TAIWANESE JOURNAL OF MATHEMATICS
Vol. 3, No. 1, pp. 115-122, March 1999

ON THE GLIDING HUMPS PROPERTY

Li Ronglu and Min-Hyung Cho

Abstract. We establish two uniform convergence results for duality pairs
consisting of vector-sequence spaces with some gliding humps property
and the corresponding function-sequence spaces. These uniform conver-
gence results imply some important facts.

Let X, Y be topological vector spaces and E(X) a vector space of X-valued
sequences. For z € E(X), let z;, denote the k' coordinate of x and, hence,
if {z"} is a sequence in F(X), then z} is just the k' coordinate of the n'"
vector-sequence z" € E(X).

Let [YE())? be the family of function-sequences {f,} C Y* for which

f1(0) = 0 for all £ and the series ioj fr(xx) converges in Y for each x = (x}) €
=1

k=
E(X). Especially, let E(X)% = {T = (T,) € [Y¥X)]8: each T, is linear and
continuous} (see [10, 11, 13, 14, 15, 17]). As usual, for f = (fi) € [YFX))#
and =z = (zy) € E(X), we write f -z = icj fr(xg) = icj frz.
k=1 k=1

Throughout this paper we assume that E(X) D coo(X) = {z = (zx) €
XN 1 zp = 0 eventually} and E(X) is equipped by some Hausdorff vector
topology which is stronger than the topology of coordinatewise convergence
and, hence, E(X) is a K(X) space [3]. Let P, : E(X) — E(X) be the section
map which sends (z,xs,...) to (z1,...,2,,0,0,...). We say that E(X) has
the property SUB if {P,}> ; is uniformly bounded on bounded subsets of the
domain space E(X) [13].

Following D. Noll [10], we say that a sequence {z"} of nonzero vectors
in E(X) is a block sequence if there is a strictly increasing {k,} C N such
that 2" = (0,...,0,2; 11,2 42,---» 2k, ,,50,0,...). We say that F(X) has
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the strong gliding humps property (SGHP) if every bounded block sequence
{z"} in E(X) has a subsequence {z"'} such that the coordinatewise sum

n1 n2

'21 2" = (0,...,0, ZZ;IH, 2 4 0,0.,0, z,ZjQH, e 2 0, .) belongs
to E(X) [13]. We say that E(X) has the zero gliding humps property (0-GHP)
if for 2" — 0 in E(X) and i; < j; < iy < jp < --- in N, there is an increasing
{n,} C N such that (0,...,0,33;:1,...,:E;»’Zl,O,...,O,x?jz,...,x?jz,o,...) be-
longs to E(X). This form of the gliding humps property was introduced in
Lee Peng Yee [5]; see also [6], [14]. For a discussion of various forms of gliding
humps properties and their applications, see [2].

F C [YEX))P is said to be conditionally wE(X)-sequentially compact if
every sequence {f"} C F has a subsequence {f"} such that lim f™ -z ex-
ists at each z € E(X). Finite subsets of [Y#X)]# are conditionally wE(X)-
sequentially compact, and if F' is sequentially compact under the topology
wE(X) of pointwise convergence on E(X), then F' is conditionally wE(X)-
sequentiaiily compact. In this paper we would like to establish two uniforn
convergence results for conditionally wFE (X )-sequentially compact subfamilies
of [YP()]# whenever E(X) has some properties such as SUB, SGHP and 0-
GHP, etc. Using these uniform convergence theorems we shall consummate
and improve some recent results in [13], [14], [17].

Theorem 1. Let E(X) be a vector-sequence space having SUB and SGHP.
If a subfamily F of [YEX))P is conditionally wE(X)-sequentially compact,

then for every bounded B C E(X), the series Y. frxy converges uniformly for
k=1
feF and x = (x) € B.

Proof. If not, there exists a neighborhood U of 0 € Y such that if ng € N
then Y frzr € U for some n > ng, f € F and z € B. Thus, there exist

k=n

ny > 1, f' € F and x' € B such that i fiz; € U. Pick a neighborhood

k:n1

V of 0 € Y for which V +V C U. Since the series f fix; converges,
k=1

my
there is an m; > n, for which Y. flz} € V. Similarly, there exist integers

k:’l’bl
ma
my > ng > mq, f2 € F and 2? € B such that Y. ffz7 ¢ V. Continuing this
k‘:’rb2
construction, we have an integer sequence ny < m; <ny <mg < ---,{f'} CF
and {z'} C B such that
(%) > fial ¢V, i=1,23,....

k=n;
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Let 2/ = (0,...,2},...,2},,0,0,...). Since F(X) has SUB and B is a
bounded subset of E(X), the set {P,z — P,,z : n,m € N,z,z € B} is bounded
and, hence, {27} is a bounded block sequence in E(X).

Now consider the matrix (f* - 27); ;. Since F is conditionally wE(X)-
sequentially compact, by passing to a subsequence if necessary, we may assume

that lim f?-x exists at each x € E(X) and, hence, lim fi-27 exists for all j. Let
J1 < ja2 < ...in N. Then there is a subsequence {jp }C U} such that the se-

quence (0 ,0, :cifjlp . xifz;p ,0,...,0, xﬁgi e zﬁ, 0, ..) belongs
to E(X) because F(X) has SGHP, i.e., the coordinatewise sum z = Z 2Irr be-
r=1

mjp

longs to F(X). Hence, for each i we have f* -z = Z S fial ioj flzder

r=1k= Ny
and lim Z fie2ier = hm ft-z exists. Thus, by the Antosik-Mikusinski matrix

theorem [1], [8], lim Z fixi =lim f*- 2" = 0. This contradicts (). |
7 k:ni 7

Note that, in Theorem 1, each mapping f = (fz) € F need not be linear
and each coordinate function f; need not be continuous. In fact, we only
require that f -0 = 0, i.e., f,(0) = 0 for all k, while [13], [14], [17] gave
results only for continuous linear f, : X — Y and f = (f,) € BE(X)?Y. A
similar improvement to Schur’s theorem was given in [9] for abstract function
matrices.

Corollary 2. ([13], Th. 4). Assume that E(X) has properties SUB and
SGHP and that X is an A-space. If F C E(X)PY is pointwise bounded on
E(X), then F is uniformly bounded on bounded subsets of E(X).

Proof. Let {z"} be a bounded sequence in E(X) and {f"} C F. Since
E(X) has SUB, for each k, {(0,...,0,27,0,0,...) : n € N} is bounded in
E(X) and, since the topology on F(X) is stronger than the topology of coor-
dinatewise convergence, {z}}2° ; is bounded in X and liin Lfray = 0 because

X is an A-space ([8], Cor. 4). On the other hand, {f"} is pointwise bounded
on E(X) and, hence, = f"-x — 0 at each « € E(X), i.e., the set { f" : n € N}
is conditionally wE(X)-sequentially compact. Now by Theorem 1 the series

oo
kz % fray converges uniformly for n,m € N. Thus,
=1

hm f" x" —hmz frix k—th vy =0 u

Using 0-GHP instead of SGHP, C. Swartz gave a similar but more clear-cut
uniform boundedness result; see [15], Th. 12.5.7.
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We say that a map u : X — Y is boundedly continuous if (z,) is a bounded
net in X such that z, — =z, in X, then u(z,) — u(xy). Clearly, a continu-
ous map is boundedly continuous and a boundedly continuous map must be
sequentially continuous. Theorem 1 of [13] asserts that if F(X) has some suit-
able properties, then each f = (f3.) € F(X)?Y is sequentially continuous. Note
that if f = (fx) € E(X)?Y, then each coordinate function f;, is continuous and
linear. In contrast to Theorem 1 of [13], the following result only requires that
coordinate functions be boundedly continuous.

Corollary 3. Assume that E(X) has SUB and SGHP. If f = (fx) €
[YECOB s such that each coordinate function f. : X — Y is boundedly con-
tinuous, then f is boundedly continuous on E(X) and, hence, f is sequentially
continuous. In particular, each T = (T) € E(X)PY is boundedly continuous
and, hence, T is sequentially continuous.

Proof. Let (x),er be a bounded net such that z* — z in E(X). Then for
each k we have z§ — z;, because the topology on E(X) is stronger than the
topology of coordinatewise convergence. Since F(X) has SUB, for each k the
net (x¢)qer is bounded in X. Thus, for each k, h(Izn frxd = frxi by hypothe-
sis. Since the singleton {f} is conditionally wFE (X )-sequentially compact and
(*)aer is bounded, by Theorem 1 the series § fraxs converges uniformly for

k=1
a € I. Therefore,

limf-:c“:limekxz:Zlimfka:kaxk:f-x. ]
k=1 k=1 k=1

If E(X) has 0-GHP, then for every T = (T;) € E(X)?¥ and 2" — 0 in

E(X), the series io: Tz} converges uniformly for n € N ([17], Th. 2). We
k=1

would like to establish a similar result for F C [YP()]%. Recall that E(X)

is an AK-space if (0,...,0,2,,Z,.1,...) — 0 for each (z;) € E(X) ([15], p.

128). For example, the sequence spaces (co, |- ||) and (17, ||-||,) are AK-spaces

having 0-GHP.

Theorem 4. Let E(X) be an AK-space with 0-GHP. If F' is a condition-
ally wE(X)-sequentially compact subfamily of [Y FX))? | then for every 2™ — 0
in E(X) the series Y. frx} converges uniformly with respect to f = (fi) € F

k=1
and n € N.

Proof. Firat we claim that for each z = (z;) € E(X) the series § frxr
k=1

converges uniformly with respect to f = (fi) € F. If not, there exist a neigh-
borhood V of 0 € Y, {f*} C F and an integer sequence n; < m; < ny < msy <
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. such that Z fiay, & V for all i. If 27 = (0,...,0,2,,,...,%m;,0,0,...),
. : :

then 2/ — 0 because F(X) is an AK-space. Since F is conditionally wFE(X)-
sequentially compact, by passing to a subsequence if necessary, we may assume
that lim f* - = exists at each z € E(X). As in the proof of Theorem 1, by 0-

GHP, the Antosik-Mikusinski theorem shows that nﬁ: fixp — 0, but this is a

k=n;
contradiction.

Now suppose the conclusion of Theorem 4 fails. Then there exists a neigh-
borhood V of 0 € Y satisfying

(x)  Vng €N3Im>n>mno, f€F andicNsuchthat »  fra) & V.

k=n

miy .
Thus, there exist m; > n; > 1, f' € F and 4, € N such that Y, flaz} € V.

k=n1

By the first part of this proof, there is an mg € N such that i frxi € V for
k=n
all m >mn>myg, f = (fr) € Fand 1 <i <4;. Therefore, by (x) again, there

m2 .
exist mo > ny > max(mg, my), f2 € F and i, > i; such that > fPz? ¢ V.
k=’n2
Continuing this construction we have integer sequences n; < m; < ng <

My < ... i1 <iy < ---and {f?} C F such that 5. fPz” ¢ V for all p € N.
k=np

However, as before the Antosik-Mikusinski theorem, the condition 0-GHP, and
x'» — 0 imply a contradictory fact. [

Now we would like to show some applications of Theorems 1 and 4. It is
easy to see that with the norm |[(¢;)||.c = sup |tx|, the space £>° of bounded
k

scalar sequences has SUB and SGHP. Observing that ¢> is the dual of (¢*, || -
l1), we have the following.

Corollary 5. (Schur lemma [12], [1]) Every weakly convergent sequence
in (€', ] - ||1) must be norm convergent.

Proof. Suppose " = (r}) € ¢! and r" — 0 weakly, i.e., for each ¢t =

o0

(tp) € €°,limr"™ -t = lim > tpry = 0. Let ¢ > 0. By Theorem 1, there is a
n n =1

k

> tery| < e/2 for all n and (tx) with sup|tx] < 1. On the
k=ko+1 k
other hand, for each k,limr} = 0 holds obviously and, hence, there is an ng

ko such that
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k
such that Zo [t < €/2 for all n > ng and (t;) with sup [t;| < 1. Thus,
k=1 k

o0
tkr;j
k=1

[&.°]
<eifn>ngandsup |ty <1,ie., Y |rp] <eif n > n,. [
k k=1

Let A be a family of scalar sequences. A sequence {z;} in a topological

vector space X is said to be A-multiplier convergent (A-mc) if the series > t,xy

k=1
converges for each (¢;) € A\. Recently, the first author has given the following
nice result [7] :

Let X be a Hausdorff locally convex space with the dual X’ and A = ¢
or ¢* (p > 1). Then A-mc is an invariant for all admissible polar topologies,
ie., if {z;} C X, then the series ) t,x; converges for each (¢;) € A under

k=1

the strongest admissible topology (X, X’) if and only if Y ¢,z converges

=1
for each (t;) € A under the weakest admissible topology U(A];( , X').

By Theorem 4 we can generalize this result. Recall that if X is a bar-
relled space with the dual X', then the topology on X is just 5(X, X'); if X
is a bornological space and Y is an arbitrary locally convex space, then every
bounded linear operator T': X — Y is continuous and, hence, every sequen-
tially continuous linear operator T' : X — Y must be continuous. Note that a
locally convex metric space is bornological and a barrelled bornological space
need not be an inductive limit of Banach spaces ([4], p, 39).

Theorem 6. Let (A, 7) be a barrelled bornological AK-space of scalar se-
quences such that T is stronger than the topology of coordinatewise convergence
and (A, 7) has 0-GHP, e.g., (\,7) = (co, ||  |loo) o (€2, || - |lp),;p > 1. If {zx} is
a sequence in o Hausdorff locally convex space X with the dual X' such that

for each (t;) € X the series Y. trxy converges weakly, then for each (t;) € A
k=1

the series Y tpxy, converges under the strongest admissible topology B(X, X').
k=1

Proof. Suppose that t* = (t}) — 0 as n — +oo in (A,7). Then for
each k, limt? = 0 and, hence, limt}z;, = 0. Since z = (x;) € N\(Xweak)
and the singleton {z} = {(z1)} is wA-sequentially compact, by Theorem 4

the series > t?x; converges in (X, weak) uniformly for n € N. Therefore,
k=1
in (X, weak) we have that lim " ¢}z, = > limt¢}x, = 0. Observing that
nog=1 k=1 7

(A, 7) is bornological and letting T'((tx)) = weak- i tpxy,, we obtain that 7' :
k=1
(A, 7) — (X, weak) is continuous and linear. Now let \' = (A, 7)". By the



On the Gliding Humps Property 121

Hellinger-Toeplitz theorem ([16] , p. 168, Th. 2), T' must be B(A, X')-G(X, X’)
continuous. But S(A\, \) = 7 because (A, 7) is barrelled. Thus T is 7-8(X, X”)
continuous.

Now let (t;) € A be arbitrary. Since (A, 7) is an AK-space, (¢, ta, ..., t,, 0,
0, ...) = (tx). Therefore,

St = Tl(tr, . 1,0,0,..0] "3 T[(1)] = weak- Y tyay,
k=1 k=1
i.e., the series Y tjx) converges in (X, 5(X, X')). [ ]
k=1
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