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CONCERNING THE KARATSUBA CONJECTURES

Moubariz Z. Garaev

Abstract. In this note we discuss the Karatsuba conjectures on lower bound
estimates for the maximum modulus of the Riemann Zeta-Function over very
short intervals of the critical line and in small domains of the critical strip.

1. INTRODUCTION

One of the interesting questions in the theory of the Riemann zeta-function is
the problem of lower estimates of the function

F (T ; ¢; ¾) = max
T∙t∙T+¢

j³(¾ + it)j

for a fixed ¾; 1
2 ∙ ¾ ∙ 1 and ¢ = ¢(T ) increases with T . Many important results

in this topic are described in Titchmarsh’s book [4] [edited by D. R. Heath-Brown]
which also contains results for ¢ = 1. The most interesting case is ¾ = 1

2 : Set,
following [2],

F (T ; ¢) = F

µ
T ; ¢;

1

2

¶
:

Let us use this notation to reformulate one conditional theorem [4, p. 357]. As usual
RH means the Riemann hypothesis. By A; A1; A2; :::; c; c1; c2; ::: we denote some
absolute positive constants, T is a large positive parameter.

Theorem A. (Assume RH). For ¢ = 1 we have

F (T ; ¢) > e¡A log T
log log T :(1)
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There is also an unconditional theorem [4, p. 218] for the case ¢ = 1. We
formulate only part of it.

Theorem B. If H is any number greater than unity; then¯̄̄̄
³
³1

2
+ it

´¯̄̄̄
> T¡AH

for T ∙ t ∙ T + 1; except possibly for a set of values of t of measure 1=H:

Note that Theorem B implies a positive answer to one of the conjectures of R.
Balasubramanian and K. Ramachandra [1]:

Given any constant ¢ > 0 there exists a constant a > 0 depending on ¢ such
that

F (T ; ¢) > T¡a

for T ¸ T0(¢; a) > 0:
The proof of it follows from Theorem B by taking H = max(2; 2

¢):
Let now s0 = 1

2 + iT; and consider the function

G(T ; ¢) = max
js¡s0j=¢

j³(s)j:

A. A. Karatsuba [2, 3] considered the question of behavior of the functions
F (T ; ¢) and G(T ; ¢) for ¢ = ¢(T ) ! 0 as T ! +1: He stated the following
conjectures.

Conjecture 1. There exists a function ¢ = ¢(T ) ! 0 as T ! +1 such that

F (T ; ¢) ¸ T¡A:

Conjecture 2. Conjecture 1 is valid for ¢ = (log log T )¡1:

Conjecture 3. Conjecture 1 is valid for ¢ = (log T )¡1:

Conjecture 10. There exists a function ¢ = ¢(T ) ! 0 as T ! +1 such that

G(T ; ¢) ¸ T¡A:

Conjecture 20. Conjecture 10 is valid for ¢ = (log log T )¡1:

Conjecture 30. Conjecture 10 is valid for ¢ = (log T )¡1:

A. A. Karatsuba also obtained the following unconditional results.
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Theorem C. For 0 < ¢ ∙ (log T )¡1 we have

F (T ; ¢) ¸ eA log ¢ log T :

Theorem D. For 0 < ¢ < 1
3 we have

G(T ; ¢) ¸ e6 log ¢ log T :

Obviously for N = 1, 2, 3 Conjecture N implies Conjecture N 0, and Conjecture
3 implies all the other conjectures.

It should be pointed out that RH implies Conjecture 3, and thus all the Karatsuba
conjectures. This can be proved by using the folowing two Lemmas. Lemma A is
a consequence of [4, Theorem 14.13]. Lemma B follows from [4, Theorem 14.15].

Lemma A. (Assume RH). We have

N(T ) =
T

2¼
log

T

2¼
¡ T

2¼
+ O

µ
log T

log log T

¶
:

where N(T ) is a number of zeros of ³(s) in the rectangle 0 < R s < 1; 0 < I s ∙ T:

Lemma B. (Assume RH). For 1
2 ∙ ¾ ∙ 2; t ¸ t0 > 0 and s = ¾ + it we have

log ³(s) =
X

jt¡°j<1= log log t

log(s¡ ½) + O

µ
log t log log log t

log log t

¶
;

where ½ = 1
2 + i° runs through all zeros of ³(s) counting with multiplicity.

Lemma B should be applied to any value of t defined from t 2 (T; T + ¢) and
jt¡ °j > c(log T )¡2 for all °: Such t exists for ¢ = (log T )¡1:

Using Lemma A and the proof of Theorem A (see [4, p. 357]) we can also
under RH prove that estimate (1) is valid for ¢ = (log log T )¡1: Shortly speaking
the following conditional theorem takes place.

Theorem E. (Assume RH). Then
a) Conjecture 3 is valid
b) Estimate (1) is valid for ¢ = (log log T )¡1:

We will prove the following theorems.

Theorem 1. Conjecture 30 is equivalent to Conjecture 3.
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Theorem 1 states that for ¢ = (log T )¡1 the estimate

max
js¡s0j∙¢

j³(s)j > T¡A

with some A > 0 is equivalent to

max
T∙t∙T +¢

¯̄̄̄
³
³1

2
+ it

´¯̄̄̄
> T¡A1 ;

with some A1 > 0:

Theorem 2. For 0 < ¢ < 1
3 we have

F (T ; ¢) ¸ eA log ¢ log T :

Theorem 2 extends Theorem C to the range 0 < ¢ < 1
3 and implies Theorem

D (with another constant).

2. PROOF OF THEOREM 1

To prove Theorem 1 we use the following Lemmas.

Lemma 1. (Hadamard’s three-circles theorem). Let 0 < r1 < r2 and let the
function f(s) be an anlytic in r1 ∙ jsj ∙ r2: If

M(r) = max
jsj=r

jf(s)j

then for r1 ∙ r ∙ r2 we have the estimate

M(r)log(r2=r1) ∙ M(r1)log(r2=r)M(r2)log(r=r1):

Lemma 2. (Borel-Carathéodory theorem). Let f(s) be an analytic function in
js¡ s0j ∙ R; and let <f(s) ∙ M on js¡ s0j = R: Then for 0 < r < R we have

max
js¡s0j=r

jf(s)j ∙ 2rM

R¡ r
+

R + r

R¡ r
jf(s0)j:

For the proof of these assertions see [5, pp. 172-175].
Assume now that for all large enough T1 we have G(T1; ¢1) ¸ T¡A

1 with
¢1 = (log T1)¡1: Let T be large enough and ¢ = (log T )¡1: Obviously we can
find a number ¢2; ¢

3 < ¢2 < 2¢
3 ¡¢3 such that there are no zeros of ³(s) inside
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of the horizontal strip T + ¢2 ∙ =s ∙ T + ¢2 + ¢3: Put T1 = T + ¢2 + ¢3

2 ;
s1 = 1

2 + iT1 and consider the circle js¡ s1j = ¢4: We shall now prove that

G(T1; ¢4) := max
js¡s1j=¢4

j³(s)j > T¡A1

for some absolute constant A1 > 0: In order to do that we apply Lemma 1 with

f(s) = ³(s + s1); r1 = ¢4; r = ¢1 = (log T1)¡1; r2 = 2:

From known properties of ³(s) we have that

M(r2) < T 2:

According to our hypothesis
M(r) > T¡A2:

From the other side

log(r2=r1)= log(r2=r) < 4; log(r=r1)= log(r2=r) < 4:

Therefore Lemma 1 gives

G(T1; ¢4) = M(r1) > T¡A1 :

It then follows that we can choose s2 such that js2¡s1j = ¢4 and j³(s2)j > T¡A1:
Since ³(s) does not vanish on union of the strip T + ¢1 ∙ =s ∙ T + ¢1 + ¢3

and halfplane <s ¸ 1 then in this region we can define log ³(s) to be real for real
s and analytically continued along the segment 2; 2 + it and thereby to s = ¾ + it:
Let us apply Lemma 2 with the following data:

s0 = s2; R = 4¢4; r = 2¢4; f(s) = log ³(s)¡ log ³(s0):

According to our estimate of j³(s2)j for js¡ s2j ∙ R we have

<f(s) = log j³(s)j ¡ log j³(s2)j < A3 log T:

Therefore in Lemma 2 we can take M = A3 log T: It then follows from f(s0) = 0
that

max
js¡s2j=r

¯̄̄̄
log

³(s)

³(s2)

¯̄̄̄
< A4 log T:

Note that the circle js¡ s2j = r intersects the interval (1=2 + iT; 1=2 + iT + i¢):
Hence for the point s3 = 1

2 + iT2 of intersection we have¯̄̄̄
log

³(s3)

³(s2)

¯̄̄̄
< A4 log T:
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In particular

<
½
¡ log

³(s3)

³(s2)

¾
< A4 log T

i.e.
log

¯̄̄̄
³(s2)

³(s3)

¯̄̄̄
< A4 log T:

Therefore

max
T <t<T +¢

¯̄̄̄
³
³1

2
+ it

´¯̄̄̄
¸ j³(s3)j > j³(s2)jT¡A4 > T¡A5 :

Theorem 1 is proved.

3. PROOF OF THEOREM 2

For the proof of Theorem 2 we require the following Lemma.

Lemma 3. Let p(t) be a monic polynomial of degree N with complex coeffi-
cients. Then for any ¢ > 0 we have

max
t2[T;T +¢]

jp(t)j ¸ 23¡4N¢N :

We shall prove Lemma 3 by induction on N: For N = 1 it follows from

jp(T )j+ jp(T + ¢)j ¸ jp(T )¡ p(T + ¢)j = ¢:

Let now K is an integer, K ¸ 2; and suppose that Lemma 3 is valid for all
N ∙ K ¡ 1: Under this assumption we shall prove that Lemma 3 is also valid for
N = K:

Put N1 = [N+1
2 ], N2 = N ¡N1 = [N

2 ]: As a polynomial of a complex variable,
p(s) has N complex zeros (counting with multiplicity). No less than half of these
zeros either are on the half-plane <s ∙ T + ¢

2 or on <s ¸ T + ¢
2 : Without loss

of generality we may suppose that the first case takes place. Let s1; :::; sN1 be the
first N1 roots of p(s) which lie on <s ∙ T + ¢

2 ; and let º1; :::; ºN2 be all other
zeros of p(s). Note that some of ºj also can lie in the region <s ∙ T + ¢

2 :
We have

max
t2[T;T +¢]

jp(t)j ¸ max
t2[T + 3¢

4
;T +¢]

j(t¡ s1):::(t¡ sN1)(t¡ º1):::(t¡ ºN2)j:

Since jt¡ sj j ¸ ¢
4 for t 2 [T + 3¢

4 , T + ¢] and 1 ∙ j ∙ N1 then

max
t2[T;T +¢]

jp(t)j ¸ (¢=4)N1 max
t2[T + 3¢

4
;T +¢]

j(t¡ º1):::(t¡ ºN2)j:
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Denoting p1(t) = (t¡ º1):::(t¡ ºN2), T1 = T + 3¢
4 , ¢1 = ¢

4 we obtain

max
t2[T;T +¢]

jp(t)j ¸ (¢=4)N1 max
t2[T1;T1+¢1]

jp1(t)j:

Using our assumption and that p1(t) is a polynomial of degree N2 with a unit
leading coefficient, we have

max
t2[T1;T1+¢1]

jp1(t)j ¸ (¢=4)N223¡4N2

whence
max

t2[T;T +¢]
jp(t)j ¸ 23¡4N¢N :

Lemma 3 is proved.

Now we proceed to prove Theorem 2. We use an inequality (9.7.3) from [4,
p. 218]. Due to this inequality for t 2 [T; T + ¢] we have

log j³(1=2 + it)j ¸
X

jt¡°j∙1

log jt¡ °j ¡ c log T

where ° runs through imaginary parts of zeros of ³(s): Therefore

j³(1=2 + it)j ¸ e¡c log T
Y

jt¡°j∙1

jt¡ °j:(2)

Further, since jT ¡ tj ∙ 1
3 and the interval (T ¡ 2; T + 2) contains at most c1 log T

of °; then Y
jt¡°j∙1

jt¡ °j ¸ 2¡c1 log T
Y

jT¡°j∙1

jt¡ °j:(3)

We apply Lemma 3 to the polynomial
Q

jT¡°j∙1

jt¡°j: The degree of this polynomial

is not greater than c1 log T: Hence

max
t2[T;T +¢]

Y
jT¡°j∙1

jt¡ °j ¸ ¢c1 log T e¡c3 log T :(4)

Now using (2)-(4) we obtain

j³(1=2 + it)j ¸ e¡c4 log T ¢c1 log T ¸ ec5 log ¢ log T :

Theorem 2 is proved.
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