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RIESZ TRANSFORMS ON Q-TYPE SPACES WITH APPLICATION TO
QUASI-GEOSTROPHIC EQUATION

Pengtao Li and Zhichun Zhai

Abstract. By an equivalent characterization of Morrey space associated with
the fractional heat semigroup, we establish a relation between the generalized
Q−type spaces and Morrey spaces. By this relation, in this paper, we prove the
boundedness of the singular integral operatoes on the Q-type spaces Qβ

α(Rn). As
an application, we get the well-posedness and regularity of the quasi-geostrophic
equation with initial data in Qβ,−1

α (Rn).

1. INTRODUCTION

In this paper, we consider the boundedness of a class of singular integral operators
on the Q−type space Qβα(Rn). Here Qβα(Rn) is a space defined as the set of all
measurable functions with

sup
I

(l(I))2α−n+2β−2

∫
I

∫
I

|f(x)− f(y)|2
|x− y|n+2α−2β+2

dxdy <∞,

where α ∈ (0, 1), β ∈ (1/2, 1), the supremum is taken over all cubes I with the edge
length l(I) and the edges parallel to the coordinate axes in Rn. This space is introduced
in [18] to study the well-posedness of the generalized Naiver-Stokes equations. For
β = 1, Qβα(Rn) coincides with the classical space Qα(Rn) which is introduced in [13].
Furthermore, if α = 0, β = 1, Qβα(Rn) = BMO(Rn).
As a new space between W 1,n(Rn) and BMO(Rn), Qα(Rn) has been studied

extensively by many authors since 1990s. In 1995, on the unit disk D in the complex
plane C, R. Aulaskari, J. Xiao and R. Zhao first introduced a class of Möbius invariant
analytic function spaces, Qp(D), p ∈ (0, 1) . The class Qp(D), p ∈ (0, 1) can be
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seen as subspaces and subsets of BMOA and UBC on D. Since then, many studies
on Qp(D) and their characterization have been done. We refer the readers to [1], [2],
[21] and [29] and the reference therein. In order to generalize Qp(D), p ∈ (0, 1) to
Rn, in [13], M. Essen, S. Janson, L. Peng and J. Xiao introduced a class of Q-type
spaces of several real variables, Qα(Rn), α ∈ (0, 1). Later, in [12], G. Dafni and J.
Xiao established the Carleson measure characterization of Qα(Rn), α ∈ (0, 1). For
more information of the spaces Qα(Rn) and their application, we refer to [28], [12]
and [13]. For the generalization of Qα(Rn), we refer to [18] and [30].
It is easy to see that a function f(x) belongs to BMO(Rn) if and only if

sup
I

(l(I))−2n

∫
I

∫
I
|f(x)− f(y)|2 dxdy <∞.

It can be also proved that if α ∈ (−∞, 0) and β = 1, Qβα(Rn) = BMO(Rn).
The similarity on the structure of Qβα(Rn) and BMO(Rn) shows that the two spaces
share some common properties. It is well-known that the singular integral operators T
are bounded on the Hardy space H1(Rn). By the duality, the boundedness of T on
BMO(Rn) is obvious. Owing to the relation between Qβα(Rn) and BMO(Rn), it is
natural to consider the boundedness of T on Qβα(Rn) .
Unlike the case of Hardy space H1(Rn), the boundedness of T on the dual space

of Qβα(Rn) is not clear. So we cannot follow the former method to get the boundedness
of T on Qβα(Rn). Alternatively, we apply an equivalent characterization of Qβα(Rn)
associated to the fractional heat semigroup e−t(−Δ)β and establish a relation between
Qβα(Rn) and some Morrey spaces Lp,λ(Rn). For β = 1 and α ∈ (0, 1), such relation
was established by Z. Wu and C. Xie in [27]. In [28], J. Xiao gave another proof
which is based on the Carleson measure characterization of Qα, α ∈ (0, 1) and Morrey
spaces. Hence our result can be seen as a generalization of those in [27] and [28]. By
this relation, the boundedness of T on Qβα(Rn) can be deduced by that on Lp,λ(Rn).
See Section 3.
As an application, we consider the well-posedness and regularity of the quasi-

geostrophic equations with initial data in Qβ,−1
α (Rn). In recent years, Q-type spaces

have been applied to the study of the fluid equations by several authors. For example,
in [28], J. Xiao introduced a new critical space Q−1

α (Rn) which is derivatives of
Qα(Rn), α ∈ (0, 1) and got the well-posedness of Naiver-Stokes equations with initial
data in Q−1

α (Rn). When α = 0, Q−1
α (Rn) = BMO−1(Rn), his result generalized

the well-posedness obtained by Koch and Tataru in [17]. In [18], inspiring by [28]
and the scaling invariance, we introduced a new Q-type space Qβα(Rn) with α > 0,
max{1

2 , α} < β < 1 such that α + β − 1 ≥ 0. We proved the well-posedness and
regularity of the generalized Naiver-Stokes equations with some initial data in the space
Qβ, −1
α (Rn). For β = 1, our space Qβ, −1

α (Rn) becomes Q−1
α (Rn) in [28]. So our

result can be regarded as a generalization of those of [17] and [28].
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In Section 4, we consider the two-dimensional subcritical quasi-geostrophic dissi-
pative equations (DQG)β with small initial data in Qβ,−1

α (Rn),

(1.1)

⎧⎪⎪⎨⎪⎪⎩
∂tθ + (−�)βu+ (u · ∇)θ = 0 in R2 × R+, α > 0;

u = ∇⊥(−Δ)−1/2θ;

θ(0, x) = θ0 in R2,

where β ∈ ( 1
2 , 1), the scalar θ represent the potential temperature, and u is the fluid

velocity.
The equations (DQG)β are important models in the atmosphere and ocean fluid

dynamics. It was proposed by P. Constantin and A. Majda, etc that the equations
(DQG)β can be regarded as low dimensional model equations for mathematical study
of singularity in smooth solutions of unforced incompressible three dimensional fluid
equations. See e.g. [10, 14, 15, 22, 23] and the references therein.
Owing to the importance in mathematical and geophysical fluid dynamics mentioned

above, the equations (DQG)β have been intensively studied. Some important progress
has been made. We refer the readers to [4, 5, 6, 7, 8, 11, 16, 25, 26] etc. for details.
In [19], F. Marchand and P. G. Lemarié-Rieusset get the well-posedness of the

solutions to the equation (DQG)1 with the initial data in BMO−1(R2). However,
because the space BMO−1(R2) is invariant under the scaling: u0,λ(x) = λu0(λx),
we see that under the fractional scaling associated to 0 < β < 1,

(1.2) θλ(t, x) = λ2β−1θ(λ2βt, λx) and θ0,λ(x) = λ2β−1θ0(λx),

the space BMO−1 is not invariant.
The above observation implies that if we want to generalize the result in [19] to the

general case β < 1, we should choose a new space Xβ which satisfies the following
two properties. At first, the space Xβ should be invariant under the scaling (1.2).
Secondly, BMO−1 is a “special” case of Xβ for β = 1.
It is proved in [18] that the spaceQβ, −1

α (Rn) is exactly such a space. Therefore we
could apply the approach in [18] to the equations (DQG)β and get the well-posedness
and regularity of the solution to the equations (DQG)β with β > 1/2.
It should be pointed out that the scope of β in the equations (DQG)β is depended

upon the definition of Qβα(Rn). In [18], we proved that the parameters {α, β} should
satisfy the condition: max{α, 1

2} < β < 1 and α < β with α + β − 1 ≥ 0. It is easy
to see that β > 1

2 .
In [24], the authors proved the global existence of the solutions of the subcriti-

cal quasi-geostrophic equations with small size initial data in the Besov norms paces
Ḃ1−2β,∞∞ . However our result cannot be deduced by the existence result in [24]. In
addition, by the method in [18], we consider the regularity of the solutions to the
equations (DQG)β.



2110 Pengtao Li and Zhichun Zhai

The organization of this paper is as follows. In Section 2 we state some preliminary
knowledge, notation and terminology that will be used throughout this paper. In Section
3 we consider the boundedness of a class of singular integral operators on Qβα(Rn). In
Section 4 we give a well-posedness of the equations (DQG)β with the initial data in
the spaces Qβ, −1

α (Rn).

2. PRELIMINARIES

In this paper the symbols C,Z and N denote the sets of all complex numbers,
integers and natural numbers, respectively. For n ∈ N, Rn is the n−dimensional
Euclidean space, with Euclidean norm denoted by |x| and the Lebesguemeasure denoted
by dx. Rn+1

+ is the upper half-space
{
(t, x) ∈ Rn+1

+ : t > 0, x ∈ Rn
}
with Lebesgue

measure denoted by dtdx.
A ball in Rn with center x and radius r will be denoted by B = B(x, r); its

Lebesgue measure is denoted by |B|. A cube in Rn will always mean a cube in Rn

with sides parallel to the coordinate axes. The sidelength of a cube I will be denoted
by l(I). Similarly, its volume will be denoted by |I |.
The symbol U � V means that there exists a positive constantC such that U ≤ CV .

U ≈ V means U � V and V � U. For convenience, the positive constants C may
change from one line to another and usually depend on the dimension n, α, β and other
fixed parameters.
The characteristic function of a set A will be denoted by 1A. For Ω ⊂ Rn, the

spaceC∞
0 (Ω) consists of all smooth functions with compact support in Ω. The Schwartz

class of rapidly decreasing functions and its dual will be denoted by S(Rn) and S′(Rn),
respectively. For a function f ∈ S(Rn), f̂ means the Fourier transform of f.
The generalizedQ−type spacesQβα(Rn) are introduce as a substitute of the classical

Qα(Rn) under the fractional dilation: fλ(x) = λ2β−1f(λx), 0 < β < 1. This space
is defined as follows.

Definition 2.1. Let −∞ < α and max{α, 1/2} < β < 1. Then f ∈ Qβα(Rn) if
and only if

sup
I

(l(I))2α−n+2β−2

∫
I

∫
I

|f(x)− f(y)|2
|x− y|n+2α−2β+2

dxdy <∞,

where the supremum is taken over all cubes I with the edge length l(I) and the edges
parallel to the coordinate axes in Rn.

For β = 1 and α > −∞, the above space becomes Qα(Rn), which was introduced
by M. Essen, S. Janson, L. Peng and J. Xiao in [13]. In 2004, G. Dafni and J. Xiao
give the Carleson measure characterization of Qβα(Rn) using a new type of tent spaces
in [12]. Following the same idea, in order to study the Qα initial data problem for the
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generalized Naiver-Stokes equations, we consider the Carleson measure characterization
of Qβα(Rn) in [18]. Precisely, we get the following result.
Let φ(x) be a C∞ real-valued function on Rn satisfying the properties

(2.1) φ(x) ∈ L1(Rn), |φ(x)| � (1+|x|)−(n+1),

∫
Rn

φ(x)dx = 0, φt(x) = t−nφ(
x

t
).

In [18], we proved that Qβα(Rn) has the following Carleson measure characterization.

Theorem 2.2. ([18, p. 2462]). Given φ be a function satisfying the above condi-
tions (2.1). Let α > 0 and max{α, 1/2} < β < 1 with α+ β − 1 ≥ 0. f ∈ Q

β
α(Rn)

if and only if

sup
x∈Rn,r∈(0,∞)

r2α−n+2β−2

∫ r

0

∫
|y−x|<r

|f ∗ φt(y)|2t−(1+2(α−β+1))dtdy <∞,

that is, dμf,φ,α,β(t, x) = |(f ∗ φt)(x)|2t−1−2(α−β+1)dtdx is a 1 − 2(α+ β − 1)/n−
Carleson measure.

The main tool for the Carleson measure characterization ofQβα(Rn) is the following
fractional tent spaces.

Definition 2.3. For α > 0 and max{α, 1/2} < β < 1 with α + β − 1 ≥ 0, we
define T∞

α,β be the class of all Lebesgue measurable functions f on Rn+1
+ with

‖f‖T∞
α,β

= sup
B⊂Rn

(
1

|B|1−2(α+β−1)/n

∫
T (B)

|f(t, y)|2 dtdy

t1+2(α−β+1)

)1/2

<∞.

In order to define the dual of T∞
α,β, we need the following T

1
α,β−atoms.

Definition 2.4. For α > 0 and max{α, 1/2} < β < 1 with α + β − 1 ≥ 0, a
function a on Rn+1

+ is said to be a T 1
α,β−atom provided there exists a ball B ⊂ Rn

such that a is supported in the tent T (B) and satisfies∫
T (B)

|a(t, y)|2 dtdy

t1−2(α−β+1)
≤ 1

|B|1−2(α+β−1)/n
.

We denote by dΛ∞
n−2(α+β−1) the n−2(α+β −1) dimensional Hausdorff capacity

of a set E and refer to [12] for the details of the Hausdorff capacity. For x ∈ Rn,
let Γ(x) =

{
(y, t) ∈ Rn+1

+ : |x− y| < t
}
be the cone at x. Define the non-tangential

maximal function N (f) of a measurable function f on Rn+1
+ by

N (f)(x) := sup
(y,t)∈Γ(x)

|f(y, t)|.

The dual of T∞
α,β is defined as follows.
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Definition 2.5. For α > 0 and max{α, 1/2} < β < 1 with α + β − 1 ≥ 0, the
space T 1

α,β consists of all measurable functions f on Rn+1
+ with

‖f‖T 1
α,β

= inf
ω

(∫
R

n+1
+

|f(x, t)|2ω−1(x, t)
dtdx

t1−2(α−β+1)

)1/2

<∞,

where the infimum is taken over all nonnegative Borel measurable functions ω on R
n+1
+

with ∫
Rn
NωdΛ∞

n−2(α+β−1) ≤ 1

and with the restriction that ω is allowed to vanish only where f vanishes.

The above tent spaces and their dualities can be seen as the generalization of the
usual one. For β = 1, T∞

α,β and T
1
α,β coincide with T

∞
α and T 1

α, respectively which
are introduced in [12]. For α = 0 and β = 1, T∞

α,β becomes the classical tent space
T∞ in [9].
Let φ satisfy the conditions (2.1). For a function F on Rn+1

+ , denote by Πφ the
operator

(2.2) Πφ(F ) =
∫ ∞

0
F (·, t) ∗ φt dt

t
.

In [18], we proved that Πφ is a bounded and surjective operator from T∞
α,β to Q

β
α.

Theorem 2.6. ([18, Theorem 3.20]). Consider the operator Πφ defined by (2.2).
The operator Πφ is a bounded and surjective operator from T∞

α,β to Q
β
α(Rn). More

precisely, if F ∈ T∞
α,β then the righthand side of the above integral converges to

a function f ∈ Qβα(Rn), ‖f‖
Q

β
α

� ‖F‖T∞
α,β
, and any f ∈ Qβα(Rn) can be thus

represented.

3. BOUNDEDNESS OF THE SINGULAR INTEGRAL OPERATORSON Q-TYPE SPACES Qβα

In this section, we will prove a class of singular integral operators are bounded on
Q-type spaces Qβα(Rn). Our method is based on the characterizations of Qβα(Rn) and
the Morrey space L2,λ associated to the fractional heat semigroup e−t(−Δ)β . Before
we state the main results in this section, we give a relation between Qβα(Rn), a class of
conformally invariant Sobolev spaces and the fractional BMO type spaceBMOβ(Rn).

Definition 3.1. Let β ∈ (1/2, 1). Then f ∈ BMOβ(Rn) if and only if

sup
I

(
(l(I))4β−4−2n

∫
I

∫
I
|f(x)− f(y)|2dxdy

)1/2

<∞,

where the supremum is taken over all cubes I with the edge length l(I) and the edges
parallel to the coordinate axes in Rn.
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In [28], J.Xiao proved thatQα(Rn) is a space between the Sobolev spaceW 1,n(Rn)
and BMO(Rn). In this section we prove that a similar relation holds for Qβα(Rn) and
BMOβ(Rn). For this purpose, we introduce a conformally invariant Sobolev space
CISβ(Rn).

Definition 3.2. Let β ∈ (1/2, 1) and f ∈ C1(Rn). f ∈ CISβ(Rn) if

‖f‖CISβ
= sup

I

(
|I | 4β−2−n

n

∫
I
|∇f(x)|2dx

)1/2

<∞,

where the supremum is taken over all cubes I with the edge length l(I) and the edges
parallel to the coordinate axes in Rn.

Theorem 3.3. Let n ≥ 2 and max{α.1/2} < β < 1 with α + β − 1 ≥ 0. If

Eβ(Rn) =

{
f ∈ C1(Rn) : ‖f‖Eβ

=
(∫

Rn

|∇f(x)| n
2β−1 dx

)2β−1
n

}
,

then
Eβ(Rn) ⊆ CISβ(Rn) ⊆ Qβα(R

n) ⊆ BMOβ(Rn).

Proof. If n ≥ 2, by Hölder’s inequality, we have for any cube I ⊂ Rn,∫
I
|∇f(x)|2dx ≤

(∫
I
|∇f(x)| n

2β−1 dx

)4β−2
n

|I | 4β−n−2
n .

This implies Eβ(Rn) ⊆ CISβ(Rn).
Now we prove CISβ(Rn) ⊆ Qβα(Rn). For a cube I ⊂ Rn, denote by cI the cube

with volume being cn|I | and the center of I . For f ∈ CISβ(Rn), we have

|f(z + y)− f(y)| ≤
∫ 1

0

|∇f(y + tz)| |z|dt.
Hence we can get(∫

I

∫
I

|f(x)− f(y)|2
|x− y|n+2α−2β+2

dxdy

)1/2

=

(∫
I

∫
I

( |f(x)− f(y)|
|x− y|

)2 1
|x− y|n+2α−2β

dxdy

)1/2

≤
(∫

I

∫
|x−y|<√

n|I|1/n

( |f(x) − f(y)|
|x− y|

)2

|x− y|2β−n−2αdxdy

)1/2

≤
(∫

I

∫
|z|<√

n|I|1/n

( |f(z + y) − f(y)|
|z|

)2

|z|2β−n−2αdzdy

)1/2
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=

(∫
I

∫
|z|<√

n|I|1/n

(∫ 1

0

|∇f(y + tz)|dt
)2

|z|2β−n−2αdzdy

)1/2

≤
∫ 1

0

(∫
I

∫
|z|<√

n|I|1/n
|∇f(y + tz)|2|z|2β−n−2αdzdy

)1/2

dt

≤
∫ 1

0

(∫
(1+

√
n)I

∫
|z|<√

n|I|1/n
|∇f(ω)|2|z|2β−n−2αdzdω

)1/2

dt.

Because∫
|z|<√

n|I|1/n
|z|2β−2α−ndz ≤

∫
|z|<√

n|I|1/n
|z|2β−2α−1d|z| ≤ C|I | 2β−2α

n ,

we have(∫
I

∫
I

|f(x)− f(y)|2
|x− y|n+2α−2β+2

dxdy

)1/2

≤ C

∫ 1

0

[∫
(1+

√
n)I

|∇f(ω)|2|I | 2β−2α
n dω

]1/2

dt

= C|I | β−α
n

(∫
(1+

√
n)I

|∇f(ω)|2dω
)1/2

.

Hence we get (
|I | 2α−n+2β−2

n

∫
I

∫
I

|f(x)− f(y)|2
|x− y|n+2α−2β+2

dxdy

)1/2

≤ |I | 2α−n+2β−2
2n |I | β−α

n

(∫
(1+

√
n)I

|∇f(ω)|2dω
)1/2

≤ |I | 4β−n−2
2n

(∫
(1+

√
n)I

|∇f(ω)|2dω
)1/2

.

By Definition 2.1, we know that CISβ(Rn) ⊆ Qβα(Rn). This completes the proof of
Theorem 3.3.

Recall that Morrey space Lp,λ(Rn) is defined as follows.

(3.1) ‖f‖Lp,λ
= sup

I

(
(l(I))−λ

∫
I
|f(x)− fI |pdx

)1/p

<∞.

We see that if λ = n, Lp,λ(Rn) = BMO(Rn) by John-Nirenberg inequality. Owing
to BMO(Rn) is a special case of Qα(Rn), it is natural to ask if there exists a general
relation between Lp,λ(Rn) and Qα(Rn). In [28], by a characterization of Lp,λ(Rn)
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associated to the semigroup e−t(−Δ), J. Xiao established such a relation. Precisely he
proved that for α ∈ (0, 1), Qα(Rn) = (−Δ)−

α
2 L2,n−2α(Rn).

Following Xiao’s idea in [28], we will prove that a similar result holds for the
space Qβα(Rn). At first we prove an equivalent characterization of L2,n−2γ(Rn) via
the semigroup e−t(−Δ)β . Here e−t(−Δ)β denotes the convolution operator defined by
Fourier transform:

̂e−t(−Δ)βf(ξ) = e−t|ξ|
2β
f̂(ξ).

Lemma 3.4. Given γ ∈ (0, 1). Let f be a measurable complex-valued function on
Rn. Then f ∈ L2,n−γ(Rn) if and only if

sup
x∈Rn,r∈(0,∞)

r2γ−n
∫ r

0

∫
|y−x|<r

∣∣∣∇e−t2β(−Δ)β
f(y)

∣∣∣2 tdydt <∞.

Proof. Take (ψ0)t(x) = t∇e−t2β (−Δ)β
(x, 0) with the Fourier symbol ̂(ψ0)t(x)(ξ)

= t|ξ|e−t2β |ξ|2β . For a ball B = {y ∈ Rn : |y − x| < r}, the mean of f on 2B is
defined by f2B = 1

|2B|
∫
2B f(x)dx . We split f into f = f1 + f2 + f3, where

f1 = (f − f2B)χ2B, f2 = (f − f2B)χ(2B)c and f3 = f2B. Because∫
(ψ0)t(x)dx =

∫
t∇e−t2β (−Δ)β

(x, 0)dx = 0,

we have

t∇e−t2β(−Δ)β
f(y) = (ψ0)t ∗ f(y) = (ψ0)t ∗ f1(y) + (ψ0)t ∗ f2(y).

It is easy to see that∫ r

0

∫
B
|(ψ0)t ∗ f1(y)|2 dydt

t
�

∫ r

0

∫
Rn

|(ψ0)t ∗ f1(y)|2 dydt
t

=

∥∥∥∥∥
(∫ ∞

0
|(ψ0)t ∗ f1(·)|2 dt

t

)1/2
∥∥∥∥∥
L2(dy)

.

Because (ψ0)1 = ∇e−(−Δ)β , we have
∫
(ψ0)1(x)dx = 1 and (ψ0)1 belongs to the

Schwartz class S . Also the function

G(f) =
(∫ ∞

0
|(ψ0)t ∗ f1(y)|2 dt

t

)1/2

is a Littlewood-Paley g-function. So we can get∫ r

0

∫
B
|(ψ0)t ∗ f1(y)|2 dydt

t
�
∫

2B
|f(y)− f2B|2 dy

� rn−2γ‖f‖2
L2,n−2γ

.
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Now we estimate the term associated with f2(y). Because

|(ψ0)t ∗ f2(y)| =
∣∣∣∣∫

Rn

t∇e−t2β(−Δ)β
(y − z)f2(z)dz

∣∣∣∣
�
∫

Rn\2B

∣∣∣t∇e−t2β (−Δ)β
(y − z)

∣∣∣ |f(z) − f2B | dz

�
∫

Rn\2B

t|f(z)− f2B|
tn+1(1 + t−1|z − y|)n+1

dz,

where in the last inequality we have used the following estimate:∣∣∣∇e−t(−Δ)β
(x, y)

∣∣∣ � 1

t
n+1
2β

1

(1 + t
− 1

2β |x− y|)n+1
.

Set Bk = B(x, 2k). For every (t, y) ∈ (0, r) × B(x, r), we have 0 < t < r and
|x− y| < r. If z ∈ Bk+1\Bk, we have |x− y| < |x− z|/2 and

|(ψ0)t ∗ f2(y)| �
∫

Rn\2B

t|f(z) − f2B|
(t+ |z − x|)n+1

dz

� t

∞∑
k=1

(2k+1r)n

(2kr)n+1

(
1

(2k+1r)n

∫
2k+1B

|f(z) − f2B|2dz
)1/2

� t

[ ∞∑
k=1

1
2kr

(
1

(2k+1r)n

∫
2k+1B

|f(z)− f2k+1B |2dz
)1/2

+
∞∑
k=1

1
2kr

|f2k+1B − f2B |
]

=: t(S1 + S2).

For S1, we have

S1 = t
∞∑
k=1

1
2kr

(
(2k+1r)n−2γ

(2k+1r)n
1

(2k+1r)n−2γ

∫
2k+1B

|f(z)− f2k+1B|2dz
)1/2

� t

∞∑
k=1

1
2kr

r−γ‖f‖L2,n−2γ

� tr−1−γ‖f‖L2,n−2γ .

For S2, we have

S2 � t

∞∑
k=1

1
2kr

[
|f2B − f4B| + · · ·+ |f2kB − f2k+1B|

]
.



Riesz Transform on Q-type Space 2117

For any j with 2 ≤ j ≤ k, it is easy to see that

|f2jB − f2j+1B| � 1
|2jB|

∫
2jB

|f(z)− f2j+1B|dz

�
(

1
|2jB|

∫
2jB

|f(z)− f2j+1B|2dz
)1/2

� r−γ‖f‖L2,n−2γ .

Then we have

S2 � t
∞∑
k=1

1
2kr

k · r−γ‖f‖L2,n−2γ � tr−1−γ‖f‖L2,n−2γ .

Therefore, we can get∫ r

0

∫
B
|(ψ0)t ∗ f2(y)|2 t−1dydt �

∫ r

0

∫
B
t2r−2γ−2‖f‖2

L2,n−2γ
dydt

� ‖f‖2
L2,n−2γ

r−2γ−2|B|
∫ r

0
tdt

� rn−2γ‖f‖2
L2,n−2γ

.

For the converse, let S(I) = {(t, x) ∈ Rn+1
+ , 0 < t < l(I), x ∈ I} if f such that

sup
I

[l(I)]2γ−n
∫
S(I)

∣∣∣t∇e−t2β (−Δ)β
f(y)

∣∣∣2 dydt
t

= sup
I

[l(I)]2γ−n
∫
S(I)

∣∣∣∇e−t2β (−Δ)β
f(y)

∣∣∣2 tdydt <∞.

Denote
Πψ0F (x) =

∫
R

n+1
+

F (t, y)(ψ0)t(x− y)
dydt

t
.

We will prove that if

‖F‖Cγ = sup
I

(
[l(I)]2γ−n

∫
S(I)

|F (t, y)|2 dydt
t

)1/2

<∞,

then for any cube J ⊂ Rn,∫
J
|Πψ0F (x) − (Πψ0F )J |2 dx � [l(J)]n−2γ‖F‖2

Cγ
.

For this purpose, we split F into F = F1 + F2 = F |S(2J) +F |Rn+1\S(2J) and get
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∫
J
|Πψ0F1(x)|2 dx ≤

∫
J
|Πψ0F1(x)|2 dx

≤
∫
S(2J)

|F (t, y)|2 dydt
t

� [l(J)]n−2γ‖F‖2
Cγ
.

Now we estimate the term associated with F2. We have∫
J
|Πψ0F1(x)|2 dx =

∫
J

∣∣∣∣∣
∫

R
n+1
+

(ψ0)t(x− y)F2(t, y)t−1dydt

∣∣∣∣∣
2

dx

�
∫
J

(∫
R

n+1
+ \S(2J)

|(ψ0)t(x− y)||F2(t, y)|dydt
t

)2

dx

=
∫
J

( ∞∑
k=1

∫
S(2k+1J)\S(2kJ)

|(ψ0)t(x− y)||F2(t, y)|dydt
t

)2

dx.

Because (ψ0)t satisfies the estimate

|(ψ0)t(x− y)| � t

tn+1(1 + t−1|x− y|)n+1
,

we have∫
J
|Πψ0F1(x)|2 dx �

∫
J

( ∞∑
k=1

∫
S(2k+1J)\S(2kJ)

t

[t+ 2kl(J)]n+1
|F2(t, y)|dydt

t

)2

dx

�
∫
J

( ∞∑
k=1

(2kl(J))−(n+1)

∫
S(2k+1J)\S(2kJ)

|F2(t, y)|dydt
)2

dx

� ‖F‖2
Cγ

[l(J)]n−2γ .

Therefore, we get∫
J
|Πψ0F (x) − (Πψ0F )J |2 dx ≤

∫
J
|Πψ0F (x)|2 dx

�
∫
J
|Πψ0F1(x)|2 dx+

∫
J
|Πψ0F2(x)|2 dx

� ‖F‖2
Cγ

[l(J)]n−2γ.

Because
Πψ0F (x) =

∫
(ψ0)t ∗ (ψ0)t ∗ f dt

t
,

by Calderón’s reproducing formula, we have Πψ0F (x) = f(x), that is, f(x) =
Πψ0F (x) ∈ L2,n−2γ . This completes the proof of Lemma 3.4.
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Theorem 3.5. For α > 0, max{α, 1
2} < β < 1 with α+ β − 1 ≥ 0, we have

Qβα(Rn) = (−Δ)−
(α−β+1)

2 L2, n−2(α+β−1)(R
n).

Proof. For f ∈ L2, n−2(α+β−1), let F (t, y) = tα−β+1t∇e−t2β(−Δ)β
f(y). By

Lemma 3.4, we have

r2(α+β−1)−n
∫ r

0

∫
|y−x|<r

|F (t, y)|2 dydt

t1+2(α−β+1)

� r2(α+β−1)−n
∫ r

0

∫
|y−x|<r

|tα−β+1t∇e−t2β(−Δ)β
f(y)|2 dydt

t1+2(α−β+1)

� r2(α+β−1)−n
∫ r

0

∫
|y−x|<r

|t∇e−t2β(−Δ)β
f(y)|2dydt

t

� ‖f‖L2, n−2(α+β−1)
.

This implies F ∈ T∞
α,β. By Theorem 2.6, Πψ0 is bounded from T∞

α,β to Q
β
α(Rn).

Therefore we have
‖f‖

Qβ
α

= ‖Πψ0F‖Qβ
α

� ‖F‖T∞
α,β
.

Because F̂ (t, ξ) = tα−β+2|ξ|e−t2β |ξ|2β
f̂ (ξ), we have

Π̂ψ0F (ξ) =
∫ ∞

0
F̂ (t, ξ)(̂ψ0)t(ξ)

dt

t

=
∫ ∞

0

tα−β+2|ξ|e−t2β |ξ|2β
t|ξ|e−t2β |ξ|2β

f̂(ξ)
dt

t

= |ξ|2f̂(ξ)
∫ ∞

0
tα−β+2e−t

2β |ξ|2β
dt.

Set t2β = s and |ξ|2βs = u. We can get

Π̂ψ0F (ξ) =
∫ ∞

0
s

α−β+2
2β e−2s|ξ|2β

s
1
2β

−1
dsf̂(ξ)|ξ|2

= f̂(ξ)|ξ|2
∫ ∞

0
(u|ξ|−2β)

α−β+3
2β

−1
e−u|ξ|−2βdu

= f̂(ξ)|ξ|2|ξ|−(α−β+3)+2β−2β

∫ ∞

0
u

α−β+3
2β

−1
e−2udu.

Because 1
2 < β < 1 and 0 < α < β, the integral

∫∞
0 u

α−β+3
2β

−1
e−2udu < ∞. We

denote it by Cα,β and get

Π̂ψ0F (ξ) = Cα,βf̂(ξ)|ξ|−(α−β+1).
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By the inverse Fourier transform, we have

Πψ0F (x) = Cα,β(−Δ)−
α−β+1

2 f(x).

Conversely, suppose g ∈ Qβα(Rn). Set G(t, y) = t1−(α−β+1)∇e−t2β(−Δ)β
g(y). We

have, by the equivalent characterization of Qβα(Rn) (see [18] for details),(
[l(I)]2(α+β−1)−n

∫
S(I)

∣∣∣t1−2(α−β+1)∇e−t2β(−Δ)β
g(y)

∣∣∣2 dydt
t

)1/2

=

(
[l(I)]2(α+β−1)−n

∫
S(I)

∣∣∣t∇e−t2β (−Δ)β
g(y)

∣∣∣2 dydt

t1+2(α−β+1)

)1/2

� ‖g‖
Qβ

α(Rn)
,

that is, G(t, y) ∈ Cα+β−1. By Lemma 3.4, we have Πψ0G(t, y) ∈ L2, n−2(α+β−1).
Hence we get

f̂ (ξ) = Π̂ψ0G(t, ξ)

=
∫ ∞

0

t|ξ|e−t2β |ξ|2β
t1−(α−β+1)|ξ|e−t2β|ξ|2β

ĝ(ξ)
dt

t

= Cα,β |ξ|1+(α−β)ĝ(ξ)

= Cα,β
̂

((−Δ)
α−β+1

2 g)(ξ).

Then f(x) = Cα,β(−Δ)
α−β+1

2 g. This completes the proof of this theorem.

Based on the above theorem, we can deduce the boundedness of the convolution
singular integral operators on Qβα(Rn) directly and state this result as the following
theorem.

Theorem 3.6. Let T be a singular operator defined by

Tf(x) =
∫

Rn

K(x− y)f(y)dy,

where the kernel K(x) satisfies

|∂γxK(x)| ≤ Aγ |x|−n−γ , (γ > 0).

Or equivalently, let T̂ f(ξ) = m(ξ)f̂(ξ), where the symbol m(ξ) satisfies

|∂γξm(ξ)| ≤ Aγ′ |ξ|−γ

for all γ . Suppose α > 0, max{α, 1
2} < β < 1 with α + β − 1 ≥ 0. We have T is

bounded on the Q−type spaces Qβα(Rn).
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Proof. It is well-known that the singular integral operator T is bounded on
the Morrey space L2, n−2(α+β−1)(Rn). Moreover as a convolution operator, T can

commutate with the fractional Laplace operator (−Δ)−
(α−β+1)

2 . By Theorem 3.5, we
complete the proof of this theorem.

Specially, taking T = Rj, j = 1, 2, · · · , n as the Riesz transforms, we have the
following corollary.

Corollary 3.7. Suppose α > 0, maxα, 1
2 < β < 1 with α + β − 1 ≥ 0. For

j = 1, 2, . . . , n, the Riesz transforms Rj = ∂j(−Δ)−1/2 are bounded on the Q−type
spaces Qβα(Rn).

Remark 3.8. There exists another method to prove Theorem 3.6. In fact we can
get the boundedness of T on Qβα(Rn) directly by its characterization associated to
e−t(−Δ)β . In Section 4, this method can be applied to study the well-posedness of the
equations (DQG)β with the initial data in Qβ,−1

α (Rn). See Lemma 4.5.

4. WELL-POSEDNESS AND REGULARITY OF QUASI-GEOSTROPHIC EQUATION

In this section, we study the well-posedness and regularity of quasi-geostrophic
equation with initial data in the spaceQβα(R2). We introduce the definition of Xβ

α(Rn).

Definition 4.1. The space Xβ
α(Rn) consists of the functions which are locally

integrable on (0,∞)× R2 such that sup
t>0

t
1− 1

2β ‖f(t, ·)‖
Ḃ

0,1
∞
<∞ and

sup
x∈R2, r>0

r2α−n+2β−2

∫ r2β

0

∫
|y−x0|<r

|f(t, y)|2 + |R1f(t, y)|2 + |R2f(t, y)|2dydt
tα/β

<∞,

where Rj, j = 1, 2 denote the Riesz transforms in R2.

For the quasi-geostrophic dissipative equations

(4.1)

{
∂tθ = −(−Δ)β + ∂1(θR2θ) − ∂2(θR1θ),

θ(0, x) = θ0(x),

where β ∈ ( 1
2 , 1). The solution to equations (4.1) can be represented as

u(t, x) = e−t(−Δ)β
u0 + B(u, u),

where the bilinear form B(u, v) is defined by

B(u, v) =
∫ t

0
e−(t−s)(−Δ)β

(∂1(vR2u)− ∂2(vR1u))ds.

In order to prove the well-posedness, we need the following preliminary lemmas. For
their proofs, we refer the readers to Lemma 4.8 and Lemma 4.9 in [18].
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Lemma 4.2. ([18, Lemma 4.8 ]). Given α ∈ (0, 1). For a fixed T ∈ (0,∞] and a
function f(t, x) on R1+n

+ , let A(t) =
∫ t
0 e

−(t−s)(−�)β
(−�)βf(s, x)ds. Then

(4.2)
∫ T

0
‖A(t, ·)‖2

L2

dt

tα/β
�
∫ T

0
‖f(t, ·)‖2

L2

dt

tα/β
.

Lemma 4.3. ([18, Lemma 4.9]). For β ∈ (1/2, 1) and N (t, x) defined on (0, 1)×
Rn, let A(N ) be the quantity

A(α, β, N ) = sup
x∈Rn,r∈(0,1)

r2α−n+2β−2

∫ r2β

0

∫
|y−x|<r

|f(t, x)|dxdt
tα/β

.

Then for each k ∈ N0 := N ∪ {0} there exists a constant b(k) such that the following
inequality holds:

(4.3)

∫ 1

0

∥∥∥∥tk
2 (−�)

kβ+1
2 e−

t
2
(−�)β

∫ t

0
N (s, ·)ds

∥∥∥∥2
L2

dt

tα/β

≤ b(k)A(α, β, N )
∫ 1

0

∫
Rn

|N (s, x)|dxds
sα/β

.

Remark 4.4. Similarly when k = 0, we can prove the following inequality:

(4.4)

∫ 1

0

∥∥∥∥(−�)
1
2 e−t(−�)β

∫ t

0
N (s, ·)ds

∥∥∥∥2

L2

dt

tα/β

� A(α, β, N )
∫ 1

0

∫
Rn

|N (s, x)|dxds
sα/β

.

Lemma 4.5. Assume α > 0 and max{α, 1/2} < β < 1 with α+ β − 1 ≥ 0. Let
Rj, j = 1, 2 be the Riesz transforms. Then for any x0 ∈ Rn,(

sup
r>0

r2α−n+2β−2

∫ r2β

0

∫
|y−x0|<r

|Rjf(t, y)|2dydt
tα/β

)1/2

�
(

sup
x∈Rn,r>0

r2α−n+2β−2

∫ r2β

0

∫
|y−x0|<r

|f(t, y)|2dydt
tα/β

)1/2

.

Proof. We split f(t, y) into

f(t, y) = f0(t, y) +
∞∑
k=1

fk(t, y),

where f0(t, y) = f(t, y)χB(x0,2r)(y) and fk(t, y)χB(x0,2k+1r)\B(x0,2kr)(y). We have
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(
r2α−n+2β−2

∫ r2β

0

∫
|y−x0|<r

|Rjf(t, y)|2dydt
tα/β

)

≤
(
r2α−n+2β−2

∫ r2β

0

∫
|y−x0|<r

|Rjf0(t, y)|2dydt
tα/β

)

+
∞∑
k=1

(
r2α−n+2β−2

∫ r2β

0

∫
|y−x0|<r

|Rjfk(t, y)|2dydt
tα/β

)

=: M0 +
∞∑
k=1

Mk.

By the L2 boundedness of Riesz transforms Rj, j = 1, 2, we have

M0 �
(
r2α−n+2β−2

∫ r2β

0

∫
|y−x0|<r

|f(t, y)|2dydt
tα/β

)

� C sup
x∈Rn,r>0

(
r2α−n+2β−2

∫ r2β

0

∫
|y−x0|<r

|f(t, y)|2dydt
tα/β

)
.

Now we estimate the terms Mk. We only need to estimate the integral as follows.

I =
∫
|y−x0|<r

|Rjfk(t, y)|2dy.

As a singular integral operator,

Rjg(x) =
∫

Rn

xj − yj
|xj − yj|n+1

g(y)dy.

By Hölder’s inequality, we can get

I =
∫
|y−x0|<r

∣∣∣∣∣
∫

2kr≤|z−x0 |<2k+1r

yj − zj
|y − z|n+1

f(t, z)dz

∣∣∣∣∣
2

dy

�
∫
|y−x0|<r

(
1

(2kr)n

∫
|z−x0|<2k+1r

|f(t, z)|dz
)2

dy

� 1
2kn

∫
|z−x0 |<2k+1r

|f(t, z)|2dz.

So we have

Mk =

(
r2α−n+2β−2

∫ r2β

0

∫
|y−x0|<r

|Rjfk(t, y)|2dydt
tα/β

)1/2
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�
(

2−k(2α−n+2β−2) 1
2kn

(2kr)2α−n+2β−2

∫ r2β

0

∫
|z−x0|<2k+1r

|f(t, z)|2dydt
tα/β

)1/2

�
(
2−k(2α−n+2β−2) 1

2kn

)1/2

sup
x0∈Rn,r>0

(
r2α−n+2β−2

∫ r2β

0

∫
|z−x0|<r

|f(t, z)|2dzdt
tα/β

)1/2

.

Therefore we can get

M0 +
∞∑
k=1

Mk

�
[
1 +

∞∑
k=1

2−k(α+β−1)

]
sup

x0∈Rn,r>0

(
r2α−n+2β−2

∫ r2β

0

∫
|z−x0|<r

|f(t, z)|2dydt
tα/β

)
.

This completes the proof of Lemma 4.5.

Now we give the main result of this section.

Theorem 4.6. (Well-posedness).

(i) The subcritical quasi-geostrophic equation (4.1) has a unique small global mild
solution in (Xβ

α(R2))2 for all initial data θ0 with ∇·θ = 0 and ‖u0‖Qβ,−1
α

being
small.

(ii) For any T ∈ (0,∞), there is an ε > 0 such that the quasi-geostrophic equation
(4.1) has a unique small mild solution in (Xβ

α(R2))2 on (0, T )× R2 when the
initial data u0 satisfies ∇ · u0 = 0 and ‖u0‖(Qβ,−1

α, T )2
≤ ε. In particular, for all

u0 ∈ (V Qβ,−1
α )2 with ∇·u0 = 0, there exists a unique small local mild solution

in (Xβ
α,T )2 on (0, T )× R2.

Proof. By the Picard contraction principle we only need to prove the bilinear
form B(u, v) is bounded on Xβ

α . We split the proof into two parts.

Part I. Ḃ0,1∞ −boundedness. The proof of this part has been given in [19]. For
completeness, we give the details. We have

‖B(u, v)‖Ḃ0,1∞ �
∫ t

0
‖e−(t−s)(−Δ)β

(∂1(gR2f) − ∂2(gR1f))‖Ḃ0,1∞ ds

�
∫ t

0

Cβ

(t− s)
1
2β s

1+(1− 1
β

)
s1−

1
2β ‖u‖

Ḃ0,1∞
s1−

1
2β ‖v‖

Ḃ0,1∞
ds

� ‖u‖
Xβ

α
‖v‖

Xβ
α

∫ t

0

ds

(t− s)
1
2β s1+(1− 1

β
)
.
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Because when 1
2 < β < 1,∫ t/2

0

1

(t− s)
1
2β s

1+(1− 1
β
)
ds � t

1
2β

−1

and ∫ t

t/2

1

(t− s)
1
2β s

1+(1− 1
β

)
ds � t−2+ 1

β

∫ t

t/2

1

(t− s)
1
2β

ds � t
1
2β

−1.

Then we can get
t1−

1
2β ‖B(u, v)‖

Ḃ0,1∞
� ‖u‖

Xβ
α
‖v‖

Xβ
α
,

where in the above estimates we have used the fact that ‖Rjf‖Ḃ0,1∞
� ‖f‖

Ḃ0,1∞
for

f ∈ Ḃ0,1∞ . In fact by Bernstein’s inequality, we have∑
l

‖ΔlRjf‖L∞ =
∑
l

‖∂j(−Δ)−1/2Δlf‖L∞

�
∑
l

2l‖(−Δ)−1/2Δlf‖L∞

�
∑
l

2l2−l‖Δlf‖L∞

≤ ‖f‖
Ḃ0,1∞

.

On the other hand, by Young’s inequality, we have

t
1− 1

2β ‖e−t(−Δ)β
u0‖Ḃ0,1

∞
� ‖u0‖Ḃ1−2β,∞∞

≤ ‖u0‖Qβ,−1
α

.

Part II. L2-boundedness. This part contributes to the operation of B(u, v) on the
Carleson part of Xβ

α . We split again the estimate into two steps.

Step I. We want to prove the following estimate:

r2α−2+2β−2

∫ r2β

0

∫
|x−y|<r

|B(u, v)|2dydt
tα/β

� ‖u‖
Xβ

α
‖v‖

Xβ
α
.

By symmetry, we only need to deal with the term∫ t

0
e−(t−s)(−Δ)β

[∂1(vR1u)]ds = B1(u, v) +B2(u, v) +B3(u, v),

where
B1(u, v) =

∫ t

0
e−(t−s)(−Δ)β

∂1[(1− 1r,x)vR1u]ds,

B2(u, v) = (−Δ)−1/2∂1

∫ t

0
e−(t−s)(−Δ)β

(−Δ)((−Δ)1/2(I−e−s(−Δ)β
)(1r,x)vR1u)ds
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and
B3(u, v) = (−Δ)−1/2∂1(−Δ)1/2e−t(−Δ)β

∫ t

0

(1r,x)vR1uds.

For B1, it can be proved that the fractional heat kernel satisfies the following estimate
([20]):

(4.5) |∇e−t(−Δ)β
(x, y)| � 1

t
n+1
2β

1(
1 + |x−y|

t1/2β

)n+1
� 1

(t
1
2β + |x− y|)n+1

.

For 0 < t < r2β, taking n = 2 in (4.5), we have

|B1(u, v)(t, x)|
�
∫ t

0

∫
|z−x|≥10r

|R1u(s, z)||v(s, z)|
|x− z|2+1

dzds

�
(∫ r2β

0

∫
|z−x|≥10r

|R1u(s, z)|2
|x− z|3 dzds

)1/2(∫ r2β

0

∫
|z−x|≥10r

|v(s, z)|2
|x− z|3 dzds

)1/2

:= I1 × I2.

For I1, we have

I1 �
( ∞∑
k=3

1
(2kr)3

∫ r2β

0

∫
|x−z|≤2k+1r

|R1u(s, x)|2dsdx
)1/2

�
( ∞∑
k=3

1
(2kr)3

(2kr)2α+2β−2(2kr)2−2β

∫ r2β

0

∫
|x−z|≤2k+1r

|R1u(s, x)|2dsdx
sα/β

)1/2

� ‖u‖
Xβ

α

( ∞∑
k=3

1
2k(2β−1)

1
r2β−1

)1/2

�
(

1
r2β−1

)1/2

‖u‖
Xβ

α
.

Similarly, we can get I2 �
(

1
r2β−1

)1/2 ‖v‖
Xβ

α
and |B1(u, v)| � 1

r2β−1 ‖u‖Xβ
α
‖v‖

Xβ
α
.

Then we have∫ r2β

0

∫
|x−y|<r

|B1(u, v)|2dydt
tα/β

� 1
r4β−2

r2
∫ r2β

0

dt

tα/β
‖u‖2

X
β
α
‖v‖2

X
β
α

� 1
r4β−2

r2r2β−2α‖u‖2
Xβ

α
‖v‖2

Xβ
α

� r2−2α−2β+2‖u‖2
X

β
α
‖v‖2

X
β
α
,

where in the second inequality we have used the fact 0 < α < β. That is to say
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r2α−2+2β−2

∫ r2β

0

∫
|x−y|<r

|B1(u, v)(t, y)|2dydt
tα/β

� ‖u‖2
X

β
α
‖v‖2

X
β
α
.

For B2, by the L2−boundedness of Riesz transform, we have∫ r2β

0

∫
|x−y|<r

|B2(u, v)|2dydt
tα/β

�
∫ rβ

0

∥∥∥∥∫ t

0
e−(t−s)(−Δ)β

(−Δ)((−Δ)−1/2(I − e−s(−Δ)β
)(1r,x)vR1u)ds

∥∥∥∥2

L2

dt

tα/β

�
∫ rβ

0

∥∥∥∥∫ t

0
e−(t−s)(−Δ)β

(−Δ)β((−Δ)1/2−β(I − e−s(−Δ)β
)(1r,x)vR1u)ds

∥∥∥∥2

L2

dt

tα/β

�
∫ r2β

0
t
2− 1

β

∫
|y−x|<r

|R1u(t, y)|2|v(t, y)|2dydt
tα/β

�
(

sup
t>0

t
1− 1

2β ‖R1u(t, ·)‖L∞

)(
sup
t>0

t
1− 1

2β ‖v(t, ·)‖L∞

)
∫ r2β

0

∫
|y−x|<r

|R1u(t, y)||v(t, y)|dtdy
tα/β

.

On one hand, by Bernstein’s inequality, we have

‖R1u(t, ·)‖L∞ ≤ ‖R1u(t, ·)‖Ḃ0,1
∞

� ‖u(t, ·)‖Ḃ0,1
∞
.

Then we get
sup
t>0

t1−
1
2β ‖R1u(t, ·)‖L∞ � sup

t>0
t1−

1
2β ‖u(t, ·)‖

Ḃ0,1∞
.

On the other hand, we have, by Hölder’s inequality,∫ r2β

0

∫
|x−y|<r

|R1u(t, y)||v(t, y)|dtdy
tα/β

�
(∫ r2β

0

∫
|y−x|<r

|R1u(t, y)|2dtdy
tα/β

)1/2(∫ r2β

0

∫
|y−x|<r

|v(t, y)|2dtdy
tα/β

)1/2

� r2−2α−2β+2‖u‖2
Xα

α
‖v‖2

Xα
α
.

Hence we get∫ r2β

0

∫
|x−y|<r

|B2(u, v)(t, y)|2dydt
tα/β

� r2−2α−2β+2‖u‖2
Xβ

α
‖v‖2

Xβ
α
.

For B3(u, v), we have



2128 Pengtao Li and Zhichun Zhai

∫ r2β

0

∫
|y−x|<r

|B3(u, v)(t, y)|2dydt
tα/β

=
∫ r2β

0

∫
|y−x|<r

∣∣∣∣(−Δ)−1/2∂1(−Δ)1/2e−t(−Δ)β

(∫ t

0

(1r,x)vR1udh

)∣∣∣∣2 dydttα/β

�
∫ r2β

0

∥∥∥∥(−Δ)1/2e−t(−Δ)β

(∫ t

0
(1r,x)vR1udh

)∥∥∥∥ dt

tα/β

� r2−2α+6β−2

(∫ 1

0
‖M(r2βs, r·)‖L1

ds

sα/β

)
C(α, β, f)

� r2−2α+6β−2r2−4βr2−4β‖u‖
X

β
α
‖v‖

X
β
α

� r2−2α−2β+2‖u‖
Xβ

α
‖v‖

Xβ
α
.

Step II. For j = 1, 2, we want to prove

(4.6) r2α−2+2β−2

∫ r2β

0

∫
|x−y|<r

|RjB(u, v)|2dydt
tα/β

� ‖u‖
Xβ

α
‖v‖

Xβ
α
,

whereRj are the Riesz transforms ∂j(−Δ)−1/2. Similar to Step I, we can splitB(u, v)
into Bi(u, v), i = 1, 2, 3. We denote by Ai, i = 1, 2, 3

(4.7) Ai := r2α−2+2β−2

∫ r2β

0

∫
|x−y|<r

|RjBi(u, v)|2dydt
tα/β

� ‖u‖
Xβ

α
‖v‖

Xβ
α
.

In order to estimate the term A1, we need the following lemma.

Lemma 4.7. For β > 0, if we denote byKβ
j the kernel of the operator e−t(−Δ)β

Rj ,
we have

(1 + |x|)n+|α|∂αe−t(−Δ)β
Rj ∈ L∞.

Proof. By the Fourier transform, we have Kβ
j = F−1( ξj|ξ|e

−|ξ|2β
), where F−1

denotes the inverse Fourier transform. Because[
∂αKβ

j (x)
]̂

(ξ) =
ξj
|ξ| |ξ|

αe−|ξ|2β ∈ L1,

we have
|∂αKβ

j (x)| ≤
∫

R2

∣∣∣∣ ξj|ξ| |ξ|αe−|ξ|2β

∣∣∣∣ dξ ≤ C.

Then ∂αKβ
j (x) ∈ L∞. If |x| ≤ 1, we have

(1 + |x|)n+|α||Kβ
j (x)| � Cα|Kβ

j (x)| � C.
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If |x| > 1, by Littlewood-Paley decomposition and write

Kβ
j (x) = (Id− S0)K

β
j +

∑
l<0

ΔlK
β
j ,

where (Id−S0)K
β
j ∈S(Rn) and ΔlK

β
j = 22lωj,l(2lx) where ω̂j,l(ξ)=ψ(ξ) ξj|ξ|e

−|2lξ|2β

∈ L1. Then ωj,l(x)(l<0) are a bounded set in S(Rn). So we have

(1 + 2l|x|)N2l(2+|α|)|∂αΔlK
β
j (x)| � CN

and

|∂αS0K
β
j (x)| � C

∑
2l|x|≤1

2l(2+|α|) +
∑

2l|x|>1

2l(2+|α|−N)|x|−N

� C|x|−(2+|α|).

This completes the proof of Lemma 4.7

Now we complete the proof of Theorem 4.6. In Lemma 4.7, we take α = 1 and
get ∣∣∣∂xRje−t(−Δ)β

(x, y)
∣∣∣ � 1

(t
1
2β + |x− y|)n+1

.

Similar to the proof in Part I, we can get

A1 := r2α−2+2β−2

∫ r2β

0

∫
|x−y|<r

|RjB1(u, v)|2dydt
tα/β

� ‖u‖
Xβ

α
‖v‖

Xβ
α
.

By Lemma 4.5, we know

r2α−2+2β−2

∫ r2β

0

∫
|y−x0|<r

|Rjf(t, y)|2 dydt
tα/β

� sup
r>0,x0∈Rn

r2α−2+2β−2

∫ r2β

0

∫
|y−x0|<r

|f(t, y)|2 dydt
tα/β

.

By the above estimate, we have

Ai := r2α−2+2β−2

∫ r2β

0

∫
|x−y|<r

|RjBi(u, v)|2dydt
tα/β

� r2α−2+2β−2

∫ r2β

0

∫
|x−y|<r

|Bi(u, v)|2dydt
tα/β

,

where i = 2, 3. Following the estimate to Bi, i = 2, 3, we can get

Ai := r2α−2+2β−2

∫ r2β

0

∫
|x−y|<r

|RjBi(u, v)|2dydt
tα/β

� ‖u‖
Xβ

α
‖v‖

Xβ
α
.
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This completes the proof of Theorem 4.6.

Following the method applied in Section 5 of [18], we can easily get the regularity
of the solution to the quasi-geostrophic equations (4.1). So we only state the result and
omit the details of the proof. For convenience of the study, we introduce a class of
spaces Xβ,k

α as follows.

Definition 4.8. For a nonnegative integer k and β ∈ (1/2, 1], we introduce the
space Xβ,k

α which is equipped with the following norm:

‖u‖
Xβ,k

α
= ‖u‖

Nβ,k
α,∞

+ ‖u‖
Nβ,k

α,C
,

where

‖u‖
Nβ,k

α,∞
= sup

α1+···+αn=k
sup
t
t

2β−1+k
2β ‖∂α1

x1
· · ·∂αn

xn
u(·, t)‖

Ḃ0,1∞
,

‖u‖
N

β,k
α,C

= sup
α1+···+αn=k

sup
x0,r(

r2α−n+2β−2

∫ r2β

0

∫
|y−x0|<r

|t k
2β ∂α1

x1
· · ·∂αn

xn
u(t, y)|2dydt

tα/β

)1/2

+
2∑
j=1

sup
α1+···+αn=k

sup
x0,r(

r2α−n+2β−2

∫ r2β

0

∫
|y−x0|<r

|Rjt
k
2β ∂α1

x1
· · ·∂αn

xn
u(t, y)|2dydt

tα/β

)1/2

.

Now we state the regularity result.

Theorem 4.9. Let α > 0 and max{α, 1/2} < β < 1 with α+ β − 1 ≥ 0. There
exists an ε = ε(n) such that if ‖u0‖Qβ,−1

α;∞
< ε, the solution u to equations (4.1)

verifies:
t

k
2β ∇ku ∈ Xβ,0

α for any k ≥ 0.
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