TAIWANESE JOURNAL OF MATHEMATICS
Vol. 9, No. 2, pp. 313-330, June 2005
This paper is available online at http://www.math.nthu.edu.tw/tjm/

DIMENSION PROPERTIES OF RANDOM FRACTALS WITH OVERLAPS

Narn-Rueih Shieh and Jinghu Yu

Abstract. We consider random fractals generated by random recursive con-
structions with overlaps. Our construction allows some overlaps among sets
in the same generation. We introduce a certain “limited overlaps condition”.
Under this condition, we prove that the Hausdorff dimension of the generated
fractal satisfies the expectation equation (upon non-extinction), which was
studied previously by Falconer, Graf, Mauldin and Williams under open set
condition. We also prove that the generated fractal is regular in the sense that
its Hausdorff and upper box dimension are equal to a non-random constant
(this result holds without assumption of limited overlaps condition).

1. INTRODUCTION

In this paper we consider a general type of random fractal and some dimension
properties associated with it. The random fractals considered are generated by some
random recursive constructions which have been studied by Falconer (1986), Graf
(1987), Mauldin-Williams (1986). The significant difference is that in their defini-
tions and investigations open set condition always plays an essential role; while we
do not impose open set condition in this paper. We shall prove that the expectation
equation for the Hausdorff dimension, established in the above papers, still holds
under a certain “limited overlaps condition”; which allows some overlaps among
sets in the same generation. Our result also holds in the deterministic case; it as-
serts that Moran’s formula holds under limited overlaps condition. For Moran’s
formula under open set condition, see Hutchinson (1981). The viewpoint of val-
idating Moran’s formula in the overlapping structure has not been considered in
the previous literatures, as we know. Lau-Nagi (1999) introduced weak separation
condition for an iterated function system (in the deterministic case); but Moran’s
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formula for the Hausdorff dimension does not hold( we thank to K. S. Lau for
reminding us this). Indeed, in He-Lau-Rao (2003) a very different formula is estab-
lished for some particular cases. We also mention Rao-Wen (1998) and Nagi-Wang
(2001) for related works.

The second result in this paper concerns with the almost sure equality for the
upper box dimension and the Hausdorff dimension of the generated fractal. It
seems good to term a fractal to be regular if its upper box dimension is equal to
its Hausdorff dimension (and thus the various dimension indices are equal). By
Falconer (1997, Chapter 3), the invariant set for an iterated function system of
similarities with open set condition is a regular fractal. Under the assumptions of
geometrical self-similarity and constant branching, that random fractals generated
by random recursive constructions are a.s. regular have been proved by Liu-Wu
(2002). In Berlinkov-Mauldin (2002, Theorem 1), it is proved that a random fractal
is a.s. regular under the assumptions of open set condition and constant branching.
We prove that, without any non-overlapping and limited overlaps condition, nor
geometric self-similarity condition, the fractal in our construction is regular and the
dimension is equal almost surely to a non-random constant, upon non-extinction.

The remaining part of this paper is organized as follows. In Section 2, we review
some notations and random recursive constructions. In Section 3, we introduce
limited overlaps condition, and prove that the expectation equation for the Huasdorff
dimension holds, under this condition together with some other mild conditions in
Falconer (1986). In Section 4, we prove the dimensional regularity for the generated
fractal. In final Section 5, we give some examples.

2. RaNDoM FRACTALS

We begin with the definition of code space. Let N = {O 1,2,---} be the
collection of all non-negative integers. Set the code space ¥, = U NN = {0})

and 3> = N> For o € 3, let |o| be the length of o, that is, 1fa = (01, ,0n),
then |o| = n. Forn < |o|and 0 = (01, -+, 0p, *++,0|4)), Write o|n = (07, -+, o).
For any o € Y, and 7 € >, U, let o % 7 be the juxtaposition of ¢ and 7. For
any 0,7 € X, U, we denote 0 < 7 <= 7||o| = 0. Forany o,7 € X, let o A T
be the longest sequence ¢ such that £ € ¥, and ¢ = o|k = 7|k for some integer k.
The tree metric is defined by p(c, 7) = /27|, Note that the metric space (9L, p).
is compact.

Let (Q, F, P) be the underlying probability space which supports the ran-
domization used in our paper, and let {N,} be a family of independent random
variables defined on €2, indexed by o € ¥,.. The tree I' = T, associated with { N, }
is a random subset of ¥, which is characterized as follows. The root § € T" and, if
celand i€ {1,2,3,---}, then o x¢ € T if and only if 1 <7 < N,. We write



Dimension Properties of Random Fractals with Overlaps 315

I, ={o €T :|o|=n} C X, the set of vertices of the tree in the nth generation.
The boundary O of T is then OT' = {o € ¥ : o|n € T, ¥, }.

A subset A C T is called a cutset of OT if, for any 0,0’ € A, neither o < o’
nor o/ < o, and A separates the root and the boundary in the sense that, for each
o € JI, there esists a unique 7 € A such that 7 < 0. Obviously, for any n > 1, I,
is a cutset; yet we shall need some cutsets which constist of vertices with different
generations.

Let | -| denote the diameter of subsets of RY. Let {I,(w): 0 € T,}, w € Q, be
a random collection of non-empty compact subsets of R and satisfy the following
properties:

(@) I, = intl, Vo € T

(b) the open sets {intl, : o € T'} form a net, that is

intly, Dintl, if o <71

(¢) define L, to be |I,| = Lo |lo, .. .0, 4|. 0 = (01, ,0%) € I'g. the random
clements W(o) = (N(0): Lox1, ", Loxn(o)) for o € OI are i.i.d. with the same
distribution as W(0) = (N(0); L1, -- -, L)), and

211 <m:= EN(0) < cc.
Define the random set K (w) by

Kw= U L.

k=0 oely(w)

In Mauldin-Williams (1986), K (w) is referred as a fractal generated by a random
recursive construction; while in Falconer (1986) K(w) is called a random net
fractal. The (c) is referred as stochastic ratio self-similarity in Mauldin-Williams
(1986). However, in their definitions open set condition ((d) below) is always built-
in, yet we do not assume this condition in our construction. Nor we assume that
1, 1s geometrically similar to /.

The Hausdorff dimension of a Borel A C R is denoted by dimA; we refer to
Falconer (1990) for definitions and basic properties of various dimension indices.
The following result is proved in Falconer (1986), essentially the same result ap-
peared in Graf (1987) and Mauldin-Williams (1986). If, in addition to conditions
(a)(b)(c), the following assumptions are satisfied:

(d) Open Set Condition (OSC for brevity): intl, Nintl, = @ whenever neither
O <TNnor 7 <o,

(©) [Lop(w)| — 0(n — o0) if o € OT;

() there is a constant a > 0 such that a|l,| < |I,.| < |I,]| if o xi €T

(2) there is a non-random constant A > 0. independentof o, such that inradius(l,) >
A I |; then K is non-empty with probability 1 — ¢, 0 < ¢ < 1, and
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dimK = 3,
N(9)
conditional on {K # 0}, where 3 = min{s: F > Lf <1}.
=1

In the above, ¢ is the extinction probability of the Galton-Watson branching
process generated by N (0).

In the above result, OSC plays an essential role. Without OSC, it is much
more difficult to handle the situation; as we have remarked in Section 1, there may
appear very different formula for the Hausdorff dimension of invariant set of iterated
function system with overlaps.

Throughout this paper, besides (2.1), we always assume that

(2.2) there are two constants 0 < r1 < ry < 1 such that, for almost all w,
1 S Ll(w) STQ for all ¢ = 1,-" ,N(@)
Without loss of generality, we assume that |I3| = 1 throughout this paper.

3. HAUSDORFF DIMENSION OF RANDOM FRACTALS WITH LIMITED OVERLAPS

In this section we consider the Hausdorff dimension of random fractals which
satisfy a separation condition in which it allows overlaps in the structure. We define
a Limited Overlaps Condition (LOC for brevity) as follows.

Definition 3.1. That {/, : o € T'} satisfies limited overlaps condition, if the
following condition holds with probability one. There exists ¢ > 0, such that, for
all ¢ € T, I, contains a ball By|;,| of radius d|I,|. Moreover. Bsz,| NI, = 0,
whenever o, 7 € I, and o # 7,¥n > 1. (Note that § may depend on the realization
w, 1.¢. it is a random variable).

Remark The above definition applies well to the deterministic case. In fact,
the main result of this section, Theorem 3.1, holds in the deterministic case too.
Thus, we obtain Moran’s formula under LOC.

An important observation is that, we have By | N Bsjr| = 0 whenever neither
o < 7 nor 7 < o; this is due to the net condition (b) in our construction. Indeed,
suppose that o A 7 and |o| < |7], then o # 7||o|. Thus By, | C I, by (b) and
the latter is disjoint from Bs;, | by LOC.

If {I,,0 € T'} satisfies LOC, then under the assumption (2.2), it can be seen
that, with probability one, there exists Ny = Ny(w) such that

N(o) < Ny, Vo €T
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In fact,
N(o)

E Y wol(Bsj,.,) < vol(l,) < vol(B(z, | L)),
i=1
where « € I,. Here vol means the Lebesgue measure in R?. Note that | Tpsi| =
Loxills| > r1|l,| and that By;, | are disjoint, we then have
1

N < —— := Np.
<U>_7’§l(5d 0

Lemma 3.1. Under the assumptions (2.1) and (2.2), there is a unique o > 0
such that Ezi]\i(f)) LY = 1. Moreover,

Inm Inm
T<a< —1
Inr; Inr,

*)

Proof. Write
N(0)
O(s)=E Y L.
i=1

Then ®(0) = m, so that by (2.1) 1 < ®(0) < co. Thus s — P(s) is continuous
and strictly decreasing. Note that r§m < ®(s) < rim for Vs > 0. by (2.2).
Let s = ll””]l, S9 — ll””]l, for sufficiently small £ > 0,1 < ®(s; — &) while
nrl nrz

®(sz +£) < 1. So, there exists a unique « such that () = 1; moreover, (*)
holds, since ®(+) is decreasing. ]
For any n, let 7, denote the o—algebra of subsets of {2

Fn=0(Fn1;N(o): 0 €T, i; Loxi : 1 <i < N(o)),

where Fy = o(N(0); L; : 1 <i¢ < N(0)) and assume that V{°, F; C F. Let a be
the unique positive number in Lemma 3.1, namely ®(«a) = 1.
Let

lo|

L) = [] L),

and define Y

Saw)= > [lLo@) = > Law

g€l (w) =1 o€l (w)

|7|
Son(w) = Sulw(@)) = Y HL?*<T\i>(w): Y Liw(o)),

TGFn(w(U))
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where I'(w(o)) denotes the shifted tree at vertex o. It is seen that {S,,, F,} and
{So,ns Flo|+n} arc martingales. The following lemma is of essential importance
in Mauldin-Williams (1986), which we see that it is still valid without any non-
overlapping assumption.
Lemma 3.2.
(1) lim S,(w) := X(w) exists a.s. and EX < 1;
(2) lim S, p(w) = Xo(w) exists a.s. and EX, < 1,

(3) let A be a cutset, then {X,,0 € A} are i.i.d with the same distribution of X,

. . N
4) X(w) = § L, ()X, (w), Yk > 1; L (w) X, (w) = j;l Lyyj(w)Xouj(w) as.

(5) when ENP(Q) < oo for all integer p > 2 and (2.2) holds, X € LP(dP), for all
integer p > 2, and EX = 1.

Proof.  That (1)(2) follow from martingale convergence theorem. By our definition of
recursive constructions, we have (3). Moreover, (4) follows by the definitions of X (w) and
X, (w); see Mauldin-Williams (1986, (3.4)).

As for (5), this is a direct consequence of Mauldin-Williams (1986, Theorem 2.1). We
note that, for any integer p > 2,

N(0) P
Ef[> Ly < ryPE(N(B)F) < oo;
i—1

thus their Theorem 2.1 is applicable to ensure that X € L(dP),Vp > 2. That EX = 1
follows from the case p = 2 and martingale convergence theorem. ]

Based on Lemma 3.2, we may employ the idea in Mauldin-Williams (1986, Theorems
3.1 and 3.2) to define, for almost all w, a bounded Borel measure ., on R? supported on
K (w) such that y, has total mass X (w). The measure y, can be expressed as

3.1 e (A) = lim Z To (W) X, (w) as.
Ifmeg’;m

for any compact A C R?. Moreover, the limit in (3.1) is indeed a decreasing limit.

We remark that, in Mauldin-Williams (1986), their Theorems 3.1 and 3.2 are in fact
valid without the assumptions of open set condition and geometric self-similarity.

Let Z,(w) be the number of T',(w); apparently 7, is a Galton-Watson branching
process. The following lemma is adapted from Mauldin-William (1986, Theorem 3.4 case
A). We omit the proof.

Lemma 3.3. For almost all w

“Zn(w) — 0o(n — 00)” if and only if “K(w) # 0" if and only if “X(w) > 0.
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We remark that, under the conditions of Lemma 3.2(5), X (w) > 0 for w in a set of
positive probability since EX = 1. Indeed, P{Z, — oo} = P{K # 0} = P{X > 0} =
1 — ¢, where ¢ : 0 < ¢ < 1 is the extinction probability of the Galton-Watson branching
process determined by the offspring distribution N ().

The following lemma is also motivated from some technical arguments in Mauldin-
Williams (1986, p 338).

Lemma 3.4. Assume the conditions in Lemma 3.2(5). For any B < «
P{w: IN(w) such that Vn > N(w), if o € T, then f?Xg < fi} =1.

Proof.  For any 5 < o and integer p > 1,

P{w:30 cTyst. LeX, > [P}
- EI{w:Haans.t.Lng>L§}

<E Y IEPxr

o€l (w)
N(®) B N(i1) o N(ipaion win_1) o
= ES LT L N L X
i1=1 iz2=1 in=1
N(0) B N(i1) o N(ipaton ain_1) o
1= 2= =

where M, = FXP.

N(9)
Choose a large pg such that (oo — 3)pg > «, so that ag := F > Lgafﬂ)po < 1.
i=1
Then

ZP{w :Jdo € Tpst L2X, > Eg} < Mpo Zag < 0.

n=0 n=0

By Borel-Cantelli lemma, the assertion holds. ]

To prove the Hausdorff dimension of K(w), we need the following standard result
giving a lower bound for the Hausdorff dimension of a set, see Falconer (1990, p 55).

Proposition A (mass distribution principle). Let v be a Borel measure on a compact
metric space and let I be a Borel subset with O < v(F) < co. If there exists ¢ > 0 and
rg > 0 such that

v(B(z,r)) < cr®

forallx € F and r < rg, then dimF > s.
For 8:0 < 8 < a and N(w): the generation number in Lemma 3.4, let
Qo(8) = {w: if ¥n > N(w) and o € I',(w), then T (w) X, (w) < fi(w)}

Then, by Lemma 3.4, P(Q(3)) = 1. Moreover,
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Q(B) C Q(8),if8> 5.
We are now ready to state and prove the main result in this section.

Theorem 3.1.  Assume that {I,,0 € T} satisfies LOC, (2.1) and (2.2), and that
EN(0)P < oo for all integer p > 2. Then, conditional on K(w) # 0, with probability one
N(®)
dimK (w) = o, where « is the unique positive number for which E >, LY = 1.
i=1
Remark. As we have remarked in the above, LOC is also defined in the deterministic
case. Theorem 3.1 holds too, and then we have Moran’s formula: dimg K — «, where

N
o satisfies > L = 1, and L; are the geometric similarity ratios. That is, F; = L;Fp,
i=1

i:17~~~7NandK:ﬂ U L“LQL%FO
LT

Proof. {I,,0 € I'y} is a cover of K(w) and |I,| — O(n — o0). So

HY (K (w)) < lim > |L|" = X(w).
cely,

Hence FH*(K(w)) < EX(w) < 1. Thus, H*(K (w)) < oo a.s. which means dim K (w) <
« a.s. The above arguments do not depend on any assumption on the overlaps of I,,.

Let p be the measure defined by (3.1). By Lemma 3.3, since (K (w)) = X(w), we
have

P(u(K(w)) > 0|K(w) #0)=1.
For Yw € Qo(8) and any O < r < min{|L;|: 0 € [y}, define
Ay (w) ={o €T : o is of the least value |o| for which rir < |I,| < r},

where r; is the lower bound in assumption (2.2). Then A, is a cutset of ['; moreover, for
any o € Ay, o] > N(w).
- N(o) _
Let n, = max{|o|: 0 € A, }. Since LI (w)X,(w) = > L%, (w) X5 (w) as., for
=1

oxj
any x € K(w) and 0 < r < min{|I;|: o € 'y}, we have
doooEX. < > LEX,.
€N, (w) TEA,
IoMB(z,r)#0 IgNB (z,r)#0
Thus we have, by Lemma 3.4, for w € Qu(03)
B < Y 18X,

T ETpn, (w)
IoMB(x,r)#£0

T
< > LX,
TEA,
IoMB(x,r)#£0
< < > f
TEA, TEA,
IoNB(z,r)#0 IoNB (x,7)#0

<rt{o € A, : I, N B(z,r) # 0}.



Dimension Properties of Random Fractals with Overlaps 321

We show that, under LOC and assumption (2.2), there is a positive c(w) such that, for
almost all w,

sup #{o € A, : I, N B(z,r) # 0} = c(w) < c0.
O0<r<l
wely

Denote the sets of {I,,0 € A,} which meet B(x,r) by
Ly, L.

Then |I,:i| <r,Vi=1,---N,, and I,s N B(z,r) # 0. Thus, I« C B(x,2r).
When {I,,o € T'} satisfies LOC, then I,,: contains a ball Bs|r ,|» and, since any two
vertices in A, are incomparable under <, Bs; ;1N Bsjy | = ¢ if 4 £ 7. Thus, we have

N,
Z volBy| .| < wolB(x,2r).

i=1

By assumption (2.2), 8|7,

> &ryr, which implies that

d
N, < 2

> 64—7"{1 = C(w)7

which is what we want. Hence, for any w € p(w), # € K(w) and 0 < r < ro(w) :=
min{|l,;| : o € 'y}, we have

po(Blz, ) < c(w)r?.

Write g, = Qo — %) and let Qo = [ Q0. Then P(l) = lim P(Qo,) = 1.
1 n—0o

By Proposition A, conditional on K (w) 72 0 and w € Qo, dimK(w) > a a.s. w. This
proves the theorem. ]

4. REGULARITY OF RANDOM FRACTALS

In this section, in addition to (2.2), we assume that
(4.1) there is A(w) > 0, independent of o, such that

inradius I, > A |I;|,Vo €T.

However, we do not assume any non-overlapping or limited overlaps condition in this
section. As for (2.1), we impose a stronger assumption that N (@) is of finite mean and
P{N(@) =0} = P{N(9) =1} = 0. i.e. each vertex has at least two children.
For Yo ¢ I'. let I'y(,) denote the shifted tree at vertex o. Then for o € I', and
7 € I'y(s), We have
L (w(0)) = Losr(w).

Given 0 < r < 1. For Yo € I, write

Lrrp(w(o)) ={m c L'y : L (w(o))rk, ETHT‘,l(w(O)) > rk}.
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For convenience, write
Lri(@) = rp(@(®) : {7 € T s Lr (@) < 7%, Lejjrr (@) > 7* )
Obviously,
Lok (@(0) = {7 € Tu(o) * Lowr(w) < Lo (@)r", Lou(rijr—1 > Lo (w)r*}.

Observe that neither £ < 7 nor 7 < § whenever § # 7, &, 1 € I'; ,(w(o)). In what follows
I} x(w(o)) denotes the subset of I, (w(o)) which satisfies that

I,NIe =0, foranyn #¢&, &nc F:,k(w((j))

and for any f E FT K w$ ) there existsa € T* ) such that I.N 1, # 0.
Write Z, (w) ok wj From our assumption on ]\]f and the first part 'In’ the

proof of Lemma 4.1 below, Z¥ . 2 2 when r is small enough and k is large enough. ILet
M. (K) be the smallest number of closed balls of radius ¢ that cover K, and let N.(K) be
the maximum number of disjoint balls of radius ¢ with center in K. Recall that the upper
box dimension of a compact K C R? is defined by

S In N (K . In M. (K
climBK:limsup1(17<> = lim sup n7<>

£—0 —Ine £—0 —Ine
and note that £ can be replaced by a decreasing sequence &5, = r*, 0 < r < 1.

Lemma 4.1. Let K(w) be the fractal generated by our construction in Section 2.
Under the assumptions (2.2), (4.1) and the above assumption on N (D), for each r : 0 <
r<l1

impK(w) = 1lgrisolipm

Proof.  We prove that N, < Z7 < const - M,., which will imply the assertion.
Let B(xy, r*), B(xg, r*), -, B(xn ,, ") be N, disjoint balls of radius »* and centers
z; in K(w). For any 1 < ¢ < N,&, by the assumption that L; < ry < 1, there exists
o; = o(x;) € 8, such that

m Iy, n(w) = ;.
n=1

Choose ng such that
IUi\TLo(w) - B<xi7rk>7 Idi\n071<w> §Z B({E¢7’I“k).

Then we have |1, ‘no 1| >k
If |15, (0o (@)| = Loy |no < 7%, then we choose 7¢ = o;|no; while if
s 1m0 @)| = Ly jng > 7° then we can find [ > 1 such that

T k7 k
Lﬂi\’ﬂoﬂfl > 7L0i\ﬂo+l s

Then we choose 78 = o;|ng + I. As I, C B(x;,7*) and B(z;, r*) are disjoint, so I,
are disjoint, therefore we have
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:,k) Z N,rk.
On the other hand, let [-+,i = 1,---, Z7, be the Z, disjoint sets satisfying for any
1<i< Z:waﬂ' < 7%, Lyi|jri|—1 > r®. By assumption (2.2), || = L: > rir”.
M

Let B(xy,7"),- -, Bz, ") be M, closed balls of radius 7 such that |J B(x,
i=1
r#) D K,,. For any 1 < i < M,«, define
Hy={j:1<j < Zy, L 0 Bla, 7*) # 0}

Then for any j € H;, I; C B, 2rk). By assumption (4.1), I,; contains a ball of
radius A|7.;| = AL,;. Those balls are disjoint since I; are disjoint. Then

UOZ(B((M7 27“k)> > Z UOZ(ITj>

JEH;
Z cd<AETj>dﬁHi
> cg\rdrrdtH,,
where ¢ is the volume of the d—dimensional unit sphere.
Thus, letting ¢ be running over ¢ = 1,---, Z7, . we have
* 2d
Zr,k < )\d—'rfMTk ]

The main result in this section is

Theorem 4.1.  Assume that (2.2) and (4.1) hold, and that the distribution of N (9) is
of finite mean m and P{N(0) = 0} = P{N(9) = 1} = 0. There is a positive constant a

such that, for almost every w,

dimK (w) = dimp K (w) = a.

Proof.  For any k£ > 1, we construct a series of random subsets K, C K as follows.
We fix one r : 0 < r < 1, and we have corresponding I', ., I'Y , and Z¥, defined as above.
Let

Kro = I
Ko — U L
UGF:)k(w)
I(k,Q - U U I(J’*’T

oely . (w) Tel'y (w(o))

I(k n — U U e U 10'1*0'2*---*0'n

o1 €07 (W) o2 €T} (w(o1)) on €l (wlorxoasxopn_1))

o0
and write K, — Ki .
n=0
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It is obvious that K C K for all £ > 1, a.s. By the construction of Kj, it consists
of non-overlapping members. By Falconer (1986) or Mauldin-Williams (1986), for almost
every w,

dim Ky (w) = ag,

where o, 1s the solution of the expectation equation

E > Lgr=1

o€l (w)

Note that, since we have assumed that P{N(¢) = 0} = 0. the extinction probability
g = 0, and thus the dimension formula holds with probability one.

Let a = sup ay, as we have seen in Lemma 3.1
k>1

sup In 4177, sup In E4I77
k<1 : <a< k<1 :

In > In =+

1 r2

Moreover, we have
E > Lg<1,vk>1
UGF:)k(w)

By assumption (2.2), we have
(EZ:,k)(Tkﬁ)a <1,Vk>1.

Hence, for any € > 0,

oo oo 1 oo
ZP{w A phlate)) < ZE(Z:7,€)7“]€(“+E) < — Z (rF)* < 0.
k=1 k=1 [ -
By the Borel-Cantelli Lemma, we have
Plw: Z:fJC > rik(“+5)7 i.0.} = 0.
Hence, we have for P-a.s. w,
— . InZ75 . Inp—kleto
dimpK (w) = limsup — =< limsup ———— =a + e
oo —klnr booo —KlInr

Since ¢ is arbitrary, we have for P-a.s. w
dimpK(w) < a.
However, since Kj(w) C K(w) for all k> 1, for almost every w

a =supdimKy (w) < dimK (w).
k>1

Therefore, with probability one,
dimK (w) = dimp K(w) = a.
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This proves the theorem. ]

Remark. The results and the proofs in this section are motivated from Liu-Wu (2002).
However, we have avoided the use of geometrical self-similarity, which is essential in some
key arguments in their paper.

5. EXAMPLES

Example 1. (Segments on the line)

Let I = [0,1],T, = {1,2}",6 = L. Write S (z) = 2, So(x) = sz + 2 and let K
be the invariant set with respect to iterated function system {57, S2}. Obviously, {5, S2}
does not satisfy open set condition, but we may check that {I,, o € T'} satisfies LOC with
o — %. To see the case n — 2, let

1 )
11151051[071]|:07gj|7 11251052[071]|:2 :|

ﬁ7§
21 8 11
I3 =85508 [071]{575}7 Iyg =5505,0,1] = {575}

Note that

1 1 1
|11 NI = o7 §|I11| = §|112|7

1 1 1
[T21 N Tao| = o7 §|121| = §|122|~
Then, we have

Iij o Bé‘lij‘7 Bé\fij\ n Bé\fi/j/\ = ®7 Bé\lij\ N Ii/j/ = ®7 (Z7]> 7£ (Zl]l>

Thus, dimK = 22

In3"
We give a random version of this example as follows:
Suppose that ug (w), ua(w), - -+ , up(w), - - - are i.i.d random variables, with the uniform

distribution on [%7 % .

For any n > 1, write

S} (x) = %9@ S2(z) = up(w)x + g
For any o ¢ [, I', write
Iy = 8700852 0+ 0,577 [0,1].
Let K(w)= U N, Iojn- We may check that {I,,o € I'} satisfies LOC with

oe{1,2}°
d = %, and thus, with probability one dimK(w) = «, where a is the solution of the

equation
1

1\ 3
<§> +6/1 z%dx = 1.

6
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Again, we check the case n = 2; we have

Ly =St oS0, 1] = [0, 3],
Iy =51 oS3 [0,1] = [Z, & + tua(w)] C [Z, 2].
Iy =508 [0.1] = [3,5 + 5um(@)],
Iy = 87 0 S310,1] = [3 + 3ur(w), § + Fur(w) + wa (w)uz(w)]
1 2
Z | < Sl
Iinhsl———{° 3
PR L L < 2
27 |11 2 27 ug(w) 121 = glizh
1 §|I21| < §|121|
|11 N Igo| = Zus(w) =
’ Ltr @) = oa] = £ —— || 2| I
g\ [T22] 2 9 us(w) 221 = gli22

« . 1 « ey
Thus, with § = 55 with probability one, we have

Iij o Bé‘lij‘7 Bé\fij\ n Bé\[i/j/\ - ®7 Bé\fij\ mIi/j/ = ®7 (Z7]> 7£ (Zl]l>

Example 2. (Triangles on the plane) let [ C R? be a triangle of edge length 1 and
vertex (0: 0): (1: 0): (l ﬁ)

27 2
Let
Sl (3?7 y) - (%x7 %y>:
SQ(x7 y) - (%x + %7 %y>:
11

Ss(z,y) = (5 + 3, 1y + @ —a), where 0 < a < @.

Suppose that K is the invariant set with respect to iterated function system {5}, Sa, S3}.
Note that, if « = 0. then {57, So, S3} generates Sierpinski gasket; yet our situation is that
a third triangle is topped with overlaps on the first two triangles, as Fig. 5.1 shows.

Let T, = {1,2,3}",6 = ¥3 _ ¢,

For any o ¢ [, I';,, write

Iy 5 =56,085,0---0854 1.

’

Denote the height of the n-th generation sub-triangle /,, 0 € I',, by h,. Then h, =
V3
> S
ote that

2%

3 3
Wl V3 VB VB
4 8 2
which means that IsN 11 =0, Is N 1o =0, IsN Iy = 0, Is N Ise = §; note that I3 has

overlap with I3, but this overlap does not cross over the line x = i Moreover

1 3 3
Lyv3_V3
2 16 8
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n=12 n=73
Fig. 5.1.
which implies that
IsNTize =0,I3N T3 =0, 15N Iazo = 0, I3 N Loz = 0.
Thus, it can be checked that LOC holds with § — %5 — %, and hence,
In3

dimK = e
Example 3. (Squares on the plane)
Let I = [0, 1]? be the unit square in R? and let
Si(x,y) = G+ 3, 39),
S2(x,y) = (32, 3y + 3).
Ss(@,y) = (32 + 3, 59 + 3).
Su(z.y) = Gz + 3,59+ 3).
Ss(w,y) = Gx+ 3, 5y + 3).
Se(w,y) = Gz + 3, 5y + 3).
Sr(w,y) = Gx+ 3, 5y + 5).
Sg(x,y) = (%x + g7 %y + g)
Write ', = {1,2,---,8}". Forany o € ﬁ I, write

n=1
Iy oy =S5 085,008, [0,1]2

Let K be the invariant set with respect to iterated function system {Si, Sa,- -, Ss}.

The situation now is four squares are topped with overlaps on the first four nonoverlapping
squares, as Fig. 5.2 shows. Note that, for all 0,7 € {1,2,--- ,8},0 # 7,

ntd s N int]T*j = @7 VZ7J =1,---,8

Based on this, we can check that {I,,o ¢ I'} satisfies LOC with 6 = £.
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n=1

Thus,

<
&%, &
k-

n=72 n=3

Fig. 5.2.

dimK —«

where « is the solution of equation

RO

Moreover, we can give a random version of this example too. In fact, for any n > 1,

let u! (i = 1,---,4) be random variables with uniform distribution on [é7 %] Suppose that
random vectors {(ul, w2, w3, ut), n > 1} are i.id.
For any n > 1, write
Si(w,y) = (32,39 + 3).
Su(@,y) = (3 + 3 39+ 3)
Sul@y) =Gzt 3,50+ 3).
- 1 1
Su(@,y) = (e + 3 — 3wy + 5 — 3.
2 2
Si(,y) = (upr + 5 — 3wy + 5 — ).
3 3
Si(w,y) = (uha + 5 — 5, uly + 5 — 5,
4 4
S, y) = (una + 3 — Fupy + 5 — ).
(o0}
For any o € m I, write
n=1
Ipy g, =87 0552 0---0870,1]%
Let K(w) = U Moo, Isjn. We can check, with 6 = L., that {I,,0 ¢ I'}
0'6{1,---,8}00

satisfies the LOC and thus, with probability one dimK (w) = «, where « is the solution of
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the equation

1 3

4(5)% F4x 9/
3 1

9

z%dx = 1.

Concluding Remark. We have estabilished Moran’s formula under LOC, both in
deterministic and in random cases. In a future work, we shall study miltifractal structure
under LOC, extending those works of Cawley-Mauldin (1992) and Falconer (1994) from
OSC to LOC. We also mention a recent work of Shieh-Yu (2003) on the relation between
Galton-Watson tree and iterated function system, which may be extended to hold under
LOC.

Added in Proof. It is found that a paper by Y. Pesin and H. Weiss (Comm. Math.
Phys. vol. 182 (1996), 105-153) contains a result (Corollary 2 at p. 116) which also
validates Moran’s formula under overlapping structure. The paper is based on viewpoint of
symbolic dynamical systems.
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