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ON THE GLIDING HUMPS PROPERTY

Li Ronglu and Min-Hyung Cho

Abstract. We establish two uniform convergence results for duality pairs
consisting of vector-sequence spaces with some gliding humps property
and the corresponding function-sequence spaces. These uniform conver-
gence results imply some important facts.

Let X, Y be topological vector spaces and E(X) a vector space of X-valued
sequences. For x ∈ E(X), let xk denote the kth coordinate of x and, hence,
if {xn} is a sequence in E(X), then xnk is just the kth coordinate of the nth

vector-sequence xn ∈ E(X).
Let [Y E(X)]β be the family of function-sequences {fk} ⊆ Y X for which

fk(0) = 0 for all k and the series
∞∑
k=1

fk(xk) converges in Y for each x = (xk) ∈

E(X). Especially, let E(X)βY = {T = (Tk) ∈ [Y E(X)]β: each Tk is linear and
continuous} (see [10, 11, 13, 14, 15, 17]). As usual, for f = (fk) ∈ [Y E(X)]β

and x = (xk) ∈ E(X), we write f · x =
∞∑
k=1

fk(xk) =
∞∑
k=1

fkxk.

Throughout this paper we assume that E(X) ⊇ c00(X) = {x = (xk) ∈
XN : xk = 0 eventually} and E(X) is equipped by some Hausdorff vector
topology which is stronger than the topology of coordinatewise convergence
and, hence, E(X) is a K(X) space [3]. Let Pn : E(X)→ E(X) be the section
map which sends (x1, x2, . . .) to (x1, . . . , xn, 0, 0, . . .). We say that E(X) has
the property SUB if {Pn}∞n=1 is uniformly bounded on bounded subsets of the
domain space E(X) [13].

Following D. Noll [10], we say that a sequence {zn} of nonzero vectors
in E(X) is a block sequence if there is a strictly increasing {kn} ⊆ N such
that zn = (0, . . . , 0, znkn+1, z

n
kn+2, . . . , z

n
kn+1

, 0, 0, . . .). We say that E(X) has
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the strong gliding humps property (SGHP) if every bounded block sequence
{zn} in E(X) has a subsequence {zni} such that the coordinatewise sum
∞∑
i=1

zni = (0, . . . , 0, zn1
kn1+1, . . . , z

n1
kn1+1

, 0, . . . , 0, zn2
kn2+1, . . . , z

n2
kn2+1

, 0, . . .) belongs

to E(X) [13]. We say that E(X) has the zero gliding humps property (0-GHP)
if for xn → 0 in E(X) and i1 ≤ j1 < i2 ≤ j2 < · · · in N, there is an increasing
{np} ⊆ N such that (0, . . . , 0, xn1

in1
, . . . , xn1

jn1
, 0, . . . , 0, xn2

in2
, . . . , xn2

jn2
, 0, . . .) be-

longs to E(X). This form of the gliding humps property was introduced in
Lee Peng Yee [5]; see also [6], [14]. For a discussion of various forms of gliding
humps properties and their applications, see [2].

F ⊆ [Y E(X)]β is said to be conditionally wE(X)-sequentially compact if
every sequence {fn} ⊆ F has a subsequence {fni} such that lim fni · x ex-
ists at each x ∈ E(X). Finite subsets of [Y E(X)]β are conditionally wE(X)-
sequentially compact, and if F is sequentially compact under the topology
wE(X) of pointwise convergence on E(X), then F is conditionally wE(X)-
sequentiaiiy compact. In this paper we would like to establish two uniforn
convergence results for conditionally wE(X)-sequentially compact subfamilies
of [Y E(X)]β whenever E(X) has some properties such as SUB, SGHP and 0-
GHP, etc. Using these uniform convergence theorems we shall consummate
and improve some recent results in [13], [14], [17].

Theorem 1. Let E(X) be a vector-sequence space having SUB and SGHP.
If a subfamily F of [Y E(X)]β is conditionally wE(X)-sequentially compact,

then for every bounded B ⊆ E(X), the series
∞∑
k=1

fkxk converges uniformly for

f ∈ F and x = (xk) ∈ B.

Proof. If not, there exists a neighborhood U of 0 ∈ Y such that if n0 ∈ N
then

∞∑
k=n

fkxk 6∈ U for some n > n0, f ∈ F and x ∈ B. Thus, there exist

n1 > 1, f1 ∈ F and x1 ∈ B such that
∞∑

k=n1

f1
kx

1
k 6∈ U . Pick a neighborhood

V of 0 ∈ Y for which V + V ⊆ U . Since the series
∞∑
k=1

f1
kx

1
k converges,

there is an m1 > n1 for which
m1∑
k=n1

f1
kx

1
k 6∈ V . Similarly, there exist integers

m2 > n2 > m1, f
2 ∈ F and x2 ∈ B such that

m2∑
k=n2

f2
kx

2
k 6∈ V . Continuing this

construction, we have an integer sequence n1 < m1 < n2 < m2 < · · · , {f i} ⊆ F
and {xi} ⊆ B such that

mi∑
k=ni

f ikx
i
k 6∈ V, i = 1, 2, 3, . . . .(∗)
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Let zj = (0, . . . , xjnj , . . . , x
j
mj
, 0, 0, . . .). Since E(X) has SUB and B is a

bounded subset of E(X), the set {Pnx−Pmz : n,m ∈ N, x, z ∈ B} is bounded
and, hence, {zj} is a bounded block sequence in E(X).

Now consider the matrix (f i · zj)i,j. Since F is conditionally wE(X)-
sequentially compact, by passing to a subsequence if necessary, we may assume
that lim

i
f i ·x exists at each x ∈ E(X) and, hence, lim

i
f i ·zj exists for all j. Let

j1 < j2 < . . . in N. Then there is a subsequence {jpr} ⊆ {jp} such that the se-
quence (0, . . . , 0, xjp1

njp1
, . . . , x

jp1
mjp1

, 0, . . . , 0, xjp2
njp2

, . . . , x
jp2
mjp2

, 0, . . . , 0, . . .) belongs

to E(X) because E(X) has SGHP, i.e., the coordinatewise sum z =
∞∑
r=1

zjpr be-

longs to E(X). Hence, for each i we have f i · z =
∞∑
r=1

mjpr∑
k=njpr

f ikx
jpr
k =

∞∑
r=1

f i.zjpr

and lim
i

∞∑
r=1

f i · zjpr = lim
i
f i · z exists. Thus, by the Antosik-Mikusinski matrix

theorem [1], [8], lim
i

mi∑
k=ni

f ikx
i
k = lim

i
f i · zi = 0. This contradicts (∗).

Note that, in Theorem 1, each mapping f = (fk) ∈ F need not be linear
and each coordinate function fk need not be continuous. In fact, we only
require that f · 0 = 0, i.e., fk(0) = 0 for all k, while [13], [14], [17] gave
results only for continuous linear fk : X → Y and f = (fk) ∈ E(X)βY . A
similar improvement to Schur’s theorem was given in [9] for abstract function
matrices.

Corollary 2. ([13], Th. 4). Assume that E(X) has properties SUB and
SGHP and that X is an A-space. If F ⊆ E(X)βY is pointwise bounded on
E(X), then F is uniformly bounded on bounded subsets of E(X).

Proof. Let {xn} be a bounded sequence in E(X) and {fn} ⊆ F . Since
E(X) has SUB, for each k, {(0, . . . , 0, xnk , 0, 0, . . .) : n ∈ N} is bounded in
E(X) and, since the topology on E(X) is stronger than the topology of coor-
dinatewise convergence, {xnk}∞n=1 is bounded in X and lim

n

1
n
fnk x

n
k = 0 because

X is an A-space ([8], Cor. 4). On the other hand, {fn} is pointwise bounded
on E(X) and, hence, 1

n
fn ·x→ 0 at each x ∈ E(X), i.e., the set { 1

n
fn : n ∈ N}

is conditionally wE(X)-sequentially compact. Now by Theorem 1 the series
∞∑
k=1

1
n
fnk x

m
k converges uniformly for n,m ∈ N. Thus,

lim
n

1
n
fn · xn = lim

n

∞∑
k=1

1
n
fnk x

n
k =

∞∑
k=1

lim
n

1
n
fnk x

n
k = 0.

Using 0-GHP instead of SGHP, C. Swartz gave a similar but more clear-cut
uniform boundedness result; see [15], Th. 12.5.7.
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We say that a map u : X → Y is boundedly continuous if (xa) is a bounded
net in X such that xa → x0 in X, then u(xa) → u(x0). Clearly, a continu-
ous map is boundedly continuous and a boundedly continuous map must be
sequentially continuous. Theorem 1 of [13] asserts that if E(X) has some suit-
able properties, then each f = (fk) ∈ E(X)βY is sequentially continuous. Note
that if f = (fk) ∈ E(X)βY , then each coordinate function fk is continuous and
linear. In contrast to Theorem 1 of [13], the following result only requires that
coordinate functions be boundedly continuous.

Corollary 3. Assume that E(X) has SUB and SGHP. If f = (fk) ∈
[Y E(X)]β is such that each coordinate function fk : X → Y is boundedly con-
tinuous, then f is boundedly continuous on E(X) and, hence, f is sequentially
continuous. In particular, each T = (Tk) ∈ E(X)βY is boundedly continuous
and, hence, T is sequentially continuous.

Proof. Let (xa)a∈I be a bounded net such that xa → x in E(X). Then for
each k we have xak → xk because the topology on E(X) is stronger than the
topology of coordinatewise convergence. Since E(X) has SUB, for each k the
net (xak)a∈I is bounded in X. Thus, for each k, lim

a
fkx

a
k = fkxk by hypothe-

sis. Since the singleton {f} is conditionally wE(X)-sequentially compact and

(xa)a∈I is bounded, by Theorem 1 the series
∞∑
k=1

fkx
a
k converges uniformly for

a ∈ I. Therefore,

lim
a
f · xa = lim

a

∞∑
k=1

fkx
a
k =

∞∑
k=1

lim
a
fkx

a
k =

∞∑
k=1

fkxk = f · x.

If E(X) has 0-GHP, then for every T = (Tk) ∈ E(X)βY and xn → 0 in

E(X), the series
∞∑
k=1

Tkx
n
k converges uniformly for n ∈ N ([17], Th. 2). We

would like to establish a similar result for F ⊆ [Y E(X)]β. Recall that E(X)
is an AK-space if (0, . . . , 0, xn, xn+1, . . .) → 0 for each (xk) ∈ E(X) ([15], p.
128). For example, the sequence spaces (c0, ‖·‖∞) and (1p, ‖·‖p) are AK-spaces
having 0-GHP.

Theorem 4. Let E(X) be an AK-space with 0-GHP. If F is a condition-
ally wE(X)-sequentially compact subfamily of [Y E(X)]β, then for every xn → 0

in E(X) the series
∞∑
k=1

fkx
n
k converges uniformly with respect to f = (fk) ∈ F

and n ∈ N.

Proof. Firat we claim that for each x = (xk) ∈ E(X) the series
∞∑
k=1

fkxk

converges uniformly with respect to f = (fk) ∈ F . If not, there exist a neigh-
borhood V of 0 ∈ Y, {f i} ⊆ F and an integer sequence n1 < m1 < n2 < m2 <
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. . . such that
mi∑
k=ni

f ikxk 6∈ V for all i. If zj = (0, . . . , 0, xnj , . . . , xmj , 0, 0, . . .),

then zj → 0 because E(X) is an AK-space. Since F is conditionally wE(X)-
sequentially compact, by passing to a subsequence if necessary, we may assume
that lim

i
f i · x exists at each x ∈ E(X). As in the proof of Theorem 1, by 0-

GHP, the Antosik-Mikusinski theorem shows that
mi∑
k=ni

f ikxk → 0, but this is a

contradiction.
Now suppose the conclusion of Theorem 4 fails. Then there exists a neigh-

borhood V of 0 ∈ Y satisfying

∀n0 ∈ N ∃m > n > n0, f ∈ F and i ∈ N such that
m∑
k=n

fkx
i
k 6∈ V.(∗)

Thus, there exist m1 > n1 > 1, f1 ∈ F and i1 ∈ N such that
m1∑
k=n1

f1
kx

i1
k 6∈ V .

By the first part of this proof, there is an m0 ∈ N such that
m∑
k=n

fkx
i
k ∈ V for

all m ≥ n > m0, f = (fk) ∈ F and 1 ≤ i ≤ i1. Therefore, by (∗) again, there

exist m2 > n2 > max(m0,m1), f2 ∈ F and i2 > i1 such that
m2∑
k=n2

f2
kx

i2
k 6∈ V .

Continuing this construction we have integer sequences n1 < m1 < n2 <

m2 < . . . , i1 < i2 < · · · and {fp} ⊆ F such that
mp∑
k=np

fpkx
ip
k 6∈ V for all p ∈ N.

However, as before the Antosik-Mikusinski theorem, the condition 0-GHP, and
xip → 0 imply a contradictory fact.

Now we would like to show some applications of Theorems 1 and 4. lt is
easy to see that with the norm ‖(tk)‖∞ = sup

k
|tk|, the space `∞ of bounded

scalar sequences has SUB and SGHP. Observing that `∞ is the dual of (`1, ‖ ·
‖1), we have the following.

Corollary 5. (Schur lemma [12], [1]) Every weakly convergent sequence
in (`1, ‖ · ‖1) must be norm convergent.

Proof. Suppose rn = (rnk ) ∈ `1 and rn → 0 weakly, i.e., for each t =

(tk) ∈ `∞, lim
n
rn · t = lim

n

∞∑
k=1

tkr
n
k = 0. Let ε > 0. By Theorem 1, there is a

k0 such that
∣∣∣∣ ∞∑
k=k0+1

tkr
n
k

∣∣∣∣ < ε/2 for all n and (tk) with sup
k
|tk| ≤ 1. On the

other hand, for each k, lim
n
rnk = 0 holds obviously and, hence, there is an n0
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such that
k0∑
k=1
|tkrnk | < ε/2 for all n > n0 and (tk) with sup

k
|tk| ≤ 1. Thus,∣∣∣∣ ∞∑

k=1
tkr

n
k

∣∣∣∣ < ε if n > n0 and sup
k
|tk| ≤ 1, i.e.,

∞∑
k=1
|rnk | ≤ ε if n > n0.

Let λ be a family of scalar sequences. A sequence {xk} in a topological

vector space X is said to be λ-multiplier convergent (λ-mc) if the series
∞∑
k=1

tkxk

converges for each (tk) ∈ λ. Recently, the first author has given the following
nice result [7] :

Let X be a Hausdorff locally convex space with the dual X ′ and λ = c0

or `p (p ≥ 1). Then λ-mc is an invariant for all admissible polar topologies,

i.e., if {xk} ⊆ X, then the series
∞∑
k=1

tkxk converges for each (tk) ∈ λ under

the strongest admissible topology β(X,X ′) if and only if
∞∑
k=1

tkxk converges

for each (tk) ∈ λ under the weakest admissible topology σ(X,X ′).
By Theorem 4 we can generalize this result. Recall that if X is a bar-

relled space with the dual X ′, then the topology on X is just β(X,X ′); if X
is a bornological space and Y is an arbitrary locally convex space, then every
bounded linear operator T : X → Y is continuous and, hence, every sequen-
tially continuous linear operator T : X → Y must be continuous. Note that a
locally convex metric space is bornological and a barrelled bornological space
need not be an inductive limit of Banach spaces ([4], p, 39).

Theorem 6. Let (λ, τ) be a barrelled bornological AK-space of scalar se-
quences such that τ is stronger than the topology of coordinatewise convergence
and (λ, τ) has 0-GHP, e.g., (λ, τ) = (c0, ‖ · ‖∞) or (`p, ‖ · ‖p), p ≥ 1. If {xk} is
a sequence in a Hausdorff locally convex space X with the dual X ′ such that

for each (tk) ∈ λ the series
∞∑
k=1

tkxk converges weakly, then for each (tk) ∈ λ

the series
∞∑
k=1

tkxk converges under the strongest admissible topology β(X,X ′).

Proof. Suppose that tn = (tnk) → 0 as n → +∞ in (λ, τ). Then for
each k, lim

n
tnk = 0 and, hence, lim

n
tnkxk = 0. Since x = (xk) ∈ λβ(X,weak)

and the singleton {x} = {(xk)} is wλ-sequentially compact, by Theorem 4

the series
∞∑
k=1

tnkxk converges in (X, weak) uniformly for n ∈ N. Therefore,

in (X, weak) we have that lim
n

∞∑
k=1

tnkxk =
∞∑
k=1

lim
n
tnkxk = 0. Observing that

(λ, τ) is bornological and letting T ((tk)) = weak-
∞∑
k=1

tkxk, we obtain that T :

(λ, τ) → (X, weak) is continuous and linear. Now let λ′ = (λ, τ)′. By the
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Hellinger-Toeplitz theorem ([16] , p. 168, Th. 2), T must be β(λ, λ′)-β(X,X ′)
continuous. But β(λ, λ′) = τ because (λ, τ) is barrelled. Thus T is τ -β(X,X ′)
continuous.

Now let (tk) ∈ λ be arbitrary. Since (λ, τ) is an AK-space, (t1, t2, . . . , tn, 0,
0, . . .) τ→ (tk). Therefore,

n∑
k=1

tkxk = T [(t1, . . . , tn, 0, 0, . . .)]
β(X,X′)−→ T [(tk)] = weak-

∞∑
k=1

tkxk,

i.e., the series
∞∑
k=1

tkxk converges in (X,β(X,X ′)).
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