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CANONICAL FORM RELATED WITH RADIAL SOLUTIONS OF
SEMILINEAR ELLIPTIC EQUATIONS AND ITS APPLICATIONS

Shoji Yotsutani

Abstract. We explain that boundary value problems which satisfy radial solu-
tions are reduced to a canonical form after a suitable change of variables. We
introduce structure theorems to the canonical form to equations with power
nonlinearities with the homogeneous Dirichlet boundary condition. By virtue
of this fact, we can understand known results systematically, make clear un-
known structure of various equations.

As applications, we can investigate the structure of radial solutions in-
cluding all solutions with singularity at » = 0 and r = oo of Matukuma’s
equation.

1. INTRODUCTION

Radial solutions play a fundamental role in the investigation for the structure of
solutions in semilinear elliptic equations.
If we restrict to radial solutions u = u(|x|), then solutions of

Au+ f(|z|,u) =0

satisfy the ordinary differential equation

n—1

Upp + up + f(r,u) = 0.

However, even in this simpler situation, it is not easy to show the existence, the

nonexistence and the uniqueness of solutions only by known standard techniques.
Traditionally, these problems have been studied separately depending on a slight

difference of nonlinear terms or the boundary conditions. However, it becomes
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clear gradually that a class of equations, which are apparently different, has similar
structures for their solutions.

We will show that the boundary value problems which radial solutions satisfy can
be reduced to a certain canonical form by a suitable change of variables. By virtue
of this fact, we can understand known results systematically, make clear unknown
structure of various equations, and investigate the structure more precisely.

2. ESAMPLES OF EQUATIONS

We will investigate the structure of radial solutions of equations with the simplest
nonlinearity including K (r)uP. Even for equations with such innocent-looking
nonlinearity, the structure of solutions can very sensitively depend on K (7).

The typical examples of equations are as follows:

(2.1) Au+u? =0 Lane-Emden equation
(Emden-Fowler equation),

1
(2.2) Au+ ————=u” =0 Matukuma equation,
1+ |z
1
(2.3) Au + 5 ‘Jup =0 Matukuma-type equation,
‘x‘0—2

2.4) Au+ P =0 Batt-Faltenbacher-Horst equation,

(2.5)  Au+ K(|z))u"+2/("=2) = scalar curvature equation,
(2.6) Au—u+ uP =0 scalar field equation
2.7) Au+ Mu+ uP =0 Brezis-Nirenberg equation.
For each given equation, for instance,
Au+ K(|z])u? =0,
there are various kinds of problems with various domains such as

Au+ K(|z[)uP =0 in R",

Au+ K(|z[)uP =0 in R™\ {0},
Au+ K(|z[)u» =0 in B,

Au+ K(|z])u» =0 in B\ {0},
Au+ K(|z[)u? =0 in R™\ B,

Au+ K(|z[)u? =0 in A,

and with various boundary conditions, where B is a ball and A is an annulus.
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3. TRANSFORMATION TO A CANONICAL FOrRM

All examples in the previous section are represented by the boundary value
problems with various kinds of boundary conditions to

v+ a(z)u + B(x)u+y(@)uP =0, —oco<a<z<b< 4o

It was found by recent studies that the above boundary value problems with the
nonlinear term u? can be reduced to some canonical forms [15, 5, 19, 7].

This means that not only can we treat various problems in a unified way, but also
apply results of one equation to other equations through canonical forms. Moreover,
the implication of the Kelvin transformation and the Rellich-Pohozaev identity for
the original equation can be understood in a more natural manner through a simple
canonical form.

We shall only demonstrate the basic ideas here. By suitable changes of variables
[19], each of the following four problems:

(1) Dirichlet problem of Lane-Emden’s equation on the unit ball,
(i) positive entire solutions of Matukuma’s equation,

(iii) Dirichlet problem of Brezis-Nirenberg’s equation on the unit ball,
(iv) positive entire solutions of the scalar field equation,

can be reduced to the Dirichlet problem for
3.1) v (t) + k(t)o?P =0, te(0,1).

We note that various information such as the dimension, domain, boundary condi-
tions, spatial inhomogeneity are compressed into &(¢).

First, we can show that the equations in the above problems can be rewritten
as

1 P=0 in (a
(3-2) M{g(r)ur}r + L(T)u =0 ( 7b)7

where g(r) and L(r) are positive smooth functions defined on (a, b) (see [19]). In
fact, we may put g(r) = "1, a = 0, b = oo, L(r) = K(r) for (ii). We can deal
with (i) similarly. In the cases of (iii) and (iv), by using solutions of

n—1
Prr + T‘Pr ﬂ:)\tp =0, “P(O) =1,

we can eliminate the linear term through a transformation u — ¢ to reduce the
equations to (3.2). For instance, for (iii) with n = 3 and 0 < A < 72, we have

() = sin(ur)/(ur), g(r) = sin®(ur) /12, a =0, b=1,
L(r) = (sin®(ur)(cot(pr) — cot(w))/(pr))*, p= A2,
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Further, changing the variables as

o(t) == tu(r), t:= {1_’_/1)7‘%618}_1

k(t) = =P g(r)’L(r),

and putting

we can reduce (3.2) to (3.1).

We note that the function k(t) is smooth on (0,1), but it may not be bounded at
boundaries. Hence, we need to introduce the following definition. For any positive
solution v(t) of (3.1), it is easy to show that v(¢)/(1 — t) is decreasing in ¢, which
implies that the behavior of v(¢) near ¢t = 1 is classified as follows.

(i) v(t) is said to be regular at t = 1 if limy_,; v(t)/(1 —t) exists and is positive.

(ii) v(¢) is said to be singular at t = 1 if limy_,; v(t)/(1 — t) = oc.

Let us examine the relation between these definitions and those of the original
problems. Whent = 1 corresponds to the boundary of the unit ball, regular solutions
in the above definitions correspond to solutions that satisfy the homogeneous (or,
zero) Dirichlet boundary condition in a usual sense. While singular solutions are not
Lipshitz continuous at » = 1 even if they converge to zero as r — 1, or have positive
limit as » — 1, when ¢t = 1 corresponds to = oo, a regular solution corresponds to
a rapid-decay solution, and a singular solution corresponds to a slow-decay solution.

The Kelvin transformation u(r) +— " 2u(s) with s = 1/r, which is known to
be very useful in the analysis of elliptic equations, exchanges the infinity and the
origin. In a canonical form, this transformation corresponds to a simple reflection
v(t) — v(s), s =1 — ¢ with respect to t = 1/2.

4. STRUCTURE THEOREMS TO THE CANONICAL FORM

Here, we will only explain the structure of positive solutions with the Dirichlet
boundary condition at ¢ = 0 and ¢ = 1. The following results are due to Yanagida
and Yotsutani [14, 19].

Let us introduce an auxiliary initial value problem

t
4.1) v (t) + k(t)vh =0 in (0,1), tlim ? =a>0,
where v = max{v, 0}.
We first state the condition on k(t) for which (4.1) has a unique solution.

Lemma 4.1. Suppose that k(t) € C((0,1)), k(t
value problem (4.1) has a unique solution v(t) € C(]0,
if tPk(t) € L'(0,1/2).

> 0 in (0,1). The initial

)
1))NC?%((0,1)), if and only
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Remark 4.1. This kind of lemma is well-known for Lane-Emden type equations
(see, e.g., Ni [11], and Propositions 4.1 and 4.2 of [12]).

Thus, the initial value problem (4.1) has a unique solution v(¢) € C([0,1)) N
C*((0, 1)) under the condition

(4.2) k() € CY((0,1))N LY0,1/2), k(t)>0,#0in (0,1), p> 1.

We will denote the unique solution by v(¢; ). Let us discuss the structure of positive
solutions to (4.1) under the condition (4.2).

We prepare notation to state a structure theorem. Let G(¢t) = G(t; k(-)) and
H(t) = H(t; k(-)) be functions defined by

4.3) Gt) = ;ﬁtw(l —k(t) — % /0 Lo,
1 1

1
4.4 H(t) .= ——t(1 — t)PP2k(t) — = [ (1—7)PT! :
@4 (1) = gt =072k — 5 [ (1= k(r)ar
We note that G(¢) is well-defined under the condition (4.2), H (¢) is well-defined
provided that (1 — )P™1k(t) € L'(1/2,1), and

(4.5) lim inf G/(1) = 0,

(4.6) lim nf 7 (1) = 0,

@7) 00 = — (1= ) ko) () -

@3) THO = (e - ) k) () -
dt p+1 t

and

(4.9) Ht k() =G —t;k(1—")).

Finally, we define

(4.10) te = inf{t € (0,1); G(t) < 0},

(4.11) ty = sup{t € (0,1); H(t) < 0}.

Here we put t¢ = 1 if G(t) > 0 on (0,1), and ¢tz = 0 if H(¢) > 0 on (0,1). Thus
0 <tg, tg <1 by the definition.
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Now, we state structure theorems. The first thorem is a consequence of (ii) of
Lemma 4.1.

Theorem 4.1. Let (4.2) be satisfied. If (1 — t)Pk(t) & L'(1/2,1), then the
structure of solutions is Type C : v(t; «) is a crossing solution for all o > 0.

Let us consider the case (1 — t)Pk(t) € L'(1/2,1). The following case is
“critical”.

Theorem 4.2. If k(t) = C - {t(1 —t)}~P+3)/2 with a positive constant C' and
p > 1, then the structure of solutions is Type R : v(t; «) is a regular solution at
t =1 for all & > 0. More precisely, v(t; «) is explicitly represented by

20 aP-1 ¢\ P=1/2y =2/(p—1)
(4.12) v(t;a) =at {1—|— | <1——t> } )

Remark 4.2. Under (4.2), the condition k(t) = C - {t(1 — t)}~®*+3)/2 with a
positive constant C' is equivalent to G(¢) = 0 in (0,1).

Let us consider the case G(t) # 0. Under the condition ty < g, we can
completely classify the structure.

Theorem 4.3. Let (4.2), (1 —t)Pk(t) € LY(1/2,1) and G(t) # 0 be satisfied.
Then the following hold.
(1) Iftg = 1, then the structure is of Type C.
(i1) If 0 =ty < tg < 1, then the structure is of Type S : v(t;«) is a singular
solution for every o > 0.

(1) If 0 < tg <tg <1, then the structure is of Type M : There exists a unique
positive number o, such that

v(t; @) is a crossing solution for every a € (o, ),
v(t; @) is a regular solution for o = ay,

v(t; @) is a singular solution for every o € (0, ).
The next theorem implies that the condition ty < tg is sharp.

Theorem 4.4. Let a and b be any given numbers with 0 < a < b < 1. Then
there exists k(t) with t¢ = a and tg = b such that the structure of solutions to
(4.1) is not of Type C, Type S, Type M nor Type R.

These theorems are obtained by using Yanagida-Yotsutani [14] combining with
the change of variables in reducing to the canonical form [19].
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5. APPLICATIONS

Now, it is possible through the canonical forms to convert results for one problem
to that of others. Based on this idea, several results have been obtained by applying
Theorems 4.1-4.4 concerning positive entire solutions of the scalar field equation
[15], the equation with a gradient term

Au+z-Vu+du+uP =0

(see, e.g., [3, 4]), the Neumann problem and the third boundary problem of Brezis-
Nirenberg’s equation [1, 6], the structure of radial solutions with possible singular-
ities at » = 0 and r» = co of Matukuma’s equation [10]. It seems difficult to obtain
these results by previously known methods.

Though systematic applications are now getting started, it is expected that we
can understand the relation among known results in an organic way, which in turn
contributes to the progress in the study for each equation.

As an concrete example of the application of the canonical form, we show the
structure of all positive radial solutions of Matukuma’s equation

1 .
(5.1) Au+ mup =0 in R3
including both regular and all singular solutions.

There are a lot of results about the structure of positive solutions including
all regular solutions or some class of singular solutions. The above problems are
reduced to investigating the structure of solutions of one parameter (see, e.g., Ding-
Ni [2], Yanagida—Yotsutani [14, 15, 16, 17, 18] and Lin—Takagi [9]).

However, it seems that there is no result about the structure of all positive radial
solutions including both regular and all singular solutions.

This problem is reduced to investigating the structure of solutions of two para-
meters. We need new devices to treat the problem of two parameters.

Since we are interested in the all radial solutions, we investigate the structure
of all solutions of

2 1
(52) Uy + ;’U,r + m’u,ﬁ_ =0 (7" > 0), ’Ll,r(l) = W, ’Ll,(l) =V > 0,
where p and v are given real numbers, and u; = max{u,0}. We note that the
equation (5.2) has the unique solution. We denote it by u = u(r; u, v).

We can classify each solution of (5.2) according to its behavior as » — oco. We
say that

(1) wu(r;p,v) is a crossing solution in (1, 00) if u(r; p, ) has a zero in (1, c0),
(ii) u(r; p,v) is a slow-decay solution at r = oo if u(r; u, ) > 0 on (1, c0) and
lim, o0 ru(r; p, v) = o0,
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(iii) w(r; p, v) is a rapid-decay solution if u(r; p, ) > 0 on (1,00) and lim,
ru(r; 1, v) exists and is finite and positive.

Similarly, we can classify each solution of (5.2) according to its behavior as
r — 0. We say that
(1) wu(r;p,v) is a crossing solution in (0,1) if u(r; p, ) has a zero in (0,1),

(ii) w(r;u,v) is a singular solution at » = 0 if w(r;u,v) > 0 on (0,1) and
lim, g u(r; p, v) = oo,

(iii) w(r; p, v) is a regular solution if u(r; p, ) > 0 on (0,1) and lim, o u(r; u, v)
exists and is finite and positive.

Now we state the main theorems due to Morishita—Yanagida —Yotsutani [10].

Theorem 5.1. Let p > 1 be fixed. There exists a continuous function R(0;p) €
C([0, 37 /4]) with R(0;p) > 0 for 0 € [0,37/4) and R(3w/4;p) = 0 such that
(1) if (u,v) € Rout then u(r; u,v) is a crossing solution in (1, 00);
(ii) if (p,v) € Rop, then u(r; u,v) is a rapid-decay solution at r = oo

(iii) if (u,v) € Ry then u(r; p,v) is a slow-decay solution at r = oo,

where

Rout:={(pcosb, psinb) : p > R(0;p),0 < 0 < 3w /4},
R, :={(R(0;p) cosb, R(0;p)sinh) : 0 < 0 < 37 /4},
Rin :={(pcosh,psinf) : 0 < p < R(0;p),0 < 0 < 3m/4}.

Theorem 5.2. Let p with 1 < p < 5 be fixed. There exists a continuous
Sunction L(6;p) € C([r/2,7]) with L(7/2;p) = 0, L(0;p) > 0 for 6 € (7/2,7),
L(m;p) >0 (0 <p<5), L(m;p) =0 (p=15) such that

(1) if (u,v) € Loyt then u(r; p, v) is a crossing solution in (0,1);
(ii) if (p,v) € Loy, then u(r; p, v) is a regular solution at r = 0,
(i) if (4 )

where

€ Ly, then u(r; u,v) is a singular solution at r = 0,

Lout:=A{(pcosh, psinb) : p> L(0;p), 7/2 < 0 < 7},
Lon := {(L(0; p) cosd, L(0; p) sinh) : /2 < 0 < 7},
Lin, :={(pcosh,psind) : 0 < p < L(O;p), /2 <0 < 7}.

Theorem 5.3. The following relations hold :
(1) If 1 <p <5, then Lo, N Ry, = {one point}.
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(ii) If p =5, then Lip U Lo C Rip.

6. OUTLINE OF THE PROOF OF THEOREMS 5.1-5.3

It is difficult to treat (5.2) directly. Instead of (5.2), we introduce the following
initial value problem satisfying the third boundary condition

(6.1) Upp + %ur + K(r)uf, =0 (r>0), up(1) =L u(l), u(l) =v >0,

where K (r) = (14+7%)7L, £ is a fixed real number, and positive number v is moved.
The unique solution of (6.1) is denoted by u(r; v, v).
The following proposition is the first step.

Proposition 6.1. Let p > 1. The following properties hold.
(1) If € < —1, then u(r;Lv,v) is a crossing solution in (1,00) for all v > 0.
(i) If € >0, then u(r;lv,v) is a crossing solution in (0, 1) for all v > 0.

Let us consider (6.1) in (1, co) by fixing the parameter ¢ > —1.

Proposition 6.2. Let p > 1 and { > —1. There exists a unique v* = v*({;p)
such that v*({;p) is continuous with respect to { € (—1,00), v*(¢;p) — 0 as
0 — —1, v*(4;p) — v*(o0; p) as £ — oo for some v*(oo; p) > 0, and

(1) u(r;lv,v) is a crossing solution in (1,00) for v € (v*, c0),
(ii) wu(r; v*,v*) is a rapid-decay solution,

(iii) u(r; Ly, v) is a slow-decay solution in (1, c0) for v € (0, v*).
Let us consider (6.1) in the interval (0,1) by fixing the parameter £ < 0.

Proposition 6.3. Let 1 < p <5 and { < 0. There exists a unique v, = v, ({;p)
such that v, (¢; p) is continuous with respect to { € (—00,0), v,(¢;p) — 0as { — 0,
Vi (4;p) — vi(—00;p) as £ — —oo for some v,(—oo;p) > 0, and

(1) u(r;lv,v) is a crossing solution in (0,1) for v € (vx, ),
(i1) wu(r; lvy, vy) is a regular solution at r = 0,

(iii) u(r; Ly, v) is a singular solution at r = 0 for v € (0, vy).

We can prove Theorem 5.1 by using Propositions 6.1 and 6.2. Similarly, we can
prove Theorem 5.2 by using Propositions 6.1 and 6.3. For the proof of Theorem
5.3, we combine Theorems 5.1, 5.2 and the following facts (see, e.g., [12, 8, 13]).

Proposition 6.4. The following facts hold :
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(1) If 1 < p < 5, then there exists a unique positive solution of (5.2), which is
regular at r = 0 and rapid-decay at r = oc.

(i) If p > 5, then there exists no positive solutions of (5.2) which are regular at
r = 0 and rapid-decay at r = <.

We explain the idea of the proof of the propositions briefly. We transform the
equation (6.1) to

(6.2) v + k(D)0 =0 (-1 <t <1), v(0) =m v(0), v(0) =v >0,

where
v(t):= 1+ tu(r), r:=1+1t)/(1-1),

K():= 4(1+ ) P(1— ) 4K ((1+1)/(1 — 1))
=41+t P - )2 /{(1+ )2+ (1 —1)?},
m:= 204+ 1.

We denote the unique solution of (6.2) by v = v(¢;v). We may investigate the
behavior of solutions of (6.2). For instance, Proposition 6.1 is equivalent to the
following lemma.

Lemma 6.1. Let p > 1. The following properties hold.
(1) If m < —1, then v(t;v) has a zero in (0,1) for all v > 0.
(i) If m > 1, then v(t;v) has a zero in (—1,0) for all v > 0.

We can prove Propositions 6.2 and 6.3 by applying Theorems 4.1 — 4.3, and
their modifications to the third boundary condition [7].
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