
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 2, No. 4, pp. 469-481, December 1998

A UNIFIED WAY FOR OBTAINING DIVIDING
FORMULAS n|Q(n)

Chyi-Lung Lin

Abstract. We show that interesting dividing formulas such as, Chi-
nese theorem, Fermat’s little theorem, and Euler’s theorem can easily be
derived from some well-known iterated maps. Other dividing formulas
concerning Fibonacci numbers, generalized Fibonacci numbers of degree
m, and numbers of other types can also be derived. The results show that
iterated maps offer a systematic and unified way for obtaining nontriv-
ial dividing formulas n|Q(n), and we can thus understand the dividing
formulas from the point of view of iterated maps.

1. Introduction

Interesting dividing formulas seemed to begin with the Chinese theorem
more than two thousand years ago [8], which stated that n|(2n − 2), for n a
prime. It took a long time to put this theorem in a more general form. The
following are more examples of dividing formulas:

n| (an − a), for n a prime, and a = 2, 3, 4, . . . (Fermat’s little theorem).

n| (aϕ(n) − 1), where ϕ(n) is Euler’s totient function of n, and a and n are
relatively prime (Euler’s theorem).

n| (Fn+1 +Fn−1−1), for n a prime, where Fn is the nth Fibonacci number.

In this work, we use iterated maps to generate dividing formula n|Q(n),
where n is any positive integer and show that the above examples can all be
re-derived from some simple iterated maps. It then seems that we have a
systematic and unified way for obtaining dividing formulas.
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In Section 2, we give a general discussion on iterated maps. In Section 3,
we derive the fundamental theorem n|N(n) for each iterated map, where N(n)
is the number of period-n points for the iterated map. In Section 4, we show
that what we obtain from an iterated map f is NΣ(n), the number of fixed
points of f [n], and we give the relation between N(n) and NΣ(n). In Section 5,
we give several examples showing the applications of this fundamental theorem
n|N(n) for several maps to reproduce well-known results and obtain some new
dividing formulas.

2. A General Discussion

For a general discussion [1], we consider a map f(x) in some interval. we
define f(x) the first iterate of x for f, f [2](x) the second iterate of x for f ,
and f [n](x) = f(f [n−1](x)) the nth iterate of x for f . Iterates of x form the
sequence, {f [n](x)}∞n=0, which is called the orbit of x.

We call x a fixed point if x is the point whose iterates are the same point.
The fixed points of f are thus determined from the formula

f(x) = x.(2.1)

Geometrically, the number of fixed points for f can be determined from the
number of intersections of the curve y = f(x) with the diagonal line y = x.

We call x a period-n point if f [n](x) = x, and in addition, x, f(x), f [2](x), . . . ,
f [n−1](x) are distinct, that is, n is the least number such that the nth iterate of
x is again x. The period-n points of f are thus determined from the following
two equations:

f [n](x) = x,(2.2)

f [i](x) 6= x for i = 1, 2, . . . , n− 1.(2.3)

In what follows, we denote by N(n) the number of period-n points for f . If x
is a period-n point, the orbit of x is a periodic orbit, the orbit is denoted by
{x, f(x), f [2](x), . . . , f [n−1](x)}. This orbit is called an n-cycle.

3. The Fundamental Theorem: n|N(n)

Theorem 3.1. Suppose f is an iterated map. Let N(n) denote the number
of period-n points for the map. Then

n|N(n).(3.1)



Dividing Formulas n|Q(n) 471

Proof. If N(n) = 0, formula (3.1) is obvious. If N(n) 6= 0, the orbit
of a period-n point is an n-cycle containing n distinct period-n points. Two
distinct n-cycles are disjoint. For if they contain a common element x0, then
all iterates of x0 in each of these two cycles should be the same; these two
n-cycles are then identical. Thus there are no common elements in any two
distinct n-cycles. N(n) can then be divided into disjoint n-cycles, and N(n)/n
is an integer representing the number of n-cycles for the map.

As a consequence of this fundamental theorem, each iterated map offers a
desired Q(n) function such that n|Q(n), where Q(n) = N(n), the number of
period-n points of the map. We have therefore an additional way to understand
the dividing formula n|Q(n) from the point of view of iterated maps. We also
note that the result is quite general, as n can be any positive integer instead
of being prime or relatively prime to some base number a.

4. Obtaining the N(n) of an Iterated Map

As discussed in Section 2, N(n), the number of period-n points of a map
f , is determined from points of x satisfying (2.2) and (2.3). It is therefore not
straightforward to determine N(n) directly from a map. Instead, we denote
by NΣ(n) the number of fixed points of f [n]. NΣ(n) is then determined from
points of x satisfying (2.2), i.e., f [n](x) = x. This enables the NΣ(n) to be
determined directly from a map, that is, to count the number of intersections
of the curve y = f [n](x) with the diagonal line y = x. The relation of N(n)
and NΣ(n) can be seen from what follows. We note that a fixed point of f [n]

is not necessarily a period-n point of f , for it could be a fixed point of f or
in general a period-m point of f , where m < n and m|n. Thus NΣ(n), the
number of fixed points for f [n], includes the number of fixed points of f and
the number of periodic points whose periods divide n. Accordingly, we have

NΣ(n) =
∑
d|n

N(d),(4.1)

where the sum is over all the divisors of n (including 1 and n). We need a
reverse formula expressing N(n) in terms of NΣ(d). This has been done, as
we know that there are already the following two formulas [3, 9]:

NΣ(n) =
∑
d|n

N(d),(4.2)

and

471



472 Chyi-Lung Lin

N(n) =
∑
d|n

µ(n/d)NΣ(d)

=
∑
d|n

µ(d)NΣ(n/d),
(4.3)

where µ(d) is the Möbius function. NΣ(n) is called the Möbius transform of
N(n), and N(n) the inverse Möbius transform of NΣ(n). Thus, after calculat-
ing NΣ(n) from an iterated map, we obtain a dividing formula n|N(n) from
(4.3).

Note that (4.2) and (4.3) are in fact quite general. They are not necessarily
related to iterated maps, and hence theN(n) andNΣ(n) in (4.2) and (4.3) need
not have specific meanings like periods in iterated maps. We can arbitrarily
specify an NΣ(n), and obtain N(n) from (4.3). However, such N(n) in general
does not give a dividing formula n|N(n). Thus, guessing an NΣ(n) to obtain
an N(n) such that n|N(n) is difficult. Yet, if we start from an iterated map, it
then naturally offers an NΣ(n), from which the N(n) obtained is guaranteed
to give a dividing formula n|N(n). We should also note that, in general, it is
not an easy task to obtain NΣ(n) from an arbitrary map, though in principle it
exists. There are examples of iterated maps for which NΣ(n) can be calculated
[2, 6].

We summarize all these in the following theorem.

Theorem 4.1. Let N(n) and NΣ(n) be defined as above. Then for an
iterated map

n|N(n) with N(n) =
∑
d|n

µ(n/d)NΣ(d).(4.4)

When n is a prime,

n|(NΣ(n)−NΣ(1)).(4.5)

In the following, we consider various maps for which NΣ(n) can be exactly
calculated, and then obtain the accompanied dividing formulas.

5. Applications of the Theorem n|N(n) for Various Maps

5-1. Baker’s map with base a

We consider first Baker’s map with base a, or simply the Ba map, defined
by:
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Ba(x) = ax for 0 ≤ x ≤ 1/a,
ax− 1 for 1/a < x ≤ 2/a,
ax− 2 for 2/a < x ≤ 3/a,
· · ·
ax− (a− 1) for (a− 1)/a < x ≤ 1,

(5.1.1)

where a is any positive integer ≥ 2. If a = 2, it is Baker’s map. The graph of
Ba(x) in the range 0 ≤ x ≤ 1 contains a parallel line segments with slope a.
Fig. 1 shows the graph of Ba(x) with a = 5.

It is easy to see that the graph of B[2]
a (x) contains a2 parallel line segments

with slope a2, and therefore, in general, the graph of B[n]
a (x) contains an

parallel line segments with slope an. Each of these line segments intersects

FIG. 1. Ba(x) map, with a = 5.
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the diagonal line once. It follows that there are, in total, an intersections
for these parallel line segments in B[n](x) intersecting with the diagonal line.
There are thus an fixed points for B[n], and we have

NΣ(n) = an.(5.1.2)

From (4.5), we have Fermat’s little theorem:

n|(an − a) for n a prime.(5.1.3)

We have now another way to understand Fermat’s little theorem. The meaning
of N(n) = an − a, when n is a prime, simply means that, in order to get
the number of true period-n points, we need to subtract fixed points of B,
whose number is a, from fixed points of B[n]

a , whose number is NΣ(n) =
an. Fermat’s little theorem is a natural consequence of the Ba map, and the
Chinese theorem, with a = 2, is the consequence of Baker’s map.

If n is a composite number, from (4.4), we have

n|
∑
d|n

µ(n/d)ad.(5.1.4)

Formula (5.1.4) is a known result, first stated by J. A. Serret as early as
1855 and proved by T. Szele in 1948 [10]. We have here simply reproduced
this result from the iterated map. We show how to derive Euler’s theorem
from (5.1.4) in the Appendix. Formula (5.1.4) is more general than Euler’s
theorem, as we need not require the base a and n be relatively prime. We may
call (5.1.4) the generalized Euler’s theorem (in the sense that we are free to
choose the base a for any n).

5-2. B(µ;x) map

The B(µ;x) map is defined as

B(µ;x) = µx for 0 ≤ x ≤ 1/2,
µ(x− 1/2) for 1/2 < x ≤ 1,

(5.2.1)

where µ is a parameter whose value is restricted in the range 0 ≤ µ ≤ 2, so
that x in the interval [0, 1] is mapped to the same interval. Fig. 2 shows the
graph of B(µ;x), with µ = (1 +

√
5)/2.

We discuss the following cases.

5-2-1. The case that x = 1/2 is a period-2 point
If x = 1/2 is a period-2 point of the B(µ) map, then B[2](µ; x) = x, and

B(µ;x) 6= x. If µ ≤ 1, the iterates of 1/2 should be: 1/2 7→ µ/2 7→ µ2/2 = 1/2.
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FIG. 2. B(µ;x) map, with µ = (1 +
√

5)/2.

From this, we have µ = 1; however, this simply means that x = 1/2 is a
fixed point but not a period-2 point. If µ > 1, the iterates of 1/2 should be:
1/2 7→ µ/2 7→ µ(µ/2−1/2) = 1/2. It then follows that µ2−µ−1 = 0. Solving
this, we have µ = (1 +

√
5)/2 ≈ 1.618, which is the well-known golden mean.

We denote this µ by
∑

2, indicating that for this parameter value x = 1/2 is a
period-2 point. The detailed discussions of this map can be seen in [4, 5]. From
counting the intersections of the function y = B[n](

∑
2;x) with the diagonal

line, we obtain NΣ(n). The calculation is not so straightforward but quite
lengthy; we will discuss elsewhere how the results are obtained. Here, we only
present the result:

NΣ(n) = Fn+1 + Fn−1,(5.2.2)

where Fn is the nth Fibonacci number, for which F0 = 0, F1 = 1 and F2 = 1.
We have, from (4.4) and (4.5),

n|N(n) with N(n) =
∑
d|n

µ(n/d)[Fd+1 + Fd−1],(5.2.3)
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n|(Fn+1 + Fn−1 − 1) for n a prime.(5.2.4)

Formula (5.2.4) is also a known result [7]; however, we see that it can be derived
from the iterated maps. For n a composite number, (5.2.3) offers additional
relations for the Fibonacci numbers. Let NΣ[n] = Fn+1 + Fn−1 ≡ L[n]. Then
L[1] = 1, L[2] = 3. It follows that L[n] is in fact the Lucas sequence. For a
simple example, consider n = 15. Then N(15) = L[15]− L[3]− L[5] + L[1] =
1364− 4− 11 + 1 = 1350. Indeed, we have 15|1350.

5-2-2. The case that x = 1/2 is a period-m point

In general, there are many parameter values in the range 0 ≤ µ ≤ 2 such
that x = 1/2 is a period-m point. We here choose the largest one among them.

It follows that such a µ satisfies the equation µm−
m−1∑
i=0

µi = 0. We denote this

µ by
∑
m indicating that for this parameter value x = 1/2 is a period-m point.

We refer the details to [5]. From counting the intersections of the function
y = B[n](

∑
m;x) with the diagonal line, we have

NΣ(n) = F
(m)
n+1 +

m−1∑
k=1

kF
(m)
n−k(5.2.5)

=
m−1∑
k=0

(k + 1)F (m)
n−k,(5.2.6)

where F (m)
n is the Fibonacci number of degree m, i.e., F (m)

n =
m∑
j=1

F
(m)
n−j , and

with the first m elements: F (m)
1 = 1, and F

(m)
k = 2k−2 for 2 ≤ k ≤ m.

In the following, we show some unfamiliar results for the purpose of inter-
est showing how these results are obtained from various iterated maps with
suitable parameter values chosen properly. Readers interested in this can take
them as exercises.

5-3. B3(µ;x) map

We consider the B3(µ;x) map defined as

B3(µ;x) = µx for 0 ≤ x ≤ 1/3,

µ(x− 1/3) for 1/3 < x ≤ 2/3,

µ(x− 2/3) for 2/3 < x ≤ 1.

(5.3.1)
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In this map, the values of parameter µ are restricted in the range 0 ≤ µ ≤ 3.
In what follows, we list several results:

5-3-1. The case that x = 1/3 is a period-2 point
The 2-cycle is {1/3, µ/3},

(1) For 1 < µ < 2:
The corresponding µ satisfies the equation: µ = 1 + µ−1.
We have µ ≈ 1.618, the golden mean, and
NΣ(n) = Fn+1 + Fn−1. We don’t get new results in this case.

(2) For 2 < µ < 3:
The corresponding µ satisfies the equation: µ = 1 + 2µ−1.
We have µ = 1 +

√
2 ≈ 2.4142. Then:

NΣ(n) = 2s(n) + 2s(n − 1), where s(n) is a sequence satisfying the
relation

s(n) = 2s(n− 1) + s(n− 2), with the first two elements :
s(1) = 1 and s(2) = 2.

(5.3.2)

5-3-2. The case that x = 1/3 is a period-3 point
The 3-cycle is denoted by {1/3, µ/3, A}.

(1) For 2/3 > µ/3 > 1/3 > A:
The corresponding µ satisfies the equation: µ = 1 + µ−2.
We have µ ≈ 1.4656, and A = µ(µ− 1)/3. Then:
NΣ(n) = s(n) + 3s(n− 2), where

s(n) = s(n− 1) + s(n− 3),
with s(1) = 1, s(2) = 1, s(3) = 1.

(5.3.3)

(2) For 2/3 > µ/3 > A > 1/3:
The corresponding µ satisfies the equation: µ = 1 + µ−1 + µ−2.
We have µ ≈ 1.839, and A = µ(µ− 1)/3. Then:
NΣ(n) = F

(3)
n+1 +F

(3)
n−1 + 2F (3)

n−2, where F (3)
n is the nth Fibonacci number

of degree 3.

This corresponds to the result in (5.2.5) with m = 3.

(3) For µ/3 > 2/3 > 1/3 > A:
The corresponding µ satisfies the equation: µ = 2 + µ−2.
We have µ ≈ 2.2056, and A = µ(µ− 2)/3. Then:
NΣ(n) = 2s(n) + 3s(n− 2), where

s(n) = 2s(n− 1) + s(n− 3),
with s(1) = 1, s(2) = 2, and s(3) = 4.

(5.3.4)
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(4) For µ/3 > 2/3 > A > 1/3:
The corresponding µ satisfies the equation: µ = 2 + µ−1 + µ−2.
We have µ ≈ 2.5468, and A = µ(µ− 2)/3. Then:
NΣ(n) = 2s(n) + 2s(n− 1) + 3s(n− 2), where

s(n) = 2s(n− 1) + s(n− 2) + s(n− 3),
with s(1) = 1, s(2) = 2, and s(3) = 5.

(5.3.5)

(5) For µ/3 > A > 2/3 > 1/3:
The corresponding µ satisfies the equation: µ = 2 + 2µ−1 + µ−2

We have µ ≈ 2.8312, and A = µ(µ− 2)/3. Then:
NΣ(n) = 2s(n) + 4s(n− 1) + 3s(n− 2), where

s(n) = 2s(n− 1) + 2s(n− 2) + s(n− 3),
with s(1) = 1, s(2) = 2, and s(3) = 6.

(5.3.6)

In general, we may consider x = 1/3 to be a point of higher period. Or we
may consider more general maps, such as Bm(µ;x) maps, etc. We consider the
last map for which the point we considered can be an eventually fixed point
or an eventually periodic point.

5-4. T (µ;x) map

We consider the triangular map with a parameter µ, i.e., the T (µ;x) map,
which is defined by

T (µ;x) = 1− µ|x| for − 1 ≤ x ≤ 1,(5.4.1)

where µ is the parameter whose value is restricted in the range 0 ≤ µ ≤ 2.
The x in the interval [−1, 1] is then mapped to the same interval. Fig. 3 shows
the graph of T (µ;x), with µ = (1 +

√
5)/2.

(1) Consider µ =
√

2. Then x = 0 is an eventually fixed point. As the
iterates of x = 0 is 0 7→ 1 7→ (1 −

√
2) 7→ (

√
2 − 1) 7→ (

√
2 − 1), we have the

quite interesting result:

NΣ(n) = 1 if n is odd,

NΣ(n) = 21+n/2 − 1 if n is even.
(5.4.2)

We check that if p is a prime, then from 2p|N(2p), we have 2p|(NΣ(2p) −
NΣ(2) − NΣ(p) + NΣ(1)). That is, 2p|(2p+1 − 4) or p|(2p − 2), which is a
well-known result.

(2) Consider µ satisfying µ3 = 2µ + 2, i.e., µ ≈ 1.76929. Then x = 0 is
also an eventually fixed point. As the iterates of x = 0 is 0 7→ 1 7→ (1− µ) 7→
(1 + µ− µ2) 7→ (µ2 − µ− 1) 7→ (µ2 − µ− 1), we then have
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FIG. 3. Triangular map T (µ;x), with µ = (1 +
√

5)/2.

NΣ(n) = s(n)− 1 if n is even,

NΣ(n) = s(n) + 1 if n is odd, where
(5.4.3)

s(n) = s(n− 1) + 2s(n− 2)− 2s(n− 4), with

s(1) = 0, s(2) = 4, s(3) = 6, s(4) = 8.
(5.4.4)

(3) Consider µ satisfying µ3 = µ2 + 2, i.e., µ ≈ 1.69562. Then x = 0 is
an eventually period-2 point. As the iterates of x = 0 is 0 7→ 1 7→ (1 − µ) 7→
(1 + µ− µ2) 7→ (µ− 1) 7→ (1 + µ− µ2), we have

NΣ(n) = s(n)− 4δn,4k,(5.4.5)

where s(n) is a sequence satisfying the relation

s(n) = s(n− 1) + s(n− 2) + s(n− 3)− 2s(n− 5), with

s(1) = 1, s(2) = 3, s(3) = 7, s(4) = 11, s(5) = 11.
(5.4.6)

We see that many can be done in this way, and plenty of N(n) such that
n|N(n) can be obtained. In principle, infinitely many N(n) can be obtained,
since each iterated map contributes an N(n). We should check the N(n) for
every iterated map we have ever used, and it is hoped that some interesting,
important and useful dividing formulas can be found. We conclude that the
existence of dividing formulas is not so mysterious from the point of view of
iterated maps.
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Appendix

We show here how to derive Euler’s theorem from (5.1.4), the generalized

Euler’s theorem. Let n =
s∏
i=1

ptii be the prime factorization of a given number

n. We let ni ≡ ptii . Then N(ni) = NΣ(ni)−NΣ(ni/pi). With NΣ(n) = an, we
have

ni|(ani − ani/pi)

or

ni|(ani/pi [ani(1−1/pi) − 1]).(A.1)

We may replace the term ni(1−1/pi) in (A.1) by ϕ(n), since ϕ(n) is a multiple
of it. Therefore,

ni|(ani/pi [aϕ(n) − 1]).

If n and a are relatively prime, we then have

ni|(aϕ(n) − 1).(A.2)

Thus, aϕ(n) − 1 is divisible by each ni. As these ni are relatively by prime to
each other, therefore aϕ(n)− 1 is divisible by the product of these ni, which is
n. We therefore reproduce Euler’s theorem:

n|(aϕ(n) − 1) for n and a relatively prime.(A.3)

Accordingly, Euler’s theorem is a natural consequence of the Ba map.
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