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LOCAL C-COSINE FAMILIES AND N -TIMES INTEGRATED LOCAL
COSINE FAMILIES

T. Takenaka and S. Piskarev

Abstract. This paper is concerned with local C-cosine families and local n-
times integrated cosine families. The characterization of each cosine families is
mentioned through their infinitesimal generators. The relationship among local
C-cosine families, local integrated cosine families and the abstract Cauchy
problem is also mentioned.

1. INTRODUCTION

This paper is concerned with a local C-cosine families and local n-times inte-
grated cosine families in a Banach space X . Here C is a bounded linear operator
in X and R(C) = X .

We first mention the recent development of theories of exponentially bounded
C-cosine families and n-times integrated cosine families. In the first order case
in time, they have being studied as C-semigroups and n-times integrated semi-
groups. Many authors gave characterizations of the complete infinitesimal genera-
tor of exponentially bounded C-semigroups (for example [2,3,4,9]). On the other
hand the characterizations of exponentially bounded n-times integrated semigroups
were given (see [1,4,10]). In Tanaka and Okazawa [16], the theories of local C-
semigroups and local n-times integrated semigroups were established. In the second
order case in time, C-cosine families and n-times integrated cosine family were also
studied and the analogous results were given. In [8] and [12] Y.-C Li and S.-Y
Shaw gave characterization of the generator of an exponentially bounded integrated
C-cosine family. Local integrated cosine family was studied by Tingwen [17]. In
his paper, it was shown that there exists integrated cosine family which are not
defined on all R = (−∞,∞). Thus, our first purpose is to establish the theory
Received March 11, 2003; revised June 20, 2003.
Communicated by Sen-Yen Shaw.
2000 Mathematics Subject Classification: 34G10, 47N20.
Key words and phrases: Banach space, abstract Cauchy problem, C-cosine family, n-times integrated
cosine family.

515



516 T. Takenaka and S. Piskarev

of C-cosine families which are neither exponentially bounded nor defined on R

(local C-cosine families). In [7] F. Huang and T. Huang gave a characterization of
the complete infinitesimal generator in terms of the asymptotic C-resolvent. They
showed the similar theorem to our theorem (Theorem 3.2). In the mean time their
paper appeared in the same time as this paper was written independently. But their
theorem had an extra condition, which is not necessary to be mentioned. Such an
extra condition is technical and it appears if one used reduction of the second order
equation to the system with matrix operator. Also we do not give here our original
proof of Theorem 5.2 and just quote [7].

The second purpose is to develop the theory of local n-times integrated cosine
families, by which we mean that they are neither exponentially bounded nor defined
on R. Here we use the different definition of n-times integrated cosine families
from ones defined by other authors (Definition 4.1). We investigate basic properties
of the complete infinitesimal generator of a local n-times integrated cosine family
(Proposition 5.4). Next, we clarify the relationship between local C-cosine families
and local n-times integrated cosine families (Theorem 5.9).

In Section 2 we introduce the notion of local C-cosine families of bounded linear
operators on a Banach space and derive some properties of the complete infinitesimal
generator of a local C-cosine family. We also deal with a characterization of the
complete infinitesimal generator of a local C-cosine family in terms of its asymptotic
C-resolvent. In Section 3 we give a generation theorem of local C-cosine families.
In Section 4 we introduce the notion of a local n-times integrated cosine family. We
also investigate properties of a local n-times integrated cosine family. In Section
5 we shall show that the abstract Cauchy problem, formulated for the complete
infinitesimal generator, is given by an n-times integrated cosine family. We shall
also state the relationships among a local n-times integrated cosine family, a local
C-cosine family and the abstract Cauchy problem.

2. PRELIMINARIES

Let X be a Banach space. We denote by B(X) the set of all bounded linear
operators on X and by N = {1, 2, 3, ...} the set of natural numbers. Let C ∈ B(X).

Definition 2.1. A family of bounded operators {C(t) : |t| < T} is called a
local C-cosine family on X

(i) [C(t + s) + C(t − s)]C = 2C(t)C(s) for any t, s, t± s ∈ (−T, T ),

(ii) C(0) = C,

(iii) C(·) is strongly continuous on (−T, T ).
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We recall that a local C-cosine family called nondegenerate if condition C(t)x =
0 for any t ∈ (0, T/2) implies x = 0.

The following proposition is well-known for the long time.

Proposition 2.2. ([12, 19]) A local C-cosine family is nondegenerate iff C is
an injective operator.

Starting from now we will consider only the case of C ∈ B(X), which is an
injective operator such that R(C) is dense in X , i.e. R(C) = X.

Remark 2.3. A local C-cosine family on X has the following properties:

10. C(−s) = C(s) and 20. C(s)C = CC(s).

Indeed, setting t = 0 in condition (i) of Definition 2.1 we have

[C(s) + C(−s)]C = 2CC(s),

which implies 10. In fact, CC(−s) = 1
2 [C(−s)+C(s)]C = CC(s), i.e. C[C(−s)−

C(s)] = 0, which implies C(−s) = C(s). The assertion 20 follows from 10 and (i)
of Definition 2.1.

Definition 2.4. The infinitesimal generator of {C(t) : |t| < T} is defined
as the limit

(2.1) G0x := lim
h→0+

2
h2

[C−1C(h)x − x], x ∈ D(G0)

with a natural domain D(G0) := {x ∈ R(C) : ∃ limh→0+
2
h2 [C−1C(h)x− x]}.

Remark 2.5. There are some other possibilities to define infinitesimal gener-
ator. For example, in [19] they define

Ax = C−1 lim
h→0+

2h−2(C(h)x− Cx).

In such a situation A is closed and satisfied C−1AC = A.

Proposition 2.6. The operator G0 is closable and D(G0) is dense in X .

Proof. For any x ∈ X we define

xh =
2
h2

∫ h

o
(h − s)C(s) xds.

Then in the same way as in Fattorini [5] one obtains
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2
h2

(C−1 C(h)− I)xτ=
2

τ2h2

∫ h+τ

h
(h + τ − s)C(s)x ds

+
2

τ2h2

∫ τ−h

−h
τ − h − sCs xds− 4

τ2h2

∫ τ

0
(τ − s)C(s) xds

=
2

τ2h2

∫ τ+h

τ
(τ + h − s)C(s) xds− 2

τ2h2

∫ h

0
(τ + h − s)C(s) xds

− 2
τ2h2

∫ τ

τ−h
(τ − h − s)C(s) xds +

2
τ2h2

∫ 0

−h
(τ − h − s)C(s) xds.

Thus xh ∈ D(G0) with

G0x
h =

2
h2

(C(h)− C)x.

It is clear that xh → Cx as h → 0, so it means that D(G0) is dense in X. To show
that G0 is closable we note that C(s)C(t) = C(t)C(s) for all s, t and hence

2
h2

(C−1C(h)− I)C(t)x = C(t)
2
h2

(C−1C(h) − I)x

for h > 0. So for any x ∈ D(G0) one gets

(2.2) G0C(t)x = C(t)G0x

and moreover,

(2.3)
τ2

2
(G0x)τ =

τ2

2
G0x

τ = (C(τ) − C)x.

Now, let {xn} be a sequence in D(G0) such that xn → 0 and G0xn → v. To prove
the closability we are going to show that v = 0. Since vτ = 0 for any τ one obtains
vτ → Cv = 0 for τ → 0, i.e. v = 0.

Definition 2.4. The operator G = G0 is said to be the complete infinitesimal
generator of a local C-cosine family C(·).

Now we have

(2.4)
G

∫ t

0

(t − s)C(s) xds = C(t)x− Cx,

x ∈ X, G

∫ t

0
(t − s)C(s) xds =

∫ t

0
(t − s)C(s) G xds, x ∈ D(G).

Hence C(·)x for x ∈ D(G) is twice continuously differentiable in t with |t| < T
and

(2.5) C′′(t)x = C(t)Gx = GC(t)x, x ∈ D(G).
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We associate with C(·) the local C-sine family by the formula

(2.6) S(t)x =
∫ t

0
C(s)xds, x ∈ X.

Proposition 2.8. The following relations hold for t, h, t ± h ∈ (−T, T ):

(i)
(

S(t + h) + S(t − h)
)
C = 2S(t)C(h),

(ii) S(t + h)C = S(t)C(h) + S(h)C(t),

(iii)
(

C(t + h) − C(t − h)
)
C = 2GS(t)S(h),

(iv) C′(t)x = S(t)Gx = GS(t)x for any x ∈ D(G),

(v) C′′(t)x = C(t)Gx = GC(t)x for any x ∈ D(G),

(vi) S′′(t)x = S(t)Gx = GS(t)x for any x ∈ D(G).

Proof. Integrating (i) of Definition 2.1 in t one gets

( ∫ t

0
C(s + h)ds +

∫ t

0
C(s − h)ds

)
C = 2S(t)C(h).

Hence

( ∫ t+h

h
C(η)dη +

∫ t−h

−h
C(η)dη +

∫ h

0
C(η)dη−

∫ 0

−h
C(η)dη

)
C = 2S(t)C(h).

From this (i) follows. Now we can add
(

S(t + h) + S(h − t)
)
C = 2S(h)C(t) to

(i) and obtain (ii). To prove (iii) take z =
∫ h
0

∫ s
0 C(µ)C(ν)xdµdν, where x ∈ X.

We are going to show that z ∈ D(G) and 2Gz =
(

C(h + s) − C(h − s)
)
Cx. To

do this we can write

2C−1C(t)z = 2C−1

∫ h

0

∫ s

0
C(t)C(µ)C(ν)xdµdν

=
∫ h

0

∫ s

0

(
C(t + µ) + C(t − µ)

)
C(ν)xdµdν =

∫ h

0

∫ t+s

t−s
C(η)C(ν)xdηdν.

It is clear that
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2C−1 d

dt
C(t)z =

∫ h

0

(
C(t + s) + C(t − s)

)
C(ν)xdν

=
1
2

∫ h

0

(
C(t+s+ν)+C(t+s−ν)−C(t−s+ν)−C(t−s−ν)

)
Cxdν

=
1
2

(∫ t+s+h

t+s−h
C(η)dη−

∫ t−s+h

t−s−h
C(η)

)
Cxdη.

Hence

4C−1 d2

dt2
C(t)z =

(
C(t+h+ s)−C(t+ s−h)−C(t− s+h)+C(t− s−h)

)
Cx,

which means, using (2.5) at t = 0, that

2Gz =
(

C(h + s) − C(h − s)
)
Cx.

To obtain (iv) just take derivatives of (2.4). Statement (v) follows from (2.5) and
(vi) follows from (2.6) taking two derivatives and using (iv).

Next, let τ ∈ (0, T ). Put

(2.7) Lτ (λ)x :=
∫ τ

0
e−λtS(t)xdt, x ∈ X,

this is so-called the ”local Laplace transform” of S(·).

Proposition 2.9. Let G be the complete infinitesimal generator of C(·) and
Lτ (λ) be a local Laplace transform of S(·). Then

(2.8) λLτ (λ) =
∫ τ

0
e−λtC(t)xdt − e−λτ S(τ)x

and Lτ (λ)x ∈ D(G) with

(2.9) (λ2 − G)Lτ (λ)x = Cx − e−λτ
(

C(τ)x + λS(τ)x
)

for λ > 0 and x ∈ X.

Proof. Equality (2.8) follows from (2.7) by using integration by parts . One
more integration by parts gives

(2.10) λ2Lτ (λ)x=
∫ τ

0
e−λtC′(t)xdt−λe−λτ S(τ)x+Cx−e−λτ C(τ)x, x ∈ D(G).
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Hence from Proposition 2.8 (iv) it follows (2.9).
Setting Vτ (λ)x := −e−λτ

(
C(τ)x + λS(τ)x

)
, we have for λ > 0

dn

dλn
Vτ (λ)x = −(−τ)ne−λτ C(τ)x− (λ(−τ)n + n(−τ)n−1)e−λτ S(τ)x,

and
‖ dn

dλn
Vτ (λ)x‖ ≤ Mτ

(
(n + 1)τn + λτn+1

)
e−λτ‖x‖,

where Mτ := sup0≤t≤τ ‖C(t)‖.

Proposition 2.10. The following estimates hold for λ > 0 and x ∈ X:

‖ dn

dλn
Lτ (λ)x‖ ≤ Mτ

(n + 1)!
λn+2

‖x‖,

‖ dn

dλn
(λLτ (λ)x)‖ ≤ Mτ (

n!
λn+1

+ τn+1e−λτ )‖x‖.

Proof. In fact, we have from (2.7) and (2.8) for any λ > 0

dn

dλn
Lτ (λ)x =

∫ τ

0

(−t)ne−λtS(t)xdt,

dn

dλn
[λLτ (λ)x] =

∫ τ

0
(−t)ne−λtC(t)xdt − (−τ)ne−λτ S(τ)x.

The proof of the next Proposition is exactly the same as in Okazawa [11].

Proposition 2.11. CD(G) is a core for G, i.e. G|CD(G) = G.

Remark 2.12. An asymptotic C-resolvent Lτ (λ) is compact for some λ (and
then for any λ large enough) iff S(·) is compact. Indeed, if S(·) is compact then
by (2.7) it follows that Lτ (λ) is compact. Conversely, taking derivative of Lτ (λ)
in τ and using the fact that S(·) is uniformly continuous in t we have that S(·) is
compact as the uniform limit of compact operators.

3. GENERATION THEOREM

Let us denote by C∞((a,∞); X) the set of functions which are infinitely many
times differentiable.

Definition 3.1. Let A be a closed linear operator in X . Let a ∈ R and τ ∈
(0, T ). A family of operators {Lτ (λ) : λ > a} ⊂ B(X) is called the asymptotic
C-resolvent of A if the following conditions are satisfied:
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(i) Lτ (·)x ∈ C∞((a,∞); X) for any x ∈ X,

(ii) Lτ (λ)Lτ (µ) = Lτ (µ)Lτ (λ),

(iii) Lτ (λ)x ∈ D(A) for any x ∈ X and

(3.1) (λ2 − A)Lτ (λ)x = Cx + Vτ (λ)x,

where Vτ (λ) ∈ C∞((a,∞); X), and

(3.2) ‖ dn

dλn
Vτ (λ)x‖ ≤ Mτλτn+1e−λτ‖x‖,

(iv) ALτ (λ)x = Lτ (λ)Ax for any x ∈ D(A).

Theorem 3.2. (Generation Theorem) Let A be a closed linear operator
in X . Then A is the complete infinitesimal generator of a local C-cosine family
{C(t) : |t| < T} on X iff

(i) D(A) is dense in X,

(ii) for any τ ∈ (0, T ) there is the asymptotic C-resolvent L τ (λ) of operator A
such that

(3.3) ‖ dn

dλn
[λLτ (λ)x]‖ ≤ Mτ

n!
λn+1

‖x‖, x ∈ X,

with 0 ≤ n/λ ≤ τ, λ > a, n ∈ N ∪ {0},
(iii) CD(A) is a core for A.

Before proving this theorem, let us introduce the following notions:

Fn
λ,τx = (d/dλ)nLτ (λ)x, Gn

λ,τx = (d/dλ)n
[
λLτ (λ)x

]
.

Lamma 3.3. Let A be a closed linear operator in X satisfying conditions (i)
and (ii) in Theorem 3.2. Then the following hold:

(3.4) λFn
λ,τ + nFn−1

λ,τ = Gn
λ,τ ,

(3.5) λGn
λ,τ + nGn−1

λ,τ = AFn
λ,τ + V (n)

τ (λ),
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(3.6) ‖λn+1

n!
Fn−1

λ,τ ‖ ≡ ‖λn+1

n!
dn−1

dλn−1
Lτ (λ)‖ ≤ Mτ ,

with 0 ≤ n/λ ≤ τ, λ > a, n ∈ N ∪ {0}.

Proof. Differentiating n times both sides of (3.1) in λ we have (3.5). We
prove (3.6) by induction with respect to n. In the case of n = 1 estimate (3.6) is
clear from (3.3). Assume that (3.6) is valid for n ≤ k − 2. By (3.4) we have

(3.7)
λk+1

k!
F k−1

λ,τ x =
λk

k!
Gk−1

λ,τ x − k − 1
k

λk

(k − 1)!
F k−2

λ,τ x.

Hence we have for n = k − 1

‖λk+1

k!
F k−1

λ,τ ‖ ≤
( 1

k
+

k − 1
k

)
Mτ = Mτ .

Lemma 3.4. Let A be as in Lemma 3.3. Then the following hold:

(3.8) Cx ∈ D(A) and ACx = CAx for x ∈ D(A);

(3.9) Lτ (λ)Cx = CLτ (λ)x for x ∈ X and λ > 0;

(3.10) lim
λ→∞

(−1)n

n!
λn+1Fn

λ,τx = 0 for any n ∈ N ;

(3.11) lim
λ→∞

(−1)n

n!
λn+1Gn

λ,τx = Cx for any n ∈ N.

Proof. Let us prove first (3.8) and (3.9). By (3.1) and (3.2) we obtain that

(3.12) ‖λ2Lτ (λ)x−Cx‖≤‖Lτ (λ)‖‖Ax‖+‖Vτ(λ)x‖≤Mτ

λ2
‖Ax‖+Mτλτe−λτ‖x‖

for x ∈ D(A) and λ > max(a, 1
τ ). Hence limλ→∞ λ2Lτ (λ)x = Cx for x ∈ D(A).

Since ‖λ2Lτ (λ)‖ ≤ Mτ for λ > max(a, 1
τ ) and D(A) is dense in X , one gets

(3.13) lim
λ→∞

λ2Lτ (λ)x = Cx for any x ∈ X.

By definition we have A
(
λ2Lτ (λ)x

)
= λ2Lτ (λ)Ax for x ∈ D(A). Hence we see

from (3.12) and the closedness of A that (3.8) holds. In the same way (3.9) follows
from (ii) of Definition 3.1 and (3.13). We are going to prove (3.10) and (3.11) by
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induction. Since D(A) is dense in X, we obtain (3.10) and (3.11) in the case of
n = 0. Assume that (3.10) and (3.11) are valid for n ≤ k − 1. By (3.5) we have

(3.14)

(−1)k

k! λk+1Gk
λ,τx = (−1)k−1

(k−1)! λkGk−1
λ,τ x

+ (−1)k

k! λkAF k
λ,τx + (−1)k

k! λkV
(k)
τ (λ)x.

The first term on the right hand side is converges to Cx as λ → ∞ by the induction
hypotheses. From (3.6) for x ∈ D(A) we have

‖(−1)kλk

k!
F k

λ Ax‖ ≤ Mτ
k + 1
λ2

‖Ax‖ ≤ Mτ (τ + 1/λ)‖Ax‖/λ.

From (3.2) one obtains

‖(−1)kλk

k!
V (k)

τ (λ)x‖ ≤ Mτ
λk+1τk+1

k!
e−λτ‖x‖.

Therefore the second and third terms in (3.14) converge to 0 as λ → ∞. Since
D(A) is dense in X and (3.3) is valid, (3.11) is true for any x ∈ X .

Next, (3.4) yields

(−1)k

k!
λk+1F k

λ,τx =
(−1)k−1

(k − 1)!
λkF k−1

λ,τ x +
(−1)k

k!
λkGk

λ,τx.

The first term on the right-hand side is convergent to 0 by the induction hypotheses
and moreover, from (3.3) it follows that

‖(−1)k

k!
λkGk

λ,τx‖ ≤ Mτ
1
λ
‖x‖.

Hence (3.10) is valid.

Proof of Theorem 3.2. Noting that n ≤ λτ the ”only if” part follows from
Propositions 2.9, 2.10 and 2.11. We are going to prove ”if” part. The prove is
divided into several steps. The general idea is the same as in Takenaka-Okazawa
and Tanaka-Okazawa [13,16].

Step 1. Fix τ ∈ (0, T ) arbitrarily. Then define Cn,τ (·) by putting

(3.15) Cn,τ (t)x =
(−1)n−1

(n − 1)!
λn dn−1

dλn−1

[
λLτ (λ)x

]∣∣∣
λ=n/t

, x ∈ X,

where 0 < t = n/λ ≤ τ . We will prove that A is the complete infinitesimal
generator of the local C-cosine family C(·) on X given by

C(t)x = lim
n→∞ Cn,τ (t)x for any t ∈ [0, τ).
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Define also

(3.16) Sn,τ (t)x =
(−1)n

n!
(n/t)n+1Fn

n/t,τx for 0 < t ≤ τ,

(3.17) Wn,τ (t)x =
(−1)n+1

(n + 1)!
(n/t)n+2Gn+1

n/t,τ
for 0 < t ≤ τ.

For t = 0, we set Cn,τ (0)x = Wn,τ (0)x = Cx and Sn,τ (0)x = 0. By virtue of
Lemma 3.4, we get limt→0+ Cn,τ (t)x = Cn,τ (0)x, limt→0+ Sn,τ (t)x = Sn,τ (0)x
and limt→0+ Wn,τ (t)x = Wn,τ (0)x, respectively. Therefore Cn,τ (·), Sn,τ(·) and
Wn,τ (·) are strongly continuous on [0, τ ] and for 0 ≤ t ≤ τ we have

(3.18) ‖Cn,τ (t)‖ ≤ Mτ ,

(3.19) ‖Sn,τ (t)‖ ≤ Mτ
n + 1

n
t,

(3.20) ‖Wn,τ (t)‖ ≤ Mτ .

Differentiating Cn,τ (·)x, and Sn,τ (·)x in t we see from (3.5) and (3.4) that for any
x ∈ D(A)

(3.21)

d

dt
Cn,τ (t)x =

(−1)n

n!
(n/t)n+1

[
nGn−1

n/t,τx + (n/t)Gn
n/t,τ

]
= ASn,τ (t)x + Pn,τ (t)x = Sn,τ (t)Ax + Pn,τ (t)x,

where Pn,τ (t)x = (−1)n

n! (n/t)n+1V
(n)
τ (n/t)x and

(3.22)
d

dt
Sn,τ (t)x =

(−1)n+1(n + 1)
n(n + 1)!

(n/t)n+2Gn+1
n/t,τ

x =
n + 1

n
Wn,τ (t)x.

Moreover, the following equality holds:

Wn,τ (t)x − Cn,τ (t)x =
(−1)n+1

(n + 1)!
(n/t)n+1

[
(n/t)Gn+1

n/t,τ
x + (n + 1)Gn

n/t,τx
]

+
(−1)n

n!
(n/t)n

[
(n/t)Gn

n/t,τx + nGn−1
n/t,τx

]

=
(−1)n+1

(n + 1)!
(n/t)n+1AFn+1

n/t,τ
x+

t

n
ASn,τ (t)x+Qn,τ (t)x,

where Qn,τ (t)x = (−1)n+1

(n+1)! (n/t)n+1V
(n+1)
τ (n/t)x+ (−1)n

n! (n/t)nV
(n)
τ (n/t)x. We

have
‖Pn,τ (t)x‖ ≤ Mτ

τn!
(
nτ

t
)n+2e−

nτ
t ‖x‖
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and

‖Qn,τ (t)x‖ ≤ Mτ

[ 1
(n + 1)!

(
nτ

t
)n+2e

−
nτ

t +
1
n!

(
nτ

t
)n+1e

−
nτ

t
]
‖x‖

≤ 2Mτ
1

(n + 1)!
(
nτ

t
)n+2e−

nτ
t ‖x‖,

for n ≥ 0 and t ∈ (0, n
n+1τ ]. Therefore we have by (3.6) and (3.2)

(3.23)

‖Wn,τ (t)x − Cn,τ (t)x‖ ≤ Mτ

(2n + 3
n2

t2
)
‖Ax‖

+2Mτ
1

(n + 1)!
(
nτ

t
)n+2e−

nτ
t

≤ 2t2

n
(1 +

3
2n

)Mτ‖Ax‖ + 2Mτ
1

(n + 1)!
(
nτ

t
)n+2e−

nτ
t ‖x‖

for 0 < t ≤ τ.

Step 2. To prove that Cn,τ (t)x and Sn,τ (t)x converge as n → ∞ we are going
to show that Cn,τ (t)x is the Cauchy sequence. Let ε > 0 and x ∈ D(A). It follows
from (3.21) and (3.22) that

Cm,τ (ε)Cn,τ (t − ε)x − Cm,τ (t − ε)Cn,τ (ε)x

+Sm,τ (ε)Sn,τ (t − ε)Ax − Sm,τ (t − ε)Sn,τ (ε)Ax

=
∫ t−ε

ε

d

ds
[Cm,τ (t − s)Cn,τ (s)x]ds +

∫ t−ε

ε

d

ds
[Sm,τ (t − s)Sn,τ (s)x]Axds

=
∫ t−ε

ε

[
Cm,τ (t − s)ASn,τ (s)x− Sm,τ (t − s)ACn,τ (s)x

+Cm,τ (t − s)Pn,τ (s)x − Pm,τ (t − s)Cn,τ (s)x
]
ds

+
∫ t−ε

ε

[n + 1
n

Sm,τ (t − s)AWn,τ (s)x− m + 1
m

Wm,τ (t − s)ASn,τ (s)x
]
ds.

Letting ε → 0 we obtain that

Cn, τ (t)Cx − Cm,τ (t)Cx

=
∫ t

0
Sm,τ (t − s)

[
Wn,τ (s)− Cn,τ (s)

]
Axds

+
∫ t

0

[
Cm,τ (t − s) − Wm,τ (t − s)

]
Sn,τ (s)Axds
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+
∫ t

0

[1
n

Sm,τ (t − s)Wn,τ (s) − 1
m

Wm,τ (t − s)Sn,τ (s)
]
Axds

+
∫ t

0

[
Cm,τ (t − s)Pn,τ (s)x − Pm,τ (t − s)Cn,τ (s)x

]
ds.

We note that∫ t

0
(nτ/s)n+2e−nτ/sds =

∫ t

0
(nτ)n+1/sn d

ds
(e−nτ/s)ds

= (nτ)n+1/tne−nτ/t + n

∫ t

0
(nτ/s)n+1e−nτ/sds ≤ 2t2

τ
(nτ/t)n+2e−nτ/t

because the estimate

(nτ/s)n+1e−nτ/s ≤ (nτ/t)n+1e−nτ/t

for 0 < s ≤ t ≤ n
n+1 τ . Let 0 < β < τ. Then for n, m > |a|τ it follows

(3.24)

sup
0≤t≤β

‖Cn,τ (t)Cx − Cm,τ (t)Cx‖ ≤ M2
τ β4(

1
n

+
1
m

)‖A2x‖

+M2
τ β2(

1
n

+
1
m

)‖Ax‖

+8M2
τ

β3

τ

( 1
(n + 1)!

(
nτ

β
)n+2e−nτ/β +

1
(m + 1)!

(
mτ

β
)m+2e−mτ/β

)
‖Ax‖

+2M2
τ

β2

τ2

( 1
n!

(
nτ

β
)n+2e−nτ/β +

1
m!

(
mτ

β
)m+2e−mτ/β

)
‖x‖

for x ∈ D(A2). We know that

(3.25) am =
1
m!

(
mτ

β
)m+2e−mτ/β → 0

as m → ∞, because

lim
m→∞

am+1

am
= lim

m→∞
τ

β
e−τ/β(1 + 1/m)m+2 =

τ

β
e1−τ/β < 1

if β < τ. So from (3.24) it follows that for x ∈ CD(A2) and for t ∈ [0, τ), the
function Cn,τ (t)x converges as n → ∞ and the convergence is uniform on every
bounded subinterval of [0, τ). Since CD(A) is a core of A one has CD(A2) is
dense in X and it follows from (3.18), (3.24) and the continuity of Cn,τ (·) at t = 0
that limn→∞ Cn,τ (t)x = Cτ (t)x for x ∈ X and t ∈ [0, τ). The convergence is
uniform on every bounded subinterval of [0, τ). Therefore the function Cτ (·)x is
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continuous on [0, τ) for any x ∈ X. Moreover, we see from (3.23) that Wn,τ (·)x
converges too. Since

Sn,τ (t)x =
∫ t

0

n + 1
n

Wn,τ (s)xds,

then Sn,τ (t)x also converges uniformly on every bounded subinterval of [0, τ).

Step 3. For x ∈ X we define

Cτ (t)x = lim
n→∞Cn,τ (t)x = lim

n→∞Wn,τ (t)x,

Sτ (t)x = lim
n→∞ Sn,τ (t)x = lim

n→∞

∫ t

0
Cn,τ (s)xds

for t ∈ [0, τ). We can extend Cτ (t)x and Sτ (t)x for −τ < t < 0 as follows. For
t ≥ 0 we put Cτ (−t) = Cτ (t)x and Sτ (−t) = −Sτ (t)x. We denote the extensions
again by Cτ (·) and Sτ (·). Then Cτ (·)x and Sτ (·)x satisfy

‖Cτ (t)x‖ ≤ Mτ‖x‖, ‖Sτ (t)x‖ ≤ Mτ |t|‖x‖ for any |t| < τ.

From (3.21) and (3.22) we have

Cn,τ (t) = Cx +
∫ t

0

[
Sn,τ (s)Ax + Pn,τ (s)x

]
ds

= Cx +
n + 1

n

∫ t

0

∫ u

0
Wn,τ (s)Axdsdu +

∫ t

0
Pn,τ (s)xds

= Cx +
n + 1

n

∫ t

0
(t − s)Wn,τ (s)Axds +

∫ t

0
Pn,τ (s)xds.

Passing to the limit as n → ∞, we have

(3.26) Cτ (t)x = Cx +
∫ t

0
(t − s)Cτ (s)Axds.

Therefore we infer that Cτ (t)x is twice continuously differentiable in t for x ∈
D(A). Noting that ACn,τ (s)x = Cn,τ (s)Ax for x ∈ D(A) and A is closed, we see
that

(3.27) Cτ (t)x ∈ D(A) and ACτ (t)x = Cτ (t)Ax

for x ∈ D(A) and |t| < τ. Moreover we obtain

(3.28)
d

dt
Cτ (t)x = Sτ (t)Ax,

d2

dt2
Cτ (t)x = ACτ (t)x = Cτ (t)Ax
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for x ∈ D(A) and we have

(3.29) Sτ (t)x ∈ D(A) and A

∫ t

0

Sτ (s)xds = Cτ (t)x − Cx

for x ∈ X . Hence we have

(3.30) Cτ (0)x = Cx for x ∈ X and C′
τ (0)x = ASτ (0)x = 0

for x ∈ D(A).

Step 4. We are going to show that

[Cτ (t + s) + Cτ (t − s)]C = 2Cτ (t)Cτ (s)

for any t, s, t ± s ∈ (−τ, τ). Noting that CCτ (t)x = Cτ (t)Cx, we set

vτ (t) = [Cτ (t + s) + Cτ (t − s)]Cx − 2Cτ (t)Cτ (s)x

for x ∈ D(A). We see that vτ (t) ∈ D(A) for x ∈ D(A) and vτ (0) = 0, v′τ(0) =
C′

τ (s)Cx+C′
τ (−s)Cx = 0 and v′′τ (t) = Avτ (t). Now, integrating by parts one gets

from one side∫ t

0
ACτ (t − s)vτ (s)ds =

∫ t

0
C′′

τ (t − s)vτ (s)ds =
∫ t

0
C′

τ (t − s)v′τ (s)ds

and from other side∫ t

0
Cτ (t − s)Avτ (s)ds =

∫ t

0
Cτ (t − s)v′′τ (s)ds = Cv′(t) +

∫ t

0
C′

τ (t − s)v′τ (s)ds.

Therefore, Cv′τ (s) = 0 for |s| < τ and Cvτ (·) must be constant. But vτ (0) = 0
and hence Cvτ (t) = 0 for any |t| < τ. Since C is injective, vτ (t) = 0 for any
|t| < τ. From the density of D(A) we have

Cτ (t + s)Cx + Cτ (t − s)Cx = 2Cτ (t)Cτ (s)x

for x ∈ X, and, moreover, Cτ (·) is strongly continuous in (−τ, τ).

Step 5. We shall define a local C-cosine family and prove that A is the
complete infinitesimal generator of this local C-cosine family. We define C(t)x =
Cτ (t)x for |t| < τ, τ ∈ (0, T ) and x ∈ X. Then C(·) is well-defined and it is
clearly a local C-cosine family. Indeed, by (3.27) and (3.28) we have that

(
d

ds
)
[
Cτ1(t − s)Cτ2(s)x + Sτ1(t − s)Sτ2(s)Ax

]
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= −Sτ1(t − s)ACτ2(s)x + Cτ1(t − s)ASτ2(s)x

−Cτ1(t − s)Sτ2(s)Ax + Sτ1(t − s)Cτ2(s)Ax = 0

for x ∈ X and for any t, s, t ± s ∈ (−min(τ1, τ2), min(τ1, τ2)). Therefore if
τ1 < τ2, then Cτ1(t)x = Cτ2(t)x for |t| < τ1 and x ∈ X . This implies that C(·) is
well-defined.

Now, let τ < T and G0 be the infinitesimal generator of C(·). We are going
to prove that the operator A is the complete infinitesimal generator of C(·), that is
G = A. To this end, let x ∈ CD(A) and x = Cy for some y ∈ D(A). Then by
(3.26) and (3.27)

2
h2

(C−1C(h) − I)x− Ax =
2
h2

(C(h) − C)y − Ax

=
2
h2

∫ h

0

∫ s

0
C(u)Ay duds − Ax =

2
h2

∫ h

0

∫ s

0
(C(u)Ay − Ax) duds.

Therefore we have

‖ 2
h2

(C−1C(h)− I)x− Ax‖ ≤ sup
|u|≤h

‖C(u)Ay − Ax‖.

This implies as h → 0 that G0x = CAy = Ax from (3.8). Thus x ∈ D(G0)
and G0x = Ax, which means that A|CD(A) = G0|CD(A) ⊆ G. Therefore A ⊆ G

because of Theorem 3.2 (iii). Conversely, to prove that G ⊆ A, let x ∈ D(G).
Then there exists a sequence {xn} in D(G) such that xn → x and G0xn → Gx as
n → ∞. Since xn ∈ D(G0) ⊆ R(C), we have by (3.9) that Lτ (λ)xn ∈ R(C) and

2
h2

(
C−1C(h)Lτ (λ)xn − Lτ (λ)xn

)
= Lτ (λ)

2
h2

(C−1C(h) − I)xn → Lτ (λ)G0xn

as h → 0. Thus we see that Lτ (λ)xn ∈ D(G0) and G0Lτ (λ)xn = Lτ (λ)G0xn.
Letting n → ∞ in the above equality yields that Lτ (λ)x ∈ D(G) and

(3.31) GLτ (λ)x = Lτ (λ)Gx for x ∈ D(G).

But since Lτ (λ)x ∈ D(A) for x ∈ X (by (3.1)) and A ⊆ G it follows that
ALτ (λ)x = Lτ (λ)Gx for x ∈ D(G). Combining this with (2.10) we have that

λ2Lτ (λ)Gx = G(λ2Lτ (λ)x) = A(λ2Lτ (λ)x)

for x ∈ D(G). Since A is closed, (3.13) implies that Cx ∈ D(A) and ACx =
CGx = GCx for x ∈ D(G). This means that G|CD(G) = A|CD(G) ⊆ A. Since
CD(G) is a core for G, we obtain G ⊆ A.
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4. LOCAL INTEGRATED COSINE FAMILIES

In this section we introduce integrated cosine family and clarify the relationship
of local integrated cosine families with local C-cosine families and the abstract
Cauchy problem ACP.

Definition 4.1. Let n ≥ 1 and T ∈ (0,∞]. A family of operators {U(t) :
|t| < T} in B(X) is called a local n-times integrated (nondegenerate) cosine
family on X if

(4.1) U(·)x : (−T, T ) → X is continuous for any x ∈ X ;

(4.2)

2U(t)U(s)x =
1

(n − 1)!

[ ∫ t+s

t

(t + s − r)n−1U(r)xdr

−
∫ s

0
(t + s − r)n−1U(r)xdr

]
+

(−1)n

(n−1)!

[∫ t−s

t
(t−s−r)n−1U(r)xdr

−
∫ −s

0
(t−s−r)n−1U(r)xdr

]

for |t|, |s|, |t + s|, |t− s| < T and U(0) = 0;

(4.3) U(t)x = 0 for t ∈ (−T, T ) implies x = 0.

The Definition 4.1 is slightly different from the definitions introduced by Tingwen
[17] and Li-Shaw [8,12]. By (4.2) we have U(t)U(−s)x = (−1)nU(t)U(s)x.

Moreover, we obtain
∫ s−t

s
(s−t−r)n−1U(r)xdr −

∫ −t

0
(s−t−r)n−1U(r)dr

= (−1)n

∫ t−s

−s

(t−s−r)n−1U(−r)xdr − (−1)n

∫ t

0

(t−s−r)n−1U(−r)xdr

=
∫ t−s

t

(t−s−r)n−1U(r)xdr −
∫ −s

0

(t−s−r)n−1U(r)xdr.

This means that U(t)U(s)x = U(s)U(t)x. The local C-sine family satisfies (4.2)
with n = 1.

Let us denote Cn(δ) = {x ∈ X : U(·)x : (−δ, δ) → X is n-times continuously
differentiable}.

Lemma 4.2. Let U(·) be a local n-times integrated cosine family, |t| < T
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and x ∈ Ck(δ) (1 ≤ k ≤ n − 1 and δ > 0). Then the following hold:

(4.4)

2U(t)U (k)(s)x

=
1

(n − (k + 1))!

[ ∫ t+s

t
(t + s − r)n−k−1U(r)xdr

−
∫ s

0
(t + s − r)n−k−1U(r)xdr

]

+
(−1)n−k

(n − (k + 1))!

[ ∫ t−s

t
(t−s−r)n−k−1U(r)xdr

−
∫ −s

0
(t−s−r)n−k−1U(r)xdr

]

−
k∑

i=1

tn−i

(n − i)!

(
U (k−i)(s)x + (−1)n−kU (k−i)(−s)x

)

for |s| < min(δ, T − |t|);
(4.5) U(t)U (k)(0)x = 0 and hence U (k)(0)x = 0.

Proof. Let |t| ∈ (0, T ) and x ∈ C1(δ). Then taking derivative of (4.2) in
s one gets (4.4) with k = 1. In the same way one can prove that (4.5) holds for
k = 1. Therefore the conclusion can be proved by induction with respect to k.

Lemma 4.3. Let U(·) be a local n-times integrated cosine family, |t| < T
and x ∈ Cn(δ) (δ > 0). Then the following hold:

(4.6)

2U(t)U (n)(s)x = U(t + s)x + U(t − s)x

−
n∑

k=1

tn−k

(n − k)!

(
U (n−k)(s) + U (n−k)(−s)

)
x

for |s| < min(δ, T − |t|);
U(t)U (n)(0)x = U(t)x and hence U (n)(0)x = x.

Proof. For k = n− 1 we have n− k − 1 = 0, so the conclusion follows from
(4.4).

Lemma 4.4. Let |t| < T and x ∈ Ck(δ) (1 ≤ k ≤ n and δ > 0).
Then U(t)x ∈ Ck(min(δ, T − |t|)) and U(t)U (k)(s)x = U (k)(s)U(t)x for |s| <

min(δ, T − |t|).
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The proof of the above lemma is similar to the proof of Lemma 4.4 of Tanaka-
Okazawa [16].

Lemma 4.5. (Travis-Webb [18].) Let u(·) : R → X be continuous function.
Then u(·) is twice continuously differentiable iff

lim
h→0

1
h2

(
u(t + h) − 2u(t) + u(t − h)

)
exists uniformly on any compact subsets of R. If the limit exists uniformly on
compact subsets of R, then it equals to d 2u(t)/dt2.

Definition 4.6. The infinitesimal generator A0 of a local n-times integrated
cosine family U(·) is defined as the limit:

(4.7) A0x = lim
h→0

2h−2(U (n)(h)x− x) for x ∈ D(A0)

with domain

D(A0) = {x ∈
⋃

0<δ<T

Cn(δ) : lim
h→0

2h−2(U (n)x − x) exists }.

Proposition 4.7. Let A0 be the infinitesimal generator of local n-times
integrated cosine family U(·) on X . Then the following hold:

(4.8) U(t)x ∈ D(A0) and A0U(t)x = U(t)A0x for |t| < T and x ∈ D(A0);

(4.9)
d2

dt2
U(t)x = U(t)A0x +

tn−2

(n − 2)!
x for |t| < T and x ∈ D(A0);

the operator A0 is closable;

(4.10) if Cn(T ) is dense in X, then D(A0) is dense in X.

Proof. By the definition of A0 there exists δ ∈ (0, T ) such that x ∈ Cn(δ)
and

A0x = lim
h→0

2h−2(U (n)(h)x − x).

Choose h such that |h| < min(δ, T −|t|). Then we see by Lemma 4.4 that U(t)x ∈
∪0<δ<T Cn(δ) and U (n)(h)U(t)x = U(t)U (n)(h)x and hence for h → 0

2
h2

(
U (n)(h)U(t)− U(t)

)
x = U(t)

2
h2

(U (n)(h)x− x) → U(t)A0x.
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This means that (4.8) holds. Next we will show (4.9). We note that U(s)x =
(−1)nU(−s)x and hence U (n−k)(s)x = (−1)kU (n−k)(−s)x. Therefore, if k =
2m, then

U (n−k)(s)x + U (n−k)(−s)x = 2U (n−k)(s)x,

and if k = 2m − 1, then

U (n−k)(s)x + U (n−k)(−s)x = 0.

Moreover, we have by (4.6)

(4.11)

1
h2

(
U(t + h) − 2U(t) + U(t − h)

)
x

=
2
h2

(
U(t)U (n)(h) − U(t)

)
x

−
m∑

k=1

tn−2k

(n − 2k)!
2
h2

(
U (n−2k)(h)x− U (n−2k)(0)x

)
,

where we use U (n−2k)(0)x = 0 for k < m and [n/2] = m. Noting that by Lemma
4.5 with t = 0

2
h2

(
U (n−2k)(h)x− U (n−2k)(0)x

)
→ U (n−2k+2)(0)x

for 1 ≤ k ≤ m and x ∈ Cn(δ). So as h → 0 we have the right hand side of (4.11)
tends to

U(t)A0x +
tn−2

(n − 2)!
U (n)(0)x.

Hence (4.9) holds. To prove the next statement we twice integrate (4.9)

(4.12) U(t)x =
tn

n!
x +

∫ t

0
(t − s)U(s)A0xds

for x ∈ D(A0) and |t| < T. Let {xk} be a sequence in D(A0) such that xk → 0
and A0xk → y as k → ∞. Putting k → ∞ in (4.12) with x replaced by xk, we see
that

∫ t
0 (t − s)U(s)yds = 0 for |t| < T and hence U(t)y = 0 for |t| < T. By (4.3)

we have y = 0. Finally, we will show that (4.10) holds. Let x ∈ Cn(T ). Then by
(4.5) ∫ t

0
(t − s)U (n)(s)xds = U (n−2)(t)x − U (n−2)(0)x = U (n−2)(t)x.

Using (4.4) with k = n − 2 we have that for |s|, |t| < T/2

2U(s)U (n−2)(t)x =
∫ s+t

s
(t + s − r)U(r)xdr−

∫ t

0
(t + s − r)U(r)xdr

+
∫ s−t

s
(s−t−r)U(r)xdr−

∫ −t

0
(s−t−r)U(r)xdr−2

m−1∑
i=1

sn−2i

(n − 2i)!
U (n−2i−2)(t)x,
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where [n/2] = m. Therefore,
∫ t
0 (t − s)U (n)(s)xds ∈ Cn(T/2) and

(4.13)

U (n)(h)
∫ t

0
(t− s)U (n)(s)xds = U (n−2)(h + t)x− 2U (n−2)(h)x+ U (n−2)(h− t)x

for x ∈ Cn(T ) and |t|, |h| < T/2. It follows that

2
h2

(
U (n)(h)

∫ t

0
(t − s)U (n)(s)xds −

∫ t

0
(t − s)U (n)(s)xds

)

=
1
h2

(
U (n−2)(h + t)x − 2U (n−2)(t)x + U (n−2)(t − h)x

)

− 1
h2

(
U (n−2)(h)x + U (n−2)(−h)x − 2U (n−2)(0)x

)
→ U (n)(t)x− x

as h → 0 because U (n−2)(t)x = U (n−2)(−t)x. Thus
∫ t
0 (t−s)U (n)(s)xds ∈ D(A0)

for x ∈ Cn(T ) and |t| < T/2. Since x = limt→0
2
t2

∫ t
0 (t−s)U (n)(s)xds, it follows

that Cn(T ) ⊆ D(A0), which prove (4.10).

5. THE ABSTRACT CAUCHY PROBLEM

Let A be a linear operator in a Banach space X, C as before, T ∈ (0,∞] and
x, y ∈ X. We consider the abstract Cauchy problem on (−T, T ) in the form (ACP;
T,x, y) :

(
d2

dt2
)u(t) = Au(t), |t| < T, u(0) = x, u′(0) = y.

A function u(·) is called a solution to (ACP; T,x, y) if
(a) u(·) is twice continuously differentiable in t ∈ (−T, T ), for any |t| < T,

(b) u(t) ∈ D(A) for any |t| < T and u(·) satisfies (ACP; T,x, y).
We denote also (ACP; T,x, y) with x, y ∈ CD(A) as (ACP;T,CD(A)).

Definition 5.1. The Cauchy problem (ACP ; T, CD(A)) is said to be well-
posed if for every x, y ∈ CD(A) there is a unique solution u(t; x, y) to (ACP ; T, x, y)
such that ‖u(t; x, y)‖ ≤ M(t)(‖C−1x‖+‖C−1y‖) for |t| < T and x, y ∈ CD(A),
where the function M(t) is bounded on every compact subinterval of (−T, T ) and
independent of x and y.

Theorem 5.2. (Huang-Huang [7].)Let A be a densely defined closed linear
operator in X satisfying

(i) Cx ∈ D(A) and ACx = CAx for x ∈ D(A),
(ii) CD(A) is a core for A.
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Then the following are equivalent :

(I) The operator A is the complete infinitesimal generator of a local C-cosine
family C(·);

(II) (ACP ; T, CD(A)) is well-posed.

In this case u(t; x, y) = C−1C(t)x + C−1S(t)y, t ∈ (−T, T ), is a unique solution
for every initial values x, y ∈ CD(A).

In this section we investigate some properties of the complete infinitesimal gen-
erator of an n-times integrated local cosine family U(·) and consider the abstract
Cauchy problem ACP. Let us denote the resolvent set of operator A as ρ(A).

Definition 5.3. The operator A = A0 is said to be the complete infinitesimal
generator of a local n-times integrated cosine family U(·).

Proposition 5.4. Let A be the complete infinitesimal generator of a local
n-times integrated cosine family {U(t) : |t| < T} on X. Then the following hold:

(5.1) U(t)x ∈ D(A) and U(t)Ax = AU(t)x for |t| < T and x ∈ D(A);

(5.2) U(t)x =
tn

n!
x +

∫ t

0
(t − s)U(s)Axds for x ∈ D(A) and |t| < T ;

If D(A) is dense in X , then
∫ t
0 (t − s)U(s)xds ∈ D(A) and

(5.3) A

∫ t

0

(t − s)U(s)xds = U(t)x− tn

n!
x

for x ∈ X and |t| < T ;

(5.4) If D(A)=X, then there is a real number ω such that (ω,∞)⊂ρ(A);

(5.5) D(A) is dense in X iff Cn(T ) is dense in X.

Proof. Proposition 4.7 deduces (5.1),(5.2) and (5.3). The assertion (5.4) can
be proved in the same way as in Tingwen [17, Proposition 2.2]. We show the ”only
if” part of (5.5). Since D(A) is dense in X by (5.4) one gets that ρ(A) �= ∅. If
λ ∈ ρ(A), then D(A) = R((λ−A)−1) is dense in X, so D(Am) = R((λ−A)−m)
is dense in X for m = 1, 2, · · · . This implies that D(A [ n+1

2
]) is dense in X . Using

this fact and (5.2) we see that Cn(T )(⊃ D(A[ n+1
2

])) is dense in X . The ”if” part
of (5.5) follows from (4.10).
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Proposition 5.5 If A is complete infinitesimal generator of an n-times inte-
grated local cosine family U(·) and [(n + 1)/2] = m, then (ACP ; T, D(Am+1))
is well-posed in the following sense: for every x, y ∈ D(Am+1) there is a unique
solution u(t; x, y) of ACP such that

‖u(t; x, y)‖ ≤ M(t)(‖x‖m + ‖y‖m)

for |t| < T and x, y ∈ D(Am+1), where M(t) is bounded function on every
compact subinterval of (−T, T ) and ‖z‖m =

∑m
i=0 ‖Aiz‖ for z ∈ D(Am).

Proof. Let A be the complete infinitesimal generator of an n-times integrated
local cosine family U(·). Let k ∈ N with 1 ≤ k ≤ [n/2]. Then we have

(5.6) U (2k)(t)x = U(t)Akx +
k∑

i=1

tn−2i

(n − 2i)!
Ak−ix for |t| < T and x ∈ D(Ak).

Indeed, it is easily get (5.6) for k = 1. Assume that (5.6) holds for k = l. Then by
(5.2) and (5.6)

U (2l+2)(t)x = (
d2

dt2
)
(tn

n!
Alx +

∫ t

0
(t − s)U(s)Al+1xds +

l∑
i=1

tn−2i

(n − 2i)!
Al−ix

)

=
tn−2

(n − 2)!
Alx +

l∑
i=1

tn−2i−2

(n − 2i− 2)!
Al−ix + U(t)Al+1x

=
l+1∑
i=1

tn−2i

(n − 2i)!
Al+1−ix + U(t)Al+1x.

So (5.6) holds. Moreover, by (5.2) the same way

U (2k−1)(t)x =
k∑

i=1

tn−2i+1

(n − 2i + 1)!
Ak−ix +

∫ t

0
U(s)Akxds

for 1 ≤ k ≤ [n/2]. Now, let x, y ∈ D(An+1). Then if n = 2m

U (n)(t)x =
m−1∑
k=0

t2k

(2k)!
Akx + U(t)Amx,

U (n−1)(t)y =
m−1∑
k=0

t2k+1

(2k + 1)!
Aky +

∫ t

0
U(t)Amyds,
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and if n = 2m− 1, then (5.6) and (5.7) give

U (2m−2)(t)y =
m−2∑
k=0

t2k+1

(2k + 1)!
Aky + U(t)Am−1y,

U (2m−1)(t)x =
m−1∑
k=0

t2k

(2k)!
Akx +

∫ t

0
U(s)Amxds.

Noting that

(5.8) U ′(t)x =
tn−1

(n − 1)!
x +

∫ t

0
U(s)Axds, U ′′(t)x =

tn−2

(n − 2)!
x + U(t)Ax

for x, y ∈ D(Am+1) with n = 2m one obtains

d2

dt2
U (2m)(t)x =

m−1∑
k=0

t2k

(2k)!
Ak+1x + U(t)Am+1x,

d2

dt2
U (2m−1)(t)y =

d

dt
U (2m)(t)y =

m−1∑
k=0

t2k+1

(2k + 1)!
Ak+1y +

∫ t

0
U(s)Am+1yds.

In the case of n = 2m− 1, we also have

d2

dt2
U (2m−1)(t)x =

d

dt
U (2m)(t)x =

m−1∑
k=0

t2k+1

(2k + 1)!
Ak+1x +

∫ t

0
U(s)Am+1xds,

d2

dt2
U (2m−2)(t)y =

d

dt
U (2m−1)(t)y =

m−1∑
k=0

t2k

(2k)!
Ak+1y + U(t)Amy.

These imply that u(t; x, y) is a solution of (ACP;T,x, y), where we denoted u(t; x, y) =
U (n)(t)x + U (n−1)(t)y. To check the uniqueness of solution to (ACP; T,x, y), let
v(t; x, y) be any solution of (ACP; T,x, y). We set W (t)x =

∫ t
0 U(s)xds for

x, y ∈ D(Am+1) and |t| < T. Then by (5.2) we have

d

ds

[
U(t − s)v(s; x, y) + W (t − s)v′(s; x, y)

]

= −U ′(t−s)v(s; x, y)+U(t−s)v′(s; x, y)−U(t−s)v′(s; x, y)+W (t−s)v′′(s; x, y),

and using (5.8) one obtains

d

ds

[
U(t − s)v(s; x, y)+ W (t − s)v′(s; x, y)

]
= −(t − s)n−1

(n − 1)!
v(s; x, y)
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for |t|, |s|, |t− s|, |t + s| < T. Integrating this from 0 to t yields that

U(t)x + W (t)y =
∫ t

0

(t − s)n−1

(n − 1)!
v(s; x, y)ds.

Now, taking n derivatives we get u(t; x, y) = v(t; x, y) for |t| < T.

Remark 5.6. If n = 2m−1, then for x ∈ D(Am+1) and y ∈ D(Am) we have
a unique solution to ACP. The conclusion follows from the proof of Proposition 5.5.

Now we clarify the relationship between local C-cosine family and an integrated
local cosine family. We set jn(t) := tn

n! , t ≥ 0.

Lemma 5.7. Let C(·) be a local C-cosine family on X and let n ∈ N. Define

(jn ∗ C)(t)x =
∫ t

0

∫ t1

0
...

∫ tn−1

0
C(tn)xdtn−1...dt1

for x ∈ X and 0 ≤ |t| < T. Then

(5.9)

2(jn ∗ C)(t)(jn ∗ C)(s) =
1

(n − 1)!

(∫ s+t

t
(s+t−r)n−1(jn ∗ C)(r)Cxdr

−
∫ s

0
(s+t−r)n−1(jn ∗ C)(r)Cxdr

)

+
(−1)n

(n − 1)!

[ ∫ t−s

t
(t−s−r)n−1(jn ∗ C)(r)Cxdr

−
∫ −s

0
(t−s−r)n−1(jn ∗ C)(r)Cxdr

]
for |t|, |s|, |t− s|, |t + s| < T.

Proof. To prove (5.9) it suffices to show that

(5.10)

2(jn ∗C)(t)(jn ∗ C)(s)=(j2n ∗ C)(t+s)Cx+(−1)n(j2n ∗ C)(t − s)Cx

−
n−1∑
i=0

[
si + (−1)n(−s)i

i!
(j2n−i ∗ C)(t)Cx

+
ti

i!

(
(j2n−i ∗ C)(s)Cx + (−1)n(j2n−i ∗ C)(−s)Cx

)]

for |t|, |s|, |t− s|, |t + s| < T and x ∈ X. Indeed, in the same way as in Tanaka-
Okazawa [16, Lemma 4.8] we have

(−1)n

(n − 1)!

[ ∫ t−s

0
(t−s−r)n−1 (jn ∗ C)(r)Cxdr −

∫ t

0
(t−s−r)n−1(jn ∗ C)(r)Cxdr
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−
∫ −s

0
(t−s−r)n−1(jn ∗ C)(r)Cxdr

]

=
(−1)n

(n − 2)!

[ ∫ t−s

0
(t−s−r)n−2(jn+1∗C)(r)Cxdr−

∫ t

0
(t−s−r)n−2(jn+1∗C)(r)Cxdr

−
∫ −s

0
(t−s−r)n−2(jn+1 ∗ C)(r)Cxdr

]
− (−1)n (−s)n−1

(n − 1)!
(jn+1 ∗ C)(t)Cx

−(−1)n tn−1

(n − 1)!
(jn+1 ∗ C)(−s)Cx,

and also

1
(n − 1)!

( ∫ t+s

0
(s+t−r)n−1(jn ∗ C)(r)Cxdr −

∫ t

0
(s+t−r)n−1(jn ∗ C)(r)Cxdr

−
∫ s

0

(s+t−r)n−1(jn ∗ C)(r)Cxdr
)

=
1

(n − 1)!

[ ∫ t+s

0

(t + s − r)n−2(jn+1 ∗ C)(r)Cxdr

−
∫ t

0
(t + s − r)n−2(jn+1 ∗ C)(r)Cxdr

−
∫ −s

0
(t + s − r)n−2(jn+1 ∗ C)(r)Cxdr

]
−(−1)n(−s)n−1

(n−1)!
(jn+1 ∗ C)(t)Cx

−(−1)n tn−1

(n − 1)!
(jn+1 ∗ C)(−s)Cx.

Thus repeating the above equalities one more time, we get the right-hand side of
(5.10).

Now we will prove (5.10) by induction with respect to n. In the case of n = 1,
changing variables a few times, we have

2(j1 ∗ C)(t)(j1 ∗ C)(s)x =
∫ t

0

∫ s

0

(
C(ξ + η)Cx + C(ξ − η)Cx

)
dηdξ

=
∫ t

0

(
(j1 ∗ C)(ξ + s)Cx − (j1 ∗ C)(ξ − s)Cx

)
dξ

= (j2 ∗ C)(t + s)Cx − (j2 ∗ C)(t − s)Cx − (j2 ∗ C)(s)Cx + (j2 ∗ C)(−s)Cx.

This means that (5.10) holds for n = 1. Assume that (5.10) holds for n = k. Then
by the induction hypothesis and by changing of variables we obtain that
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2(jk+1 ∗ C)(t)(jk+1 ∗ C)(s)x =
∫ t

0

∫ s

0
(jk ∗ C)(ξ)(jk ∗ C)(η)dηdξ

=
∫ t

0

(
(j2k+1 ∗ C)(ξ + s)Cx − (j2k+1 ∗ C)(ξ)Cx− (−1)k+1(j2k+1 ∗ C)(ξ − s)Cx

−(−1)k+1(j2k+1 ∗ C)(ξ)Cx
)
dξ −

k−1∑
i=0

[
si+1 + (−1)k+1(−s)i+1

(i + 1)!
(j2k+1−i ∗ C)(t)

+
ti+1

(i + 1)!

(
(j2k+1−i ∗ C)(s) + (−1)k+1(j2k+1−i ∗ C)(−s)

)]
Cx.

Changing variables yields that∫ t

0

(
(j2k+1−i ∗ C)(ξ + s)Cx + (−1)k+1(j2k+1−i ∗ C)(ξ − s)Cx

−(j2k+1 ∗ C)(ξ)Cx − (−1)k+1(j2k+1 ∗ C)(ξ)Cx
)
dξ

= (j2k+2 ∗ C)(t + s)Cx + (−1)k+1(j2k+2 ∗ C)(t − s)Cx

−
(
(j2k+2 ∗ C)(s)Cx + (−1)k+1(j2k+2 ∗ C)(−s)Cx

)
−

(
1 + (−1)k+1

)
(j2k+2 ∗ C)(ξ)Cx.

Noting that

k−1∑
i=0

si+1

(i + 1)!
(j2k+1−i ∗ C)(t)Cx =

k∑
j=1

sj

j!
(j2(k+1)−j ∗ C)(t)Cx,

we see that (5.10) holds for n = k + 1.

Next lemma was proved in Tanaka-Miyadera [15, Lemma] in the first order case
in time, but the same result is valid in the second order case.

Lemma 5.8. Let A be the complete infinitesimal generator of a local C-cosine
family C(·) with C = R(c; A)m := (c−A)−m, where c ∈ ρ(A) and m is a positive
integer. Define

Vm(t)x =
∫ t

0

∫ t1

0

...

∫ t2m−1

0

C(t2m)xdt2m−1...dt1

for x ∈ X and |t| < T . Then we have for m ∈ N, x ∈ X and |t| < T
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(i) Vm(t)x ∈ B(X) and
∫ t

0

∫ s

0
(c− A)m−1Vm−1(r)xdrds ∈ D(A);

(ii) (c− A)mVm(·)x : (−T, T ) → X is continuous;
(iii) (c− A)mVm(t) ∈ B(X) and

(c − A)mVm(t) = c(c− A)m−1Vm(t)
−(c − A)m−1Vm−1(t) + (t2m−2/(2m− 2)!)(c− A)m−1C.

Proof. By (2.4) we have A
∫ t
0 (t−s)C(s)xds = C(t)x−Cx and hence (i)-(iii)

hold for m = 1. The conclusion follows by induction with respect m.

Theorem 5.9. Let A be a densely defined closed linear operator in X with
ρ(A) �= ∅ and m ∈ N. Let c ∈ ρ(A), T ∈ (0,∞]. Then the following four
conditions are equivalent:

(i) A is the complete infinitesimal generator of an 2m-times integrated local
cosine family U(·);

(ii) A is the complete infinitesimal generator of a local C-cosine family C(·) with
C = R(c; A)m;

(iii) ρ(A) contains a half line {λ ∈ R : λ > ω} for some ω > 0, and for every
τ ∈ (0, T ) there exists a constant Mτ > 0, depending on τ, such that for
x ∈ D(Am),

‖ λk

(k − 1)!
dk−1

dλk−1

(
λR(λ2; A)x

)
‖ ≤ Mτ‖x‖m,

for 0 ≤ k/λ ≤ τ, λ > ω, k ∈ N ;

(iv) (ACP ; T, D(Am+1)) is well-posed.
In this case

(5.11) U(t)x = (c− A)m

∫ t

0

∫ t1

0
...

∫ t2m−1

0
C(t2m)xdt2m−1...dt1

for x ∈ X and |t| < T.

Proof. In view of Proposition 5.5 we see that (i) implies (iv). The step from
(iv) to (iii) was proved by Takenaka-Okazawa [14, Theorem 3.3]. To prove that
(iii) implies (ii) we can apply Theorem 3.2 with C = R(c; A)m and Lτ (λ)x =
R(λ2; A)R(c; A)mx for x ∈ X, λ > ω and τ ∈ (0, T ). To show that (ii) implies
(i), let A be the complete infinitesimal generator of a local C-cosine family C(·)
with C = R(c; A)m. Define U(·) by

U(t)x = (c− A)m

∫ t

0

∫ t1

0
...

∫ t2m−1

0
C(t2m)xdt2m−1...dt1



Local C-Cosine Families and N -Times Integrated Local Cosine Families 543

for x ∈ X. By Lemma 5.8 for x ∈ X it follows that U(t)x is well-defined and
U(t) ∈ B(X) for |t| < T. Moreover, U(·) satisfies (4.1) and (4.3). By (5.9) we
obtain that

2U(t)R(c; A)mU(s)R(c; A)mx

=
1

(2m − 1)!

( ∫ t+s

t

(t + s − r)2m−1U(r)R(c; A)mCxdr

−
∫ s

0
(t + s − r)2m−1U(r)R(c; A)mCxdr

)

+
(−1)2m

(2m − 1)!

[ ∫ t−s

t
(t − s − r)2m−1U(r)R(c; A)mCxdr

−
∫ −s

0
(t − s − r)2m−1U(r)R(c; A)mCxdr

]
.

This implies that U(·) is 2m-times integrated local cosine family. We will prove
that A is a complete infinitesimal generator of U(·). To this end, let A0 and
G0 be the operator defined by (4.7) and (2.1), respectively. Then A = G0. Let
x ∈ D(G0) (⊂ R(C)). Then by (5.11)

2
h2

(
U (2m)(h)x− x

)
=

2
h2

(
C−1C(h)x − x

)
→ G0x

as h → 0, since x ∈ C2m(T ) and U (2m)(h)x = (c − A)mC(h)x = C−1C(h)x. It
means that x ∈ D(A0) and A0x = G0x. Hence A = G ⊆ A0. Next , let x ∈ D(A0).
Then by the definition of A0 there exists δ ∈ (0, T ) such that x ∈ C2m(δ) and
A0x = limh→0

2
h2

(
U (2m)(h)x − x

)
. Since by (5.11) C(h)x=R(c; A)mU (2m)(h)x

for x ∈ C2m(δ) and we see that

2
h2

(C(h)x− Cx) = R(c; A)m 2
h2

(
U (2m)(h)x − x

)
for x ∈ C2m(δ) and the right-hand side tends to R(c; A)mA0x ∈ R(C) as h → 0.
To prove A0 ⊆ A, let x ∈ D(A0). Then Cx ∈ R(C) and 2

h2 (C−1C(h)Cx −
Cx

)
= 2

h2 (C(h)x− Cx) . Hence we have G0Cx = CA0x. Let x ∈ D(A0), then
ACx = CA0x and (c − A)Cx = cCx − CA0x = C(c − A0)x. This implies
that Cx = (c − A)−1C(c − A0)x. Hence x = C−1(c − A)−1C(c − A0)x =
(c−A)−1C−1C(c−A0)x = (c−A)−1(c−A0)x (because C(c−A0)x ∈ D(Am)
and (2.5)). This implies that Ax = A0x and D(A0) ⊂ D(A).
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