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THE REAL PART OF AN OUTER FUNCTION AND
A HELSON-SZEGO WEIGHT

Takahiko Nakazi* and Takanori Yamamoto™

Dedicated to Professor K6z Yabuta on the occasion of his sixtieth birthday

Abstract. Suppose F is a nonzero function in the Hardy space H'. We
study the set {f; f is outer and |F| < Re f a.e. on dD}, where OD is the
unit circle. When F is a strongly outer function in H' and ~ is a positive
constant, we describe the set {f; f is outer, || <+ Re f and |F~1| <~ Re
(f~1) a.e. on OD}. Suppose W is a Helson-Szegd weight. As an application,
we parametrize real-valued functions v in L°°(9D) such that the difference
between log W and the harmonic conjugate function v of v belongs to L>° (0D)
and ||v|| o is strictly less than 7/2 using a contractive function o in H* such
that (1 + «)/(1 — «) is equal to the Herglotz integral of W.

1. INTRODUCTION

Let D be the open unit disc in the complex plane and let JD be the boundary
of D. An analytic function f on D is said to be of class [V if the integrals

/ log™ | £ (re™®)|d6

are bounded for r < 1. If f is in N, then f(e), which we define to be lim1 f(re?),
r—
exists almost everywhere on 0. If

lim / log" | f(rei®)|d6 = / log™ | ()6,
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then f is said to be of class V. The set of all boundary functions in N or N, is
denoted by N or NV, respectively. For 0 < p < oo, the Hardy space H? is defined
by Ny N LP. Hence any function in H? has an analytic extension to .

A function h in N is called outer if h is invertible in Ny. A function g in
H' is called strongly outer if the only functions f € H' such that f/g > 0 a.e. on
OD are scalar multiples of g. If g is strongly outer then it is outer. Suppose F' is a
nonzero function in H'!. Define a by

|F(e)|d6 (2 € D).

1 +OC(Z) 1 /271’ ei@ 1z
0

1—a(z) 2r e — 2

The right-hand side is the Herglotz integral of | F'|. Then « is a contractive function
in H>. Let fo = (1+ «)/(1 — «). Then Re fy(2) >0 (2 € D),

1—|a?
[1—af?

|F| =Re fo = a.e. on 0D,

and fy € ﬂp<1 HP by a theorem of Kolmogorov (c.f. [1, Theorem 4.2]). Since

Re fo(z) > 0, fo = ¢ €"™™, where ¢ is a positive constant, ||v]|c < 5 and ¢ is a
harmonic conjugate function of v satisfying ©(0) = 0. By a theorem of Kolmogorov,

7 — v € MNpeoo H?,
|F| =¢e“"™ and e“=c cosv ae. ondD,

where u is a real-valued function. In Section 2, when F' is strongly outer we study
an outer function f in N, such that |[F| < Re f a.e. on JD. We then show that
|F| <~ Re F if and only if o2 is a y-Stolz function, where + is a positive constant.
If 5 is a contractive function in H*° and |1 — ] < (1 — |f]) a.e. on 9D, then
we call 8 a v-Stolz function. Suppose W is a Helson-Szego weight (cf. [3]). In
Section 3, using Theorem 1 in Section 2, we parametrize real-valued functions v
such that logW — 0 € L and ||v]|s < /2.

2. THE REAL PART OF AN OUTER FUNCTION

In this section, we study the inequality : |F'| < Re F a.e. on 0D when F is
a nonzero function in H'. The first author [4] studied the inequality : |F| < v Re
f a.e. on 0D when F is strongly outer and f is outer in N;. We give necessary
and sufficient conditions of this inequality. We study two inequalities : |F'| < Re
fand |[F7!| <y Re (f!) ae. on OD when F is strongly outer and f is in N.
Results in this section will be used in the later section.

Proposition 1. Suppose F is a nonzero function in H' and ~ is a constant
satisfying v > 1. Then the following (1) ~ (3) are equivalent:
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(1) |F| <~ Re F ae. on ID.

2) F=(14a)/(1 —a«) ae on ID for a contractive function o in H* such
that o is a y-Stolz function.

(3) F = ¢ "™ ge. on 0D, where ¢ is a positive constant and v is a real
function in L™ satisfying ||v||eo < cos™!(1/7) < /2.

Proof. (1) & (2): Since F' € H' and Re ' > 0 a.e. on 9D, it follows that

Re F\(2) 1/%1_VPRem%%w>o( € D)

e F(z) = — — e z .
27 Jo  le? — 2|2 -

Hence F' = (1 4+ «)/(1 — ) for a contractive function v in H*°. Since |F| < v

Re F a.e. on JD,

1+«
11—«

1 1—|al?
<7 Re ta)_ v o a.e. on 0D.
-« 11— «l?

Hence |1 — o?| < 4(1 — |a|?) and so o?
clear.

(2) = (3): Since ||aflc <1,Re F = |11__|3|2 >0 a.e. on JD. Since F € H!, this
implies that Re F(z) > 0 (z € D). Hence F = ¢ "% and |v| < 7/2 a.e. on

oD. Since o is a y-Stolz function, it follows that

is a ~y-Stolz function. The converse is

| 2

L+al |1-a? 1—|af?
= < = R F .C. 8[@.
1-a| |1—aP2 = Tioap 777 200

7I=|

Hence 1 < vy cos v. Since |v| < 7/2, this implies that ||v]|c < cos™1(1/7) < 7/2.
(3) = (1): By (3), |F| = c e® <vyce’cos v = Re F. This implies (1). ]

By Proposition 1 (3) and [2, Corollary III. 2.6], if |F| < v Re F a.e. on 9D
then both F and F~! belong to H? for some p > 1.

Proposition 2. Suppose F' is a strongly outer function in H'. Define o by

1+Oé(2)_ 1/27rei9+z
1—a(z) 2r),

M_JFMWM (z €D).
For fin N, (1) ~ (3) are equivalent:
(1) |F| <Re f ae ondD and f is an outer function.
@ f=1+a)/1-a)]+[(1+5)/(1—-p)] ae on OD for some contractive
function 3 in H*.
(3) |F| =€, Jv| < 7/2, e* < ¢ cosv and f = c e*~™ a.e. on OD where c is
a positive constant and u and v are real functions.
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The following proof is similar to the one of Theorem 6 in the first author’s
paper [4].

Proof. (1) = (3): Let Arg f denote the argument of f restricted to —7 <
Arg f < 7. Letv = —Arg f. Then |v| < 7 and f = |fle™. Since 0 <
|F| < Re f, |v|] < w/2. By the proof of [2, Lemma IV. 5.4], if |v|] < 7/2
then e’ cosv € L. Let g = €%, Then fg = |fle™® > 0. Since f is outer,
F/fg € N,. Since

‘ F ‘ Re f coswv
il B b
fal = Ifal gl

it follows that F//fg € H'. Since F is strongly outer, F/fg is a scalar multiple
of F. Hence fg = c for some positive constant c. Hence f = ¢ ¢"~*, and hence
|F| < c €® cosv. Define u by |F| = e“*?. Then ¢* < ¢ cosv. This implies (3).
(3) = (2): In the following we do not assume that F' is strongly outer. We assume
that F' is a nonzero function in H!. By (3), |F| < Re f and Re f € L'. Let
(% — iv)(z) denote the Poisson transform of (o — iv)(e'). Let g(z) = ¢ e(P=)(2),
Then Re g(z) > 0 (z € D), }1_13 g(re®) = f(e") a.e. on OD, and

=e%cosv e L,

27
sup — Re g(re)df = Re g(0) < oc.
0<r<1 27 Jo

12 i
Re g(z)> — ————Re f(e")db
0

e — 2|2
1 2m 1— ‘2‘2
—2m Jy e — 2|2

w@%mezm(%éﬁg) (z € D).

Hence there exists a contractive function 3 in H°° such that

C14alz) | 1+06(2)

~1Ta) T1ope D

9(2)

Since lin% g(re®) = f(e") a.e. on OD, this implies (2).
(2) = (1): Since |5] < 1,Re (1 +5)/(1—B) > 0. Hence

1 1 1
+a§Re< +a 145

\F\:Rel_ T o 1_ﬁ):Ref a.e. on dD.

This implies (1). |
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By Proposition 2 (3) and [2, Corollary IIL. 2.6], if |F'| < Re f a.e. on 0D and
f is an outer function then both f and f~! belong to H? for all p < 1.

By (1), the set of all functions f satisfying one of the conditions (1) ~ (3) is
a convex subset of N. If F is a nonzero function in H!, then (3) = (2) = (1)
holds in Proposition 2. But by [4, Theorem 6], (1) = (3) does not hold in general.

Theorem 1. Suppose F is a strongly outer function in H'. Define o by

1—|—a(z)_i/2’re“9+z
1—a(z) 2/, e?—=z

|F(e?)]dd (2 € D).

For f in Ny, (1) ~ (4) are equivalent. (vy1,...,7s are positive appropriate
constants.)
(1) |F| <71 Re fand |F71| <~ Re(f™1) ae on OD.
(2) (1/7y2)Re f < |F| < ~y2Re fand |f| < v2Re f a.e. on OD and f is in H".
(3) There exists a contractive function 3 in H* such that

afetm0f g l-eBl  1-af
YT A-a)1-p) 1—a] 1-0]~ "1—af

a.e. on OD.

(4) There exists a constant ¢ > 0 and real functions u,v in L such that

|F|=e""",  ||v]loc < cos 5 < g and f=ce ™ a.e. on ID.

Proof. (1) = (2): By (1),
(Re f)? < [f* < m(Re f)|F| <~i(Re f)°.
Hence | f| < v Re f <~2|F| € L. This implies (2) with 7 = 71.
(2) = (1): By (2),

1 1 Re f 4
— <72 <7 =75 Re .
|| Ref~ " [f2 72 f

This implies (1) with 1 = ~3.
(2) = (3): Since f € H' and Re f > 0 a.e. on ID, Re f(z) > 0 (z € D). Hence
f is an outer function. Since |F| < 2 Re f, by Proposition 2,

Clta 148 2(1-ap)
LA il ey Rl S TS E)

for some contractive function 3 in H*. Since |f| <2 Re f < ~2|F|,

1—[of
= 72| f| <3| F| :’ng

- 1l—«a

2|1 — af| '1+a+1+ﬁ
1—af-1-5] 1-p
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This implies (3) with 3 = 72/2 and v4 = 73 /2.
(3) = (4): By (3), f is outer, since « and 3 are contractive. Since

1
Fl=Re(1E2) <2are

i

by Proposition 2, |F| = e“t?, |v| < m/2, €% < ¢g cosv and 273f = coe? ™,
where cg is a positive constant and u, v are real functions. Hence

: 21— af
o= 2 f] = — L= 0Bl
=T =ar g
1— lal? ~
< 2’)’47“2 = 274|F| = 2y4e"*”
-al

< 2¢pY4 ev cosv < 2¢co4 ev.
Hence ¢¢/2v4 < e" < ¢g and cosv > 1/27v4 > 0. Hence u,v € L and ||v||oc <

cos™1(1/2y1) < /2. This implies (4) with ¢ = co/2y; and 75 = 1/274
(4) = (1): Since cosv > s,

- 1 - 1
|F| = evt? < —ellullee? cosp = —¢llll=Re f,

Y5 CY5
and
1wt o € oo g gy — Collloge L
| F| 5 5
This implies (1) with 4 = (1/75) max(c, ¢~ )elllee, -

By Theorem 1 (2), the set of all functions f satisfying one of the conditions (1)
~ (4) is a convex subset of H'.

3. HELSON-SZEGO WEIGHT
Let W be a positive function in L' and log W be in L'. For each ¢ > 0, put
Ewe = {v €Re L™, logW —0v€ L™ and |[v|e < g — 5}

and Ew = U,oo Ewe. Ew,e and Ey are convex subsets of Re L>°. When &y is
nonempty, W is called a Helson-Szegd weight. Then for each v in &y there exists
a u € Re L™ such that log W = u + ©. In this section, we study two problems
about a Helson-Szegd weight. In Theorem 2 we describe £y, Theorem 3 follows
from Theorem 2 immediately.
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Theorem 2. Let W be a positive function in L'. Define o by

1 21 i6 )
1t+az) _ / ﬂw(ezﬁ)dg (2 € D).
0

1—a(z) or el — 2

Then v belongs to Evw if and only if

1—ap
(I-a)1-p)

where (B is a contractive function in H® satisfying

v = —Arg a.e. on 0D,

1-af  __1-|af

<% a.e. on D
[1—af-[1-5| [1—af?

for some constant v > 0.

Proof. If v € &w, then v € &y for some constant € > 0. Hence W = eut?
where u € L™ and ||[v]|s < (7/2) — €. Hence there exists a constant v > 0 such
that

W <~ecosv and W' <~e?cosu,

where ell“l~ < ~ycosv. If f =€~ then W <~y Re f, W' <~ Re (f') and
f € H'. Since W, W—! € L1, there exists an outer function F' such that |F| = W
and F, F~! € H'. Hence F is strongly outer. By Theorem 1, there exist constants
~3, 74 > 0 and a contractive function § € H* such that

1—ap 11— af| 1—|af?
v3f = —————— and < vy a.e. on JD.
(1—a)(1-p) [1—af-[1-p| [1—al?
Hence . 5
-«
v=—Arg f = —Arg——————— a.e. on OD.
(1-a)(1-p)
This implies the ‘only if” part. Conversely, suppose v satisfies the condition. Define
[ by
Fo 1—ap
(1-a)1-05)
Then
1—|af?
v=—Arg f and |f| <~ a.e. on O
[1—al?
for some constant v > 0. Then f satisfies (3) of Theorem 1 and
1—|of? _1—la? 1-|5 1—|af”
W = < =2Ref <2If| < 2y—— = 29W.
T—af Sf—ap T oge =~ 2R/ <2< g =2
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Since W is a positive function in L', Re f > 0 a.e. on 0D and f € H'. Hence
f is strongly outer. Since log W € L', there exists an outer function F' € H' such
that || = W. Let k be any function satisfying k € H! and k/F > 0 a.e. on 9D.
Since f/F € H*®, kf/F € H'. Since f is strongly outer, kf/F = cf for some
constant c. Hence k = cF'. Therefore F' is strongly outer. By Theorem 1, there
exists a constant ¢ > 0 and real functions u,vy € L such that ||vg|lec < 7/2,
W =¥t and f = c e?~™0 ae. on OD. Hence

1—ap
Vo = —Arg f = —Argm = .
Hence W = ¢“*? ae. on dD and ||v]|s < 7/2. Hence v belongs to &y . |

By Theorem 2, if W =1 then a@ = 0 and hence

51:{veReL°<>; HvHoo<g and ﬁeLOO}

1 1
— ) _ . o0 < - o L
{ Mg B e H™, I8 <1 and ¢l }

Theorem 3. Let W be a positive function in L'. Define o by

I+a(z) 1 /2”6“9—1—2
0

—alz) _2r W(e)ds (zeD).

et — 2z
(1) W is a Helson-Szego weight, that is, Ew # 0 if and only if there exists a
constant v > 0 and a contractive function 3 in H* such that

l-af| _ 1]

<7~ a.e. on OD.
1—al-[1=5] 7 "[1-af

(2) If a is a Stolz function, then W is a Helson-Szego weight, and W1 belongs
to L™.

Proof. By Theorem 2, (1) follows immediately. By Theorem 2 with 8 = 0,
if o is a Stolz function, then v = —Arg (1 — a)~! belongs to &y, and hence
Ew # 0. By (1), W is a Helson-Szegd weight. Since W = (1 — |a|?)/|1 — a|? =
[(1+]a])/|1—a|][(1—]a|)/|]1 —«|] a.e. on OD and « is a Stolz function, it follows
that W1 € L. ]

Note that if o is a Stolz function, then o is also a Stolz function. In fact, if «
is a y-Stolz function, then || < 1 and

11— < [1-af +]a(l —a)| <21 - a] < 2y(1— |a]) < 2¢(1 - |a]).
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Let W be a positive function in L'. By Proposition 1, W = ¢ € for a constant
¢ > 0 and a real function v with ||v||o < 7/2 if and only if there exists an o« € H°
such that o? is a Stolz function and W = |1 + «a|/|1 — . Then there exists a u €
Re L°° such that

1—a?1—|af? 1—|al?
N L e e ) e
L—|af? [1-af? 11 —al?
whereF:}f—g.
4. REMARK

Put B, = {8 € H*®;||]|lco < r} and put

_ _ 2
1-0d] _ 1-lo]
T=al-T1—5] == aP

a.e. on gD for some constant y > 0} ,

BOC:{ﬂEBl;

where « is a contractive function in H*°. The set B* was important in Theorems
1, 2 and 3. Let W be a Helson-Szegd weight. Define o by

lL+a(z) 1 /%ew—i—z
1—a(z) 2rn), ef—z

W (e?)ds.

Then by Theorem 2,

1—ap

= {0 = ot

;ﬁEBO‘}.
If W =1 then « = 0 and

1-p

In this section, we study such a set B%. « is a Stolz function if and only if 0 € B®.
a? is a Stolz function if and only if o € B®. Hence if 0 € B then a € B®. If a
is a Stolz function and 3 € B,, r < 1, then for some constant v > 0

1
& = {—Arg—; b e BO}.

_ _ 2
l-apl _ 2 _ %]

€. oD
T—al - 1-8 =~ (-rl-af = A-r)l-af *="%

and hence 5 € B®. Hence if « is a Stolz function, then B, C B* (r < 1).
For two positive functions f and g on 0D, if there exists a constant v > 0 such
that (1/7v)g < f < vg a.e. on 9D, then we write f ~ g.

Lemma. Suppose o and 3 are contractive functions in H*°. Then the following
(1) ~ (5) are equivalent:
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(M [[(a=05)/(1 = af)le < 1.
() 11— aB|? < v(1 —|al?)(1 —|B]?) a.e. on OD for some constant v, > 0.

(3) There exists a constant y3 > 0 such that for any function t > 0

1-a 1—|a? 11-182
(4) There exists a constant y4 > 0 such that
1 -« 1—|a?
i _‘ ol \lm— g S Y4 I —‘a}2 a.e. on 0D
e 1-af 1 |
a.e. on OD.

<M
I1—al |15 11— B2

() [1—al~ |l —fland 1 —af ~ 1 —[5] ~[1 - af].

Proof. (1) and (2) are equivalent because

a=B I (1-loPHa-18>
1—af |1 — ap)? '

(cf. [5, p. 58]). (2) and (3) are equivalent because if a,b > 0 then 2v/ab < a + b
and the equality holds when @ = b. (1) = (5): Let f = (& — ()/(1 — a3). Then
[flleo <1, 8= (a—f)/(1—-af)and

(A-a)+fA-a) _ N—al—[fl-N—a 1—HfHoo‘1
11— af] = 2 -2

1—

[1-8]=

—al.

Let g = (o = B)/(1 — af3). Then ||glloc = || flloo < 1, &= (g+ B)/(1+ g/3) and

|(1—8) —g(1—73)] S 11— 8] —lg|-[1 -5 S 1 —|lgllo
11+ gf| - 2 = 2

Hence |1 —af ~ |1 —f]. Since 0 < 1 — || f]loo < |1 —af| <2 and

(L= la)(@ =[S
1—af

14

1 — o =

1— 152 =
1—|a] ~1—13|. Since |1 —af| = (1—|a]?))/|]1—afb|, |1 —aB| ~1—|al. Itis
clear that (5) implies (4). If we multiply both sides of the two inequalities in (4),
then (2) follows. ]

By the above lemma, Proposition 3 follows immediately.
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Proposition 3. If o € By, then

rfpens [23],<
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