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A SPACE OF MEROMORPHIC MAPPINGS AND
AN ELIMINATION OF DEFECTS

Seiki Mori*

Abstract. This is a summary report of my recent articles. Nevanlinna theory
asserts that each meromorphic mapping f of C™ into P™(C) has few defects.
However, it seems that meromorphic mappings with defects are very few.
In this report, we shall show that for any given transcendental meromorphic
mapping of C™ into P™(C), there is a small deformation of f which has no
Nevanlinna deficient hyperplanes in P (C), and also in the case m = 1, there
is a small deformation of f which has no Nevanlinna deficient hypersurfaces
of degree < d for each given positive integer d, or deficient rational moving
targets. Furthermore, we shall show that mappings without Nevanlinna defects
are dense in a space of transcendental meromorphic mappings.

1. INTRODUCTION

Nevanlinna defect relations were established for various cases, for example,
holomorphic (or meromorphic) mappings of C" into a complex projective space
[P™(C) for constant targets of hyperplanes or moving targets of hyperplanes (arbitrary
m > 1 and n > 1), or holomorphic mappings of an affine variety A of dimension m
into a projective algebraic variety V' of dimension n for divisorson V (m > n > 1),
and so on. On the other hand, the size of a set of Valiron deficient hyperplanes or
deficient divisors are investigated (e.g., Sadullaev [8], Mori [4]). Nevanlinna theory
asserts that for each holomorphic (or meromorphic) mapping, Nevanlinna defects
or Valiron defects of the mapping are very few. Until now, there are few results
on defects of a family of mappings. Recently, the author [4, 5, 6] proved that for
a transcendental meromorphic mapping f of C™ into P"(C), we can eliminate all
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deficient hyperplanes (m > 1), all deficient hypersurfaces of degree at most a given
integer d or rational moving targets (m = 1) in P"(C) by a small deformation of
the mapping. The class of meromorphic mappings which does not have a Valiron
deficiency is important, because these functions have a counting function N (r, D) ~
T¢(r), r — oo, for every target D.

We shall now discuss an elimination theorem of defects of a meromorphic map-
ping or a holomorphic curve by its small deformation, and also discuss a space of
meromorphic mappings without defects. Here a small deformation f of f means
that their order functions T¢(r) and T5(r) satisfy |T(r) — T¢(r)| < o(T¢(r)) as r
tends to infinity.

2. PRELIMINARIES

2-1. Notation and Terminology

Let z = (z1, ..., z,) be the natural coordinate system in C™. Set

(2,6) = z& for& = (€1, s &m), I2]1° = {2,2), B(r) = {z € C™|||2]| <1},
j=1

0B(r) = {2 € C™ | |lz] =r}, ¢ =dd’logl|z]|* and o = d°log ||| Ay™ ",

where d° = (/—1/4m)(0 — 0), and Y* = A - - A1y (k-times).

Let f be a meromorphic mapping of C™ into P™(C). Then f has a reduced
representation (fo : ... : f,), where fy, ..., f,, are holomorphic functions on C™ with
codim{z € C™ | fo(z) = --- = fn(z) = 0} > 2. We write f = (fo,..., fn) as
the same letter of the meromorphic mapping f. Denote D*f = (D" fy, ..., D*f,)
for a multi-index o, where D¢ = 91®l$/9221 - - 928m, a = (@1, ..y ), || =
ay + - - -+ a,, and a function ¢.

Definition (see Fujimoto [2, §4]). We define the generalized Wronskian of f by

W, an(f) =det (D" f : 0<k <n),

-----

for n + 1 multi-indices o = (o}, ..., k) (0 < k < n).

By Fujimoto [2, §4], for every linearly nondegenerate meromorphic mapping f of
C™ into P"(C), there are n+ 1 multi-indices a?, ..., & such that { D*" f, ..., D*" f}
is an admissible basis with [a*| < n+1. Then Wyo  o4n(¢f) = ¢" W, an(f)Z
0 holds for any nonzero holomorphic function ¢ on C", where ¢ f = (¢ fo, ..., dfr).

Let f be a nonconstant meromorphic mapping f of C™ into P"*(C), and let
L = [HY be the line bundle over P"(C) which is determined by the dth tensor
power of the hyperplane bundle [H]. A hypersurface D of degree d in P"(C)
is given by the divisor of a holomorphic section § € H°(P™(C), O(L)) which is
determined by a homogeneous polynomial P(w) of degree d. A metric a = {a,}
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on the line bundle £ is given by ao = (37, |w; Jwe|?)? in a neighborhood

Uy = {w, # 0}.
The Nevanlinna order function T(r, £) of f for the line bundle £ is given by:

TS L

o t B(t)

where w = {wy} = ddlog Z?ZO(\wj/waP)d in a neighborhood U, := {w,# 0}.
We say that a meromorphic mapping f is transcendental if

Tf(?“, E)

r—+oo log r

A meromorphic mapping f is rational if and only if T¢(r, L) = O(log r) (r —
+00). The norm of a section § is given by

Al IP@P
a0 (S )

We may assume ||0]| < 1. The proximity function m¢(r, D) of D is defined by

| L
D) = log ——0 = 1 o.
my(r. D)= [ 1o 15,1 [ e 0

The Nevanlinna deficiency 6(D) and the Valiron deficiency A¢(D) of D for f is
defined by

611 -

.. mf(rv D) . mg (’I", D)
0¢(D) =1 f————= and d¢(D):=1 —_—.
£(D)i=lHminf 7 0 and 07(D) :=limsup 7 7o
In particular, if £ is the hyperplane bundle [H] and D is a hyperplane H which is
given by a vector a = (ag, ..., a,) € C**1\ {0}, the proximity function m ¢ (r, H)
and the counting function N¢(r, H) of a hyperplane H in P"(C) are given by:

my(r, H) ::/ logwa and Ny(r, H) ::/ ﬂ/ U
o) (. )] ro U J(f*H)NB(1)

for some fixed ro > 0, where H = {w = (wy, ..., w,) € C" 1\ {0} | > im0 Qjw; =
0} and f*H denotes the pullback of H under f. Also, the Nevanlinna order function
Ty (r) = T¢(r,[H]) of f for the hyperplane bundle [H] is written as:

" 1/2 n
Ty(r) = /83(r) log (jzg \ij) o+ 0(1) = /83(r) logz |filo+O(1)

J=0
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by using Stoke’s theorem. We write

B rﬂ m—1
N(r,(9)):= /m t /(¢)0B(t)w 7

where (¢) denotes the divisor determined by a meromorphic function ¢ on C™.

Let f : C"™ — P™(C) be a meromorphic mapping with a reduced representation
(fo:..: fn). Let ¢ : C™ — P™(C)* be a meromorphic mapping with a reduced
representation (¢ : ... : ¢;), which is called a moving target for f. Then the
proximity function m(r, ¢) and the counting function N¢(r, ¢) of a moving target
¢ into P"(C)* are given by:

my(r, @) = /8B log ’;{]U, ’(Lq;{’(rew)dé? and N¢(r, ¢) ::/ ™t

B(r)N(A)o

where || f|[* = Y27_o|f;|> and (A)o denotes the divisor determined by the zeros
of A:= (f,¢) = > 7_#;fj- The Nevanlinna deficiency d;(¢) and the Valiron
deficiency Af(¢) of a moving target ¢ for f are given by:

NERTI mf(?“, ¢) T mf(?“, ¢)
o) = I ey T,y A0 = I e

We now define the projective logarithmic capacity of a set in the projective space
P™(C). (see, Molzon-Shiffman-Sibony [7, p. 46]). Let E be a compact subset of
P™(C), and P(E) denotes the set of probability measures supported on E. We set

V)= [ tom i) (n e P(E) and

V(E):= inf sup V,(x).
(E) MEP(E)QUE]P’"I()(C) u(@)

Define the projective logarithmic capacity C'(F) of E by

C(E) = ﬁ

If V(E) =+ oo, we say that the set E is of projective logarithmic capacity zero.
For an arbitrary subset K of P"(C), we put

C(K) = ESE%C(E)’

where the supremum is taken over all compact subsets £ of K.
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2-2. Some Results
A.Vitter [9] proved the following theorem:

Theorem A (Lemma of the logarithmic derivatives). Let f = (fo : f1) be a
reduced representation of a meromorphic mapping f : C™ — PY(C). Set F =
f1/fo. Then there exist positive constants a1, as, as such that

/ log™ |F.;/Flo < a1 +azlog r+azlogTy(r), (j=1,...m). //.
dB(r)

Here the notation “A(r) < B(r) //” means that the inequality A(r) < B(r)
holds for r outside a Borel set with finite Lebesgue measure.

Molzon-Shiffman-Sibony proved the following result on the projective logarith-
mic capacity.

Theorem B [7, p. 47]. Let ¢ : [0, 1] — P"*(C) be a real smooth nondegenerate
arc in P*"(C), and K a compact subset of the interval [0, 1] C C. Then the
projective logarithmic capacity C(p(K)) is positive if and only if K has a positive
logarithmic capacity in C.

Here “smooth nondegenerate arc ¢ means that there exists a lift ¢ : [0, 1] —
€1\ {0} such that the kth derivatives {p*) (t)} x>0 of ¢(t) spans C"*+! for every
te o, 1].

Theorem C [4]. Let f be a meromorphic mapping of C™ into P"(C) such that
lim, oo T¢(1) = +00. Then there exist a sequence 1 < ry < ... < ry, — +00
and sets E, : Ep,y1 C E, (n = 1,2,...) in P*"(C)* with V(E,) > 2logT(ry)
such that, if H does not belong to E,,, then

my(r, H) < 4, /T¢(r)log Ty (r)

for r > r,. Hence
lim 7mf(r, )

=0
r—+too  T(r)

outside a set E C P™"(C)* of projective logarithmic capacity zero. Here P"(C)*
denotes the dual projective space of P™(C).

Theorem D [1]. Set A(r) := frz Y(t)/dt t, where (1) is nonnegative,
nondecreasing and unbounded. If A(r) < & for some K > 0 and all suffi-

ciently large r, then there exists an entire function g(z) of finite order such that
Ty(r) ~ A(r)(r — o0).
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3. ELIMINATION OF DEFECTS OF MEROMORPHIC MAPPINGS

3-1. Elimination of deficient hyperplanes of a meromorphic mapping

For a transcendental meromorphic mapping g of C" into P"*(C), we can elim-
inate all deficient hyperplanes by a small deformation of g.

Lemma 1 [4]. There are monomials (1, ...,(y in 21, ..., 2y Such that any n
derivatives in {D“( : = (D*(y, ..., D) | |a| < n+ 1} are linearly independent
over the field M of meromorphic functions on C™, where o = (v, ..., o) € Z>
is a multi-index.

Lemma 2 [4]. Let h = (hg : hy : -+ : hy) be a reduced representation
of a meromorphic mapping of C™ into P"(C) and (1, ..., (, linearly independent
monomiales in z1, ..., zy, as in Lemma 1. Then there exists (a1, ..., an) such that
aj=ab (j=1,..,n)withky =1, k=77 "k+1(m=2,3,..,n) (€ C),
and

[ o= (ho: h1+aiCiho : ha + aaCaho : - -+ : hn + anCoho)
is a reduced representation of a linearly nondegenerate meromorphic mapping of

C™ into P™(C).

Lemma 3 [4]. Let f = (fo:---: fn) and h = (ho: -+, hy) be as in Lemma
2. Then we have

T(r) = Tu(r)| < O(log ) (r — oo).

Lemma 4 [4]. The set of vectors

A= {(1,0,1, vy H ak> la; € (C}
k=1

is of positive projective logarithmic capacity in PN (C), where N = 2" — 1.

Theorem 1 [4]. Let g : C"™ — P"(C) be a given transcendental meromorphic
mapping. Then there exists a regular matrix L = (1;j)o<i j<n Of the form l; ; =
¢ijCi+dij, (cij, dij € C: 0 <14,j <n),suchthatdet L # O0and f :=L-g: C™ —
P™(C) is a meromorphic mapping without Nevanlinna deficient hyperplanes, where
(1, ..., Cn are some monomials in z1, ..., zm Which are linearly independent over C.

Here the mapping f := L - g : C™ — P"(C) means a product of the matrix
L = (l;;) and a vector of a reduced representation § ="' (go : ... : gn) of g which
does not depend on a choice of g, and also a Nevanlinna deficient hyperplane H
for f means a hyperplane with 6¢(H) > 0.
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Remark 1. For the mappings as in Theorem 1, the inequality | T (r) —T,(r)| <
O(log ) (r — 4+00) holds, and also the mapping ¢ may be linearly degenarate or
of infinite order.

Remark 2. A rational mapping g always has a Nevanlinna deficient hyperplane
if m = 1 or there is a regular linear change L such that Lg- g has a reduced repre-
sentation which consists of polynomials including different degrees. But otherwise
g does not have Nevanlinna deficient hyperplanes.

Remark 3. If g is of finite order, we can replace “Nevanlinna deficiency” by
“Valiron deficiency” in the conclusion of Theorem 1.

Remark 4. If m = 1, we can take (, = 2" (k=1,...,n).

Outline of the proof of Theorem 1 (see [4]).
Ist step. There is a regular linear change L; of P"(C) such that
h:=Li-g=(ho:-+:hy) : C" — P*"(C)
and a reduced representation of the meromorphic mapping h which satisfies
N(r,(hy) = (L =o(1))Th(r), (r—+o0), (j=0,1,..,n).

2nd step. Using Theorems B and C, and Lemmas 1 and 2, there are f = (hy :
hi +a1Cihg : ... hy + anCoho) and multi-indices 8, ..., 37 such that f is linearly
nondegenerate and its generalized Wronskian satisfies Wg : = Wpgo _ gn(f) # 0.
Note that there are many such {a1, ..., a,}. Then it can be written as

Wﬂ = hg—H <W0 +a Wi +---+ HaiWN) Z0,
=1

where Wy, is a generalized Wronskian of some of 1, hy/hg, a1(i, ..., hn/ho, anCp
(0<k<N=2"—1).

3rd step. Consider the auxiliary meromorphic mapping F' of the form
F:=Wy/d : Wy/d : --- : Wx/d) : C" — PN(C),

where d = d(z) is a meromorphic function which consists of common factors
among WY, ..., Wy such that Wy/d, ..., Wy/d are holomorphic functions without
common factors up to unit. Then we observe that the meromorphic mapping F' is
not constant. Therefore, there exists an ag = (1, ay, ..., G, @1a2, ..., [ [;—; @;) such

J
that o
lim sup 7mp(r, aO)

r—00 TF(T)
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since the set of Valiron deficient hyperplanes of a nonconstant meromorphic mapping
is of projective logarithmic capacity zero in PV (C)*.

4th step. Consider the meromorphic mapping given by the following reduced
representation by using the vector ag in the 3rd step:

fi=Lo-h={(fo: : fn):C" — P*(C),
where
1 o --- 0
a1 -0
L2= C~L2 CQ 0 - 0 s (det L2=17é0).

an CGn 0
Hence fy = hg and fx, = hi + arxCrho (k =1,...,n). Then we observe that
Ty(r) =Ty(r) + O (log 1) = (1 4 0(1)) Ty(r), (r — +00),

if g is not rational.

Claim 1. Let F' and f be as above. Then there exists a positive constant K
such that
Tp(r) < KTg(r).

Sth step. Take an arbitrary vector b = (by, ..., b,) € C*"!\ {0}, which de-
termines the hyperplane H = {w € C"*1\ {0}| (w,b) = 0} in P*(C). We may
assume that b,, # 0. Then fy, f1, ..., fn—1, A = (f, b) are linearly independent over
C. Thus we have

/1]

m¢(r, Hp :/ log —o
e T

Wao  gn(fo, s fn e f
_ / log V20 (fos oo full / tog MFILLSol = Lfusl
8B(r) aB(T’

[ Al fol - -+ [ fnl ) [Wao, gn(fo, - f)]

0, [Wao_gn(fo, - fn1, A)] / [Nl
log o+ log o
/<93(r) |A[| fol -+ - [ fn—1] B (r) | folm 1

IN

1
+ lo - o+ 0(1),
/8B(r) : Wo+aWi + -+ [[;_; a;Wh M

IN

o(Ty(r)) + (n+ 1)ymys(r, Hq o, 0))

+/ log ([Wol + [WA| +--- + [Wn])(1/]d])
oB(ry  IWo+aWi+ - +[[5_; a;Wn|[(1/]d])

o+ 0(1)
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= 0 T (6] ﬂazo T o T)) =0 T
= oI + [ g o = olT5(r) +olTr(r) = o{Ty(r) /-

Therefore, we obtain

S EINN mf(?", Hb) _
05 (Hp) = lim inf =725 =0,
that is, 07(H) = 0 for any H € P"(C)*. This proves Theorem 1. |

Note that we can take the norm ||&|| of a vector & : = (ay, ..., a,) as small as
possible in the proof of Theorem 1.

Problem. Is the conclusion of Theorem 1 true if “Nevanlinna deficiency” is
replaced by “Valiron deficiency”?

3-2. Elimination of defect hypersurfaces of a holomorphic mapping of C into
P™(C)
We shall discuss an elimination theorem on defects of hypersurfaces.

Theorem 2 [5]. Let g be a given transcendental holomorphic mapping of C
into P"(C), and d € N be given. Then there exists a regular matrix L = (1;;) of
the form l;; = ¢;j2™ +d;j, (¢ij, dij € C), |[L| #0and f :=L-g:C—P"(C) is
a holomorphic mapping without Nevanlinna deficient hypersurfaces of degree < d,
where mj (j = 1,...,n) are some integers such that m; < d m; < mg < --- <
d mp_1 < My,

Outline of the proof of Theorem 2. There is a regular linear change L; such
that the holomorphic mapping h := L1 - g = (ho : -+ : hy) : C — P*(C) satisfies
N(r,(hj)) = (1 —o(1))Th(r), (r — o0), (j = 0,...,n). Consider the Veronese
embedding vg : P?(C) — P*(C), which is defined by homogeneous monomials

of degree d in (wo : --- : w,) € P*(C). Let h = (hg : -+ : hp) = (ho :
hlA—l—alzml flo e hn~+an~zm"ho). Consider the composed mapping f := vgoh =
(fo:-:f) =g :n& hy o hohd™ hE  RE hy s RE Ry 2 RE).

Here s = (n+d)!/d! n! — 1. We can prove the following Lemma 5 using a similar
method for the proof of Theorem 1.

Lemma 5 [5]. There is a vector (a1, ..., an) € C"\ {0} such that f is linearly
nondegenerate.

Set

W = W(fo,..., fs) = W(hd, hd " hy, hE2R2, ... h)

— RPNV R, o R
n

= Bg(8+1)<W0+a1W1—f—---—f—HagWN)’ (I;TJ:HJ_Fajsz)’
k=1
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where W;(j = 0,...,N) are some sums of Wronskians. Consider the auxiliary
holomorphic mapping:

F:=(Wy/d(z) : Wy/d(2): - : Wy/d(z)) : C — PN(C).

Here d = d(z) is a holomorphic function such that Wy /d, ..., W /d are holomor-
phic functions without common zeros. Then there is a vector

aEA::{<1,a1,...,ﬁag> | a; G(C}
k=1

such that mp(r, Hy) = o(Tr(r)), (r — o0), since A has a positive projective
logarithmic capacity by Theorem B. Consider the holomorphic mapping given by
the following reduced representation which is determined by the vector (ay, ..., ay)
corresponding to above a:

f:=Ls-h : C— P*"(C),

where Ly = (Sz‘j) and s;; = 1 (’L =), 8ij = a; 2™ (] = 1,1 # 1), s = 0
(otherwise). Then det(s;;) # 0.

Claim 2. There is a positive constant K such that Tr(r) < KT,(r), and also
(1+0(1)T¢(r) = Ty(r) = (1 + o(1))Th(r), (r — o0), hold by a similar method
in Section 3-1.

Now we take an arbitrary hypersurface D = Dy, in P"(C) which is determined
by a homogeneous polymonial:

P(w) : = bowd + brwd twy + -+ bkwéow{1 cwdr 4 bawd = 0},

w = (wo, ..., w,) € C**\ {0}. Then D corresponds to the vector b = (by, ..., bs).
We may assume that b = 0. We set f := vy o f. Consider the function

Ap :Zbkfo o fin
k=0

where Ji := (5, ..., j&) with | Jg| := j& + -+ j5 = d. Then fo, ..., fs_1, Ap are
linearly independent over C, since f := (fo : --- : f,) is linearly nondegenerate.
Then, using Theorem A, Claim 2 and the similar method to the proof of Theorem
1, we obtain

d
ms(r. D) = [ oo Hre = oIy ()
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Therefore, we obtain

D
d¢(Dyp) = lim inf my(r, Do)

—— =0.
r—oo d Tf(?")

In case where hypersurfaces of degree < d, for each d’ (< d), we can take a vector
a = ag in a subset of A of positive projective logarithmic capacity. Hence we can
take a common vector a € A for each d’. This proves Theorem 2. ]

Note that Theorem 2 can be extended to the case where meromorphic mappings
of C™ into P"(C) by using the similar method to Section 3-1.

3-3. Elimination of defects of holomorphic curves for rational moving targets

For a transcendental holomorphic curve f of C into P"(C), we can eliminate
all defects of rational moving targets by a small deformation of f.

Theorem 3 [6]. Let f : C — P"(C) be a given transcendental holomorphic
curve. Then there exists a regular matrix

L= (lz‘j)ng‘,an of the form li,j =ij 95 + dz‘j, (Cz‘j, dz‘j eC:0< 1,) < n),

such that det L # 0 and f = L - f : C — P™(C) is a holomorphic curve without
Nevanlinna defects of rational moving targets and satisfies

Ty (r) = T§(r)| = o(Ty(r)),  (r—o0),

where g; (j = 1, ...,n) are some transcendental entire functions satisfying Ty (1) =
o(Ty, ., (1)), (j=1,....n=1), and T,, = o(T¢(r)) (r — o0).

Note that we cannot replace transcendental entire functions g; by any rational
functions.
Problem: Can we extend Theorem 3 to the case of several complex variables?

Outline of the proof of Theorem 3. Let h be a transcendental holomorphic
curve and (ho, ..., hy,) its reduced representation. Then there are indices i, j such that
h;j/h; is transcendental, say ¢ = 0, j = n. By Theorem D, there are n transcendental
entire functions g1, ..., g, on C such that Ty (r) = o(T,,,,), (j =1,...,n—1) and
Ty, (r) = o(T¢(r)) as r — oo. Then gy, ..., g, are linearly independent over C.
There is a regular linear change L such that

h=Ly-f=(hy:-:hy):C— P*(C),
and a reduced representation of the holomorphic curve h satisfying

N(r,0,h;) ~ Thp(r), (r—+4o00), (j=0,..,n).
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We put hy = hy + argrho (k =1,...,n) and ho = hg. Consider the reduced
representation of a holomorphic curve

h:=(hg:hy:--:hy):C— P"C).
Then there exist complex numbers ay, ..., a,, such that
{BQ,ZB(),...,Zmﬁo,ill,...,zmﬁl, ...... ,Bn,...,zmﬁn}

is linearly independent over C, as in previous theorems.
We now consider the Wronskian

W := W(hg, zho, ..., 2"hg, h1, ..., 2Ry, ... Py s 2™,
and we write it as
W =Wy (ho, zho, .oy 2™hoy Ry ey 2Ry ey gy ooy 2Ry
+ar(Wir + -+ Wigy) + -+ an(Woa + - + Wi, )
+ai(Wizg + -4 Wizga) + - + a" T (Wiming + -+ W1 gmt)
Fajag(Wirzy + -+ Wiig ) + -+
+ ﬁ a;”"'lWN(l, s 27 g1y ey 2T s Gy s 2 hgm+1)(n+1).
j=1
We now rewrite it in an inhomogeneous form as
W = hgm“)(”“){wo +arWi 4 ﬁ a§”+1WN},
j=1

where Wy, (kK = 0, ..., N) are sums of some Wronskian determinants, and N =
(m + 2)" — 1. For any fixed m € N, we consider an auxiliary holomorphic curve
of the form

Fpn:=(Wy/d:Wy/d: - Wx/d): C— PN(C),

where d = d(z) is a meromorphic function whose zeros and poles consist of common
factors among Wy, ..., Wx. Then F,, is a reduced representation of nonconstant
holomorphic curve in PV (C).

Lemma 6 [cf. 6]. Let

e m+1 i1 02 ; m+1 )
A.—{(l,al,...,al LA, ..y aftag - aln ,Haj )\aj e C,

0 Sil,...,ingm—i—l}.
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Then there is a vector a = (1, ay, ..., H?Zl a,;”“) such that

This holds for any positive integer m, because a countable union of sets of projective
logarithmic capacity zero is of projective logarithmic capacity zero. Here

Ha:{C:(CO?"'ch)‘<C7a>:O} and

<F, a> = {WO + a1 Wi+ -+ Ha§”+1WN}/d.
j=1

Lemma 7 [6]. Let F,,, and h be as above. Then there exists a positive constant
K such that
Tr, (r) < KTp(r).

For this (ay, .., ay), we consider the holomorphic curve given by the following
reduced representation:

f = L2 : h = (f()? "'7.]?”) : (C - Pn((c)7
where L2 = (Sz‘j) gnd Sij = 1 (’L = j), Sij = @395 (] = 1,’i 7& 1), Sij = 0

(otherwise). Hence fo = ho, fr = hi + argrho (k =1,...,n), and det(s;;) # 0.
Then we see
T(r) =Ty(r) + o(T(r)) = (1 +o(1))Ty(r) (r — 400).
Now we take a given integer m and an arbitrary rational target ¢ of degree m :
d=(po(2),..., pn(2)) : C — P*(C)™.

Then we can choose a reduced representation of ¢ such that each ¢; is a poly-

nomial of degree < m and some ¢;, is of degree m. Put A,, = (f,¢) =
> k= Pk fr- We may assume that ¢, = by + bf'z + -+ + b5, 2™ # 0. We note that
fo,zfo, s 2™ 0, enenn Pty Zfnts ey 2 a1y fruy ooy 2™ L, Ay, are linearly in-

dependent over C. Thus we have
mitr,0) = o [ 1o Wiy~ oy, 1
f ’ 27T 0 ‘Am‘ f ’

by Lemma 7 and using a similar method to the proof of Theorem 1. Here s =
m(m + 1)(n + 1)/2. Therefore, we obtain
m(r, §)

N — T o)

o70) = lmint =y =0

We note that f = L1_1 . f is also a small deformation of f.
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4. SPACE OF MEROMORPHIC MAPPINGS INTO P™(C)
We shall introduce a distance on the space of meromorphic mappings into P (C).

For points a = (ag : ... : ap) and b = (bg : ... : by,) in P*(C), we define the

distance d(a, b) by
b
di(a,b) := 1n ¢
Ina all [lall I

Then d;(a, b) satisfies the condition of a distance. Let f = (fp : ... : f,,) and let
g = (g0 : ... : gn) be reduced representations of meromorphic mappings of C" into
[P"(C). Then the distance d(f(z), g(z)) at z € C™ is given by

d(f(2).9(2) = || T~ e H_

1/ (2l Hg )l
Define the distance d(f, g) by d(f, g) := d1(f, g) + da(f, g). Here
h(f.9): 2%4/ “Amt () o<1

which is a distance but does not distinguish rational and transcendental mappings,
and

Tf(?") Tg(T)
dao(f, 9) —hmﬂﬂfhfisogp“(logr)lﬂ + Ty(r) B (1ogr)1/2+Tg(r)|
+| Tf(?") _ Tg(T) |
(logr)> +Ty(r)  (logr)® +Ty(r)

Ty(r)
+Z|r”+Tf r”+Tg(r)|}’

which is a pseudodistance and distinguishes rational and transcendental mappings.
Then d( f, g) satisfies the distance conditions on the space of meromorphic mappings
into P"(C). Here 0B(r) denotes the boundary of a ball of radius r and o denotes
the normalized surface element as |, oB(r 0 =1 on OB(r).

Note that if f is constant, then 0 < d;(f,0) < 1 and da(f,O) = 0. Hence
0 < d(f,0) < 1. If f is rational, then 0 < di(f,0) < 1 and do(f,0) = 1
Hence 1 < d(f,0) < 2. If f is transcendental, then 0 < d;(f,0) < 1, while
da(f,0) > 2. Hence d(f,0) > 2. Here O denotes a representation (1,0, ..., 0).
Therefore we can distinguish constant, rational and transcendental mmappings by
this distance.
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Now,we consider a space of meromorphic mappings
F:={f:C" — P*(C)| f is meromorphic}.

In [4, 5, 6] and this note, a small deformation f := Lo - h of f is represented as

f=(ho:h1+aiCihg :,..cs B + anGuho),
where b = (hg : -+ : hy) := Ly - f. Also, we can choose (a1, ..., an) such that
|a]l := |a1| + - - - + |an| is as small as possible. So,we can choose f := L' - f

which is a small deformation without Nevanlinna defects of f such that d( f , f)isas
small as possible. Hence transcendental meromorphic mappings without Nevanlinna
defects are dense in the space of transcendental meromorphic mappings .
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