jjL1

·
N¡1X

i=0

jjST¡ti+1u
g(¢; ti+1)¡ ST¡tiug(¢; ti)jjL1

· L
N¡1X

i=0

jjug(¢; ti+1)¡Sti+1¡tiu
g(¢; ti)jjL1

· Lc
X

i2E

n
(F(ti)¡ F(ti+1)) + (F(ti)¡ F(ti+1))

¡²

+T:V:(mi+1 ¡mi)1+²s² +
1 + ln(mi+1¡mi)

mi+1 ¡mi

o
(ti+1¡ ti) + Lc

X

i2Ec
s

· cf±1¡² + ±1+²

s +
s

±
(1 + j ln ±

s
j) + s+

s

±
g:

Now we choose ² = 2
3 2 (1

2; 1) and ± = s
3
4 ln j lnsj with 0 < s << 1, we have

jjug(¢;T )¡STu(¢; 0)jjL1

· cfs 1
4 (ln j ln sj)5

3 +
s

1
4

ln j lnsj (1 + j lnsj)g = o(1)s
1
4 j ln sj:

And this completes the proof of the main theorem.
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