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GEOMETRY OF PR-WARPED PRODUCTS IN PARA-KÄHLER
MANIFOLDS

Bang-Yen Chen and Marian Ioan Munteanu

Abstract. In this paper, we initiate the study of PR-warped products in para-
Kähler manifolds and prove some fundamental results on such submanifolds. In
particular, we establish a general optimal inequality for PR-warped products
in para-Kähler manifolds involving only the warping function and the second
fundamental form. Moreover, we completely classify PR-warped products in the
flat para-Kähler manifold with least codimension which satisfy the equality case
of the inequality. Our results provide an answer to the Open Problem (3) proposed
in [19, Section 5].

1. INTRODUCTION

An almost para-Hermitian manifold is a manifold M̃ equipped with an almost
product structure P �= ±I and a pseudo-Riemannian metric g̃ such that

P2 = I, g̃(PX,PY ) = −g̃(X, Y ),(1.1)

for vector fields X , Y tangent to M̃ , where I is the identity map. Clearly, it follows
from (1.1) that the dimension of M̃ is even and the metric g̃ is neutral. An almost
para-Hermitian manifold is called para-Kähler if it satisfies ∇̃P = 0 identically, where
∇̃ denotes the Levi Civita connection of M̃ . We define ||X ||2 associated with g̃ on M̃
by ||X ||2 = g̃(X,X).

Properties of para-Kähler manifolds were first studied in 1948 by Rashevski who
considered a neutral metric of signature (m,m) defined from a potential function on
a locally product 2m-manifold [27]. He called such manifolds stratified spaces. Para-
Kähler manifolds were explicitly defined by Rozenfeld in 1949 [28]. Such manifolds
were also defined by Ruse in 1949 [29] and studied by Libermann [23] in the context
of G-structures.

Received August 23, 2011, accepted September 5, 2011.
Communicated by Jen-Chih Yao.
2010 Mathematics Subject Classification: 53B25, 53B30, 53C15, 53C20.
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There exist many para-Kähler manifolds, for instance, it was proved in [22] that a
homogeneous manifold M̃ = G/H of a semisimple Lie group G admits an invariant
para-Kähler structure (g̃,P) if and only if it is a covering of the adjoint orbit AdGh of
a semisimple element h. Para-Kähler manifolds have been applied in supersymmetric
field theories as well as in string theory in recent years (see, for instance, [16, 17, 18]).
(For a nice survey on para-Kähler manifolds, see [19].)

A pseudo-Riemannian submanifold M of a para-Kähler manifold M̃ is called in-
variant if the tangent bundle of M is invariant under the action of P . M is called
anti-invariant if P maps each tangent space TpM, p ∈M, into the normal space T⊥

p M .
A Lagrangian submanifold M of a para-Kähler manifold M̃ is an anti-invariant sub-
manifold satisfying dimM̃ = 2 dimM . Such submanifolds have been investigated
recently in [12, 13, 14, 15].

A pseudo-Riemannian submanifold M of a para-Kähler manifold M̃ is called a
PR-submanifold if the tangent bundle TM of M is the direct sum of an invariant
distribution D and an anti-invariant distribution D ⊥, i.e.,

T (M) = D ⊕D⊥, PD = D, PD⊥ ⊆ T⊥
p (M).

A PR-submanifold is called a PR-warped product if it is a warped product N�×f

N⊥ of an invariant submanifold N� and an anti-invariant submanifold N⊥.
In this paper we initiate the study of PR-warped products in para-Kähler manifolds.

The basic properties of PR-warped products are given in section 3. We establish in
section 4 a general optimal inequality for PR-warped products in para-Kähler manifolds
involving only the warping function and the second fundamental form. In section 5,
we provide the exact solutions of a PDE system associated with PR-warped products.
In the last section, we classify PR-warped products N�×f N⊥ with least codimension
in the flat para-Kähler manifold which verify the equality case of the general inequality
derived in section 4.

2. PRELIMINARIES

2.1. Warped product manifolds

The notion of warped product (or, more generally warped bundle) was introduced
by Bishop and O’Neill in [4] in order to construct a large variety of manifolds of
negative curvature. For example, negative space forms can easily be constructed in this
way from flat space forms. The interest of geometers was to extend the classical de
Rham theorem to warped products. Hiepko proved a result in [21] which will be used
in this paper.

Let us recall some basic results on warped products. Let B and F be two pseudo-
Riemannian manifolds with pseudo-Riemannian metrics gB and gF respectively, and f
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a positive function on B. Consider the product manifold B×F . Let π1 : B×F −→ B

and π2 : B × F −→ F be the canonical projections.
We define the manifold M = B ×f F and call it warped product if it is equipped

with the following warped metric

(2.1) g(X, Y ) = gB
(
π1∗(X), π1∗(Y )

)
+ f2(π1(p))gF

(
π2∗(X), π2∗(Y )

)
for all X, Y ∈ Tp(M), p ∈M , or equivalently,

(2.2) g = gB + f2 gF .

The function f is called the warping function. For the sake of simplicity we will
identify a vector field X on B (respectively, a vector field Z on F ) with its lift X̃
(respectively Z̃) on B ×f F .

If ∇, ∇B and ∇F denote the Levi-Civita connections of M , B and F , respectively,
then the following formulas hold

(2.3)

∇XY = ∇B
XY,

∇XZ = ∇ZX = X(lnf) Z,

∇ZW = ∇F
ZW − g(Z,W ) ∇(ln f)

where X, Y are tangent to B and Z,W are tangent to F . Moreover, ∇(ln f) is the
gradient of ln f with respect to the metric g.

2.2. Geometry of submanifolds

Let M be an n-dimensional submanifold of M̃ . We need the Gauss and Weingarten
formulas:

(G) ∇̃XY = ∇XY + σ(X, Y ), (W) ∇̃Xξ = −AξX + ∇⊥
Xξ ,

for vector fields X, Y tangent to M and ξ normal to M , where ∇ is the induced
connection, ∇⊥ is the normal connection on the normal bundle T⊥(M), σ is the
second fundamental form, and Aξ is the shape operator associated with the normal
section ξ. The mean curvature vector H of M is defined by H = 1

ntrace h.
For later use we recall the equations of Gauss and Codazzi:

(EG) g
(
RXY Z,W

)
= g̃
(
R̃XY Z,W

)
+g̃
(
σ(Y, Z), σ(X,W )

)−g̃(σ(X,Z), σ(Y,W )
)
,

(EC) (R̃XYZ)⊥ = (∇̄Xσ)(Y, Z)− (∇̄Y σ)(X,Z)

for X, Y, Z and W tangent to M , where R, R̃ are the curvature tensors on M and
M̃ , respectively, (R̃XY Z)⊥ is the normal component of R̃XYZ and ∇̄ is the van der
Waerden - Bortolotti connection defined as

(2.4) (∇̄Xσ)(Y, Z) = ∇⊥
Xσ(Y, Z)− σ(∇XY, Z)− σ(Y,∇X, Z).
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In this paper the curvature is defined by RXY = [∇X ,∇Y ]−∇[X,Y ].
A submanifold is called totally geodesic if its second fundamental form vanishes

identically. For a normal vector field ξ on M , if Aξ = λ I , for certain function λ

on M , then ξ is called a umbilical section (or M is umbilical with respect to ξ). If
M is umbilical with respect to every (local) normal vector field, then M is called a
totally umbilical submanifold. A pseudo-Riemannian submanifold is called minimal if
the mean curvature vector H vanishes identically. And it is called quasi-minimal if H
is a light-like vector field.

Recall that for a warped product M = B ×f F , B is totally geodesic and F is
totally umbilical in M .

2.3. Para-Kähler n-plane

The simplest example of para-Kähler manifold is the para-Kähler n-plane (E2n
n ,P ,

g0) consisting of the pseudo-Euclidean 2n-space E2n
n , the standard flat neutral metric

g0 = −
n∑
j=1

dx2
j +

n∑
j=1

dy2
j ,(2.5)

and the almost product structure

P =
n∑
j=1

∂

∂yj
⊗ dxj +

n∑
j=1

∂

∂xj
⊗ dyj.(2.6)

We simply denote the para-Kähler n-plane (E2n
n ,P , g0) by Pn.

3. PR-SUBMANIFOLDS OF PARA-KÄHLER MANIFOLDS

For any vector field X tangent to M , we put PX = tan(PX) and FX =
nor(PX), where tanp and norp are the natural projections associated to the direct
sum decomposition

Tp(M̃) = Tp(M) ⊕ T⊥
p (M) , p ∈M.

Then P is an endomorphism of the tangent bundle T (M) and F is a normal bundle
valued 1-form on M . Similarly, for a normal vector field ξ, we put tξ = tan(Pξ) and
fξ = nor(Pξ) for the tangential and the normal part of Pξ, respectively.

Let ν denote the orthogonal complement of PD⊥ in T⊥(M). Then we have

T⊥(M) = PD⊥ ⊕ ν.

Notice that ν is invariant, i.e., Pν = ν.
The following proposition characterizes PR-submanifolds of para-Kähler mani-

folds. A similar result is known for CR-submanifolds in Kählerian manifolds and
contact CR-submanifolds in Sasakian manifolds. See e.g. [30].
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Proposition 3.1. Let M → M̃ be an isometric immersion of a pseudo-Riemannian
manifoldM into a para-Kähler manifold M̃ . Then a necessary and sufficient condition
for M to be a PR-submanifold is that F ◦ P = 0.

Proof. For U tangent to M we have the following decomposition

U = P2U = P 2U + FPU + tFU + fFU.

By identifying the tangent and the normal parts respectively, we find

P 2 + tF = I and FP + fF = 0.

Suppose that M is a PR-submanifold. After we choose U = X ∈ D we have
PX = PX and FX = 0. Hence P 2 = I and FP = 0 on D. On the other hand, if
U = Z = D⊥, we have PZ = 0. Hence FP = 0 on D⊥ too.

Conversely, suppose that FP = 0. Put

D = {X ∈ T (M) : PX ∈ T (M)} and D⊥ = {Z ∈ T (M) : PZ ∈ T⊥(M)}.

Then by direct computations we conclude that D and D⊥ are orthogonal such that
T (M) = D ⊕D⊥.

The following results from [15] are necessary for our further computations.

Proposition 3.2. Let M be a PR-submanifold of a para-Kähler manifold M̃ . Then
(i) the anti-invariant distribution D ⊥ is a non-degenerate integrable distribution;
(ii) the invariant distribution D is a non-degenerate minimal distribution;
(iii) the invariant distribution D is integrable if and only if σ(PX, Y ) = σ(X, PY ),

for all X, Y ∈ D;
(iv) D is integrable if and only if σ̇ is symmetric, equivalently to σ̇(PX, Y ) =

σ̇(X, PY ). Here σ̇ denotes the second fundamental form of D in M .

Now, let us give some useful formulas.

Lemma 3.3. If M is a PR-submanifold of a para-K ähler manifold M̃ , then
(a) g̃(AFZU, PX) = g(∇UZ,X),
(b) AFZW = AFWZ and AfξX = −AξPX ,

for all X, Y ∈ D, Z,W ∈ D⊥, U ∈ T (M) and ξ ∈ Γ(ν).

We need the following for later use.

Proposition 3.4. Let M be a PR-submanifold of a para-Kähler manifold M̃ . Then



1298 Bang-Yen Chen and Marian Ioan Munteanu

(i) the distribution D⊥ is totally geodesic if and only if

(3.1) g̃(σ(D,D⊥),PD⊥) = 0

(ii) the distribution D is totally geodesic if and only if

(3.2) g̃(σ(D,D),PD⊥) = 0

(iii) D is totally umbilical if and only if there exists Z 0 ∈ D⊥such that

(3.3) σ(X, Y ) = g(X, PY ) FZ0 (mod ν) , ∀ X, Y ∈ D.

Proof. This can be proved by classical computations: see e.g. [6] or [24].

3.1. PR-products

A PR-submanifold of a para-Kähler manifold is called a PR-product if it is locally
a direct product N� × N⊥ of an invariant submanifold N� and an anti-invariant
submanifold N⊥.

The next result characterizes PR-products in terms of the operator P .

Proposition 3.5. (Characterization). A PR-submanifoldof a para-Kähler manifold
is a PR-product if and only if P is parallel.

Proof. By straightforward computations (as in [6, Theorem 4.1] or [24, Theorem
2.2]) we may prove that

(∇UP )V = ∇U (PV ) − P∇UV = 0 , ∀ U, V ∈ χ(M),

which implies the desired result.

The following result was proved in [15, page 224].

Proposition 3.6. Let N�×N⊥ be a PR-product of the para-Kähler (h+p)-plane
Ph+p with h = 1

2 dimN� and p = dimN⊥. If N⊥ is either spacelike or timelike,
then the PR-product is an open part of a direct product of a para-K ähler h-plane P h

and a Lagrangian submanifold L of P p, i.e.,

N� ×N⊥ ⊂ Ph × L ⊂ Ph ×Pp = Ph+p.

3.2. PR-warped products

Let us begin with the following result.
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Proposition 3.7. If a PR-submanifold M is a warped product N⊥ ×f N� of
an anti-invariant submanifold N⊥ and an invariant submanifold N� with warping
function f : N⊥ −→ R+, then M is a PR product N⊥ × N f

�, where Nf
� is the

manifold N� endowed with the homothetic metric g f� = f2g�.

Proof. Consider X, Y ∈ D and Z ∈ D⊥. Compute

g̃(σ(X, Y ), FZ) = g̃(∇̃XY,PZ) = −g̃(Y,P∇̃XZ) = g(PY,∇XZ) =
= g(PY, Z(lnf) X) = Z(ln f) g(X, PY ).

Since σ(· , ·) is symmetric and g(· , P ·) is skew-symmetric, it follows that Z(ln f)
vanishes for all Z tangent to N⊥. Consequently, f is a constant and thus the warped
product is nothing but the product N⊥ ×N f

�.

The previous result shows that there do not exist warped product PR-submanifolds
in para-Käehler manifolds of the form N⊥ ×f N�, other than PR-products. Thus, in
view of Proposition 3.7 we give the following definition:

Definition 3.8. A PR-submanifold of a para-Kähler manifold M̃ is called a PR-
warped product if it is a warped product of the form: N� ×f N⊥, where N� in an
invariant submanifold, N⊥ is an anti-invariant submanifold of M̃ and f is a non-
constant function f : N� → R+.

Since the metric on NT of a PR-warped product N�×f N⊥ is neutral, we simply
called the PR-warped product N�×f N⊥ space-like or time-like depending on N⊥ is
space-like or time-like, respectively.

The next result characterizes PR-warped products in para-Kähler manifolds.

Proposition 3.9. Let M be a proper PR-submanifold of a para-K ähler manifold.
Then M is a PR-warped product if and only if

(3.4) AFZX = (PX(µ))Z , ∀ X ∈ D, Z ∈ D⊥,

for some smooth function µ on M satisfying W (µ) = 0, ∀ W ∈ D ⊥.

The proof of this result is similar as in the case of Kähler or Sasakian ambient
space. The key is the characterization of warped products given by Hiepko in [21].

4. AN OPTIMAL INEQUALITY

Theorem 4.1. Let M = N� ×f N⊥ be a PR-warped product in a para-Kähler
manifold M̃ . Suppose that N⊥ is space-like and ∇⊥(PN⊥) ⊆ PN⊥. Then the second
fundamental form of M satisfies

(4.1) Sσ ≤ 2p||∇ lnf ||2 + ||σDν ||2,
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where p = dimN⊥, Sσ = g̃(σ, σ), ∇ ln f is the gradient of ln f with respect to
the metric g and ||σD

ν ||2 = g̃
(
σν(D,D), σν(D,D)

)
. Here the index ν represents the

ν-component of that object.

Proof. If we denote by g� and g⊥ the metrics on N� and N⊥, then the warped
metric on M is g = g� + f2g⊥. Let us consider

• on N�: an orthonormal basis {Xi, Xi∗ = PXi}, i = 1, . . . , h, where
h = dimN�; moreover, one can suppose that εi := g(Xi, Xi) = 1 and hence
εi∗ := g(Xi∗, Xi∗) = −1, for all i.

• on N⊥: an orthonormal basis {Z̃a}, a = 1, . . . , p; we put εa := g⊥(Z̃a, Z̃a) = 1,
for all a;

• in each point (x, y) ∈M : Za(x, y) = 1
f(x) Z̃a(y);

• in ν: an orthonormal basis {ξα, ξα∗ = fξα∗}, α = 1, . . . , q; moreover, one can
suppose that εα := g̃(ξα, ξα) = 1 and hence εα∗ := g̃(ξα∗, ξα∗) = −1.

Now, we want to compute

g̃(σ, σ)

= g̃
(
σ(D, D), σ(D,D)

)
+ 2g̃

(
σ(D,D⊥), σ(D,D⊥)

)
+ g̃
(
σ(D⊥,D⊥), σ(D⊥,D⊥)

)
,

where

(4.2)

g̃
(
σ(D,D), σ(D,D)

)
=

h∑
i,j=1

(
εiεj g̃

(
σ(Xi, Xj), σ(Xi, Xj)

)
+εi∗εj g̃

(
σ(Xi∗, Xj), σ(Xi∗, Xj)

)
+ εiεj∗g̃

(
σ(Xi, Xj∗), σ(Xi, Xj∗)

)
+εi∗εj∗g̃

(
σ(Xi∗, Xj∗), σ(Xi∗, Xj∗)

))
,

(4.3)
g̃
(
σ(D,D⊥), σ(D,D⊥)

)
=

h∑
i=1

p∑
a=1

(
εiεa g̃

(
σ(Xi, Za), σ(Xi, Za)

)
+εi∗εag̃

(
σ(Xi∗, Za), σ(Xi∗, Za)

))
and

(4.4) g̃
(
σ(D⊥,D⊥), σ(D⊥,D⊥)

)
=

p∑
a,b=1

εaεbg̃
(
σ(Za, Zb), σ(Za, Zb)

)
.

To do so, first we analyze σ(D,D). Since D is totally geodesic, we have σ(D,D) ∈
ν. Hence one can write the following

σ(Xi, Xj) = σαijξα + σα∗ij ξα∗, σ(Xi∗, Xj) = σαi∗jξα + σα∗i∗jξα∗,

σ(Xi∗, Xj∗) = σαi∗j∗ξα + σα∗i∗j∗ξα∗, σ(Xi, Xj∗) = σαij∗ξα + σα∗ij∗ξα∗.
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It follows that

(4.5)
g̃
(
σ(D,D), σ(D,D)

)
=

h∑
i,j=1

q∑
α=1

{[
(σαij)

2 − (σα∗ij )2
]− [(σαi∗j)2 − (σα∗i∗j)

2
]

−[(σαij∗)2 − (σα∗ij∗)
2
]
+
[
(σαi∗j∗)

2 − (σα∗i∗j∗)
2
]}
.

Due to the integrability of D we deduce that σαi∗j = σαij∗, σα∗i∗j = σα∗ij∗, σαi∗j∗ = σαij ,
σα∗i∗j∗ = σα∗ij . Furthermore, using Lemma 3.3, we may write

g̃
(
σ(X, Y ), ξ

)
= −g̃(σ(X, PY ), fξ

)
, ∀ X, Y ∈ D, ξ ∈ ν

and consequently we have

σαij = g̃
(
σ(Xi, Xj), ξα

)
= −g̃(σ(Xi, Xj∗), ξα∗

)
= σα∗ij∗,

σα∗ij = −g̃(σ(Xi, Xj), ξα∗
)

= g̃
(
σ(Xi, Xj∗), ξα

)
= σαij∗.

By replacing all these in (4.5), we obtain

(4.6) g̃
(
σ(D,D), σ(D,D)

)
= ||σDν ||2 = 4

h∑
i,j=1

q∑
α=1

[
(σαij)

2 − (σα∗ij )2
]
.

Let us focus now on g̃
(
σ(D,D⊥), σ(D,D⊥)

)
. As before, we write

σ(Xi, Za) = σbiaFZb + σαiaξα + σα∗ia ξα∗,

σ(Xi∗, Za) = σbi∗aFZb + σαi∗aξα + σα∗i∗aξα∗.

It follows that

g̃
(
σ(Xi, Za), σ(Xi, Za)

)
= −

p∑
b=1

(σbia)
2 +

q∑
α=1

[
(σαia)

2 − (σα∗ia )2
]
,

g̃
(
σ(Xi∗, Za), σ(Xi∗, Za)

)
= −

p∑
b=1

(σbi∗a)
2 +

q∑
α=1

[
(σαi∗a)

2 − (σα∗i∗a)
2
]
.

We obtain

(4.7)

g̃
(
σ(D,D⊥), σ(D,D⊥)

)
= −

h∑
i=1

p∑
a,b=1

[
(σbia)

2 − (σbi∗a)
2
]

+
h∑
i=1

p∑
a=1

q∑
α=1

[
(σαia)

2−(σα∗ia )2−(σαi∗a)
2+(σα∗i∗ )2

]
.



1302 Bang-Yen Chen and Marian Ioan Munteanu

From Lemma 3.3 we have

g̃
(
σ(PX, Z), fξ

)
= −g̃(σ(X,Z), ξ

)
and consequently

(4.8)
σαi∗a = g̃

(
σ(Xi∗, Za), ξα

)
= −g̃(σ(Xi, Za), ξα∗) = σα∗ia ,

σα∗i∗a = −g̃(σ(Xi∗, Za), ξα∗
)

= g̃
(
σ(Xi, Za), ξα) = σαia .

Moreover we know that g̃
(
σ(PX, Z), FW

)
= −X(ln f)g(Z,W ). This yields

(4.9) σbia = PXi(ln f) δab and σbi∗a = Xi(ln f) δab.

By combining (4.7), (4.8) and (4.9) we get

(4.10)
g̃
(
σ(D,D⊥), σ(D,D⊥)

)
= p

h∑
i=1

[(
Xi(ln f)

)2 − (PXi(ln f)
)2]

+2
h∑
i=1

p∑
a=1

q∑
α=1

[
(σαia)

2 − (σα∗ia )2
]
.

As g̃
(
σ(X,Z), fξ

)
= −g̃(∇⊥

XFZ, ξ
)

and using the hypothesis ∇⊥
DPD⊥ ⊆ PD⊥ we

get σ(D,D⊥) ⊆ PD⊥. Hence σαia and σα∗ia vanish. Thus

(4.11) g̃
(
σ(D,D⊥), σ(D,D⊥)

)
= p g

(∇ ln f,∇ ln f
)
.

Finally, we study g̃
(
σ(D⊥,D⊥), σ(D⊥,D⊥)

)
. We write

σ(Za, Zb) = σcabFZc + σαabξα + σα∗ab ξα∗

and hence

g̃
(
σ(D⊥,D⊥), σ(D⊥,D⊥)

)
= −

p∑
a,b,c=1

(σcab)
2 +

p∑
a,b=1

q∑
α=1

[
(σαab)

2 − (σα∗ab )2
]
.

As g̃
(
σ(Z,W ), fξ

)
= −g̃(∇⊥

ZFW, ξ
)

and using the hypothesis ∇⊥
D⊥PD⊥ ⊆

PD⊥ we get σ(D⊥,D⊥) ⊆ PD⊥. Hence σαab and σα∗ab vanish. We conclude with

(4.12) g̃
(
σ(D⊥,D⊥), σ(D⊥,D⊥)

)
= −

p∑
a,b,c=1

(σcab)
2 .

From these we obtain the theorem.
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Remark 4.2. If the manifold N⊥ in Theorem 4.1 is time-like, then (4.1) shall be
replaced by

(4.13) Sσ ≥ 2p||∇ lnf ||2 + ||σDν ||2.
Remark 4.3. For every PR-warped product N� ×N⊥ in a para-Kähler manifold

M̃ , dim M̃ ≥ dimN� + 2 dimN⊥ holds. Thus the smallest codimension is dimN⊥.

Theorem 4.4. Let N�×f N⊥ be a PR-warped product in a para-Kähler manifold
M̃ . If N⊥ is space-like (respectively, time-like) and dim M̃ = dimN� + 2 dimN⊥,
then the second fundamental form of M satisfies

(4.14) Sσ ≤ 2p||∇ lnf ||2 (respectively, Sσ ≥ 2p||∇ lnf ||2).
If the equality sign of (4.14) holds identically, we have

(4.15) σ(D,D) = σ(D⊥,D⊥) = {0}.
Proof. Inequality (4.14) follows from (4.1). When the equality sign holds, (4.15)

follows from the proof of Theorem 4.1.

5. EXACT SOLUTIONS FOR A SPECIAL PDE’S SYSTEM

We need the exact solutions of the following PDE system for later use.

Proposition 5.1. The non-constant solutions ψ = ψ(s1, . . . , sh, t1, . . . , th) of the
following system of partial differential equations

∂2ψ

∂si∂sj
+
∂ψ

∂si

∂ψ

∂sj
+
∂ψ

∂ti

∂ψ

∂tj
= 0 ,(5.1.a)

∂2ψ

∂si∂tj
+
∂ψ

∂si

∂ψ

∂tj
+
∂ψ

∂ti

∂ψ

∂sj
= 0 , i, j = 1, . . . , h ,(5.1.b)

∂2ψ

∂ti∂tj
+
∂ψ

∂ti

∂ψ

∂tj
+
∂ψ

∂si

∂ψ

∂sj
= 0(5.1.c)

are either given by

(5.2) ψ =
1
2

ln
∣∣∣[(〈v, z〉+ c1

)2 − (〈jv, z〉+ c2
)2]∣∣∣ ,

where z = (s1, s2, . . . , sh, t1, t2, . . . , th), v = (a1, a2, . . . , ah, 0, b2, . . . , bh) is a con-
stant vector in R

2h with a1 �= 0, c1, c2 ∈ R and jv = (0, b2, . . . , bh, a1, a2, . . . , ah);
or given by

(5.3) ψ =
1
2

ln
∣∣(〈v1, z〉 + c

)(〈v2, z〉+ d
)∣∣ ,
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where v1 =
(
0, a2, . . . , ah, 0, εa2, . . . , εah

)
, v2 =

(
b1, . . . , bh,−εb1, . . . ,−εbh

)
with

b1 �= 0, z is as above and c, d ∈ R.
Here 〈 , 〉 denotes the Euclidean scalar product in R 2h.

Proof. Let us make some notations: ψsi := ∂ψ
∂si

; ψsisj := ∂2ψ
∂si∂sj

, and similar for
ψti, ψsitj , respectively ψtitj . The same notations for any other function.

If in (5.1.b) we take i = j one gets ψsiti = −2ψsiψti for all i = 1, . . . , h. Since ψ
is non-constant, there exists i0 such that at least one of ψsi0 or ψti0 is different from
0. Without loss of the generality we suppose i0 = 1. Both situations yield

e2ψ = ζ(t1, s2, t2, . . . , sh, th) + η(s1, s2, t2, . . . , sh, th) ,

where ζ and η are functions of 2h− 1 variables such that ζ + η > 0 on the domain of
ψ. It follows that

(5.4)
ψs1 =

ηs1
2(ζ + η)

, ψs1s1 =
ηs1s1(ζ + η)− η2

s1

2(ζ + η)2
,

ψt1 =
ζt1

2(ζ + η)
, ψt1t1 =

ζt1t1(ζ + η)− η2
t1

2(ζ + η)2
.

Using (5.1.a) and (5.1.c) we obtain

(5.5) 2ηs1s1(ζ + η) = η2
s1 − ζ2

t1 , 2ζt1t1(ζ + η) = ζ2
t1 − η2

s1 .

Since ζ + η �= 0, adding the previous relations, one gets

ηs1s1(s1, s2, t2, . . . , sh, th) + ζt1t1(t1, s2, t2, . . . , sh, th) = 0

and hence, there exists a function F depending on s2, t2, . . . , sh, th such that

ηs1s1(s1, s2, t2, . . . , sh, th) = 2F (s2, t2, . . . , sh, th) ,

ζt1t1(t1, s2, t2, . . . , sh, th) = −2F (s2, t2, . . . , sh, th) .

At this point one integrates with respect to s1 and t1 respectively and one gets

(5.6)
η(s1, s2, t2, . . . , sh, th) = Fs21 +Gs1 +H ,

ζ(t1, s2, t2, . . . , sh, th) = −Ft21 −Kt1 − L ,

where G,H, L and K are functions depending on s2, t2, . . . , sh, th satisfying the fol-
lowing condition

(5.7) 4F (H − L) = G2 −K2.

It follows that η + ζ =
(
Fs21 +Gs1 +H

)− (Ft21 +Kt1 + L
)
.
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Case 1. Suppose F �= 0; being continuous, it preserves constant sign; denote it by
ε. From (5.7) we have H − L = G2−K2

4F which combined with (5.6) yields

η + ζ = ε

[(
ε
√
εF s1 +

G

2
√
εF

)2 −
(
ε
√
εF t1 +

K

2
√
εF

)2
]
.

We make some notations: a = ε
√
εF , γ = G

2
√
εF

and δ = K
2
√
εF

, all of them being
functions depending on s2, t2, . . . , sh, th. We are able to re-write the function ψ as

(5.8) ψ =
1
2

ln ε
[
(as1 + γ)2 − (at1 + δ)2

]
.

We compute now

(5.9) ψs1 =
a(as+ γ)

(as1 + γ)2 − (at1 + δ)2
, ψt1 =

−a(at1 + δ)
(as1 + γ)2 − (at1 + δ)2

and for i �= 1

(5.10)
ψsi =

(as1 + γ)(asis1 + γsi) − (at1 + δ)(asit1 + δsi)
(as1 + γ)2 − (at1 + δ)2

,

ψti =
(as1 + γ)(atis1 + γti) − (at1 + δ)(atit1 + δti)

(as1 + γ)2 − (at1 + δ)2
.

Computing also ψs1si , we can use (5.1.a) for j = 1, i = 2, . . . , h and obtain

[a(asis1 + γsi) + asi(as1 + γ)][(as1 + γ)2 − (at1 + δ)2]

−a(as1 + γ)[(as1 + γ)(asis1 + γsi) − (at1 + δ)(asit1 + δsi)]

−a(at1 + δ)[(as1 + γ)(atis1 + γti) − (at1 + δ)(atit1 + δti)] = 0.

This represents a polynomial in s1 and t1, identically zero, and hence, all its coefficients
must vanish. Analyzing the coefficients for s31 and t31 we obtain asi = 0 and ati = 0
for all i = 2, . . . , h. Consequently a is a real constant.

Replacing in the previous equation we get

δsi(as1 + γ)− γsi(at1 + δ) − γti(as1 + γ) + δti(at1 + δ) = 0.

Looking at the coefficients of s1 and t1 we have

(5.11) δsi = γti and δti = γsi , ∀i = 2, . . . , h.

Therefore (5.10) gives

(5.12) ψsi =
γsi(as1 + γ)− δsi(at1 + δ)

(as1 + γ)2 − (at1 + δ)2
, ψti =

γti(as1 + γ)− δti(at1 + δ)
(as1 + γ)2 − (at1 + δ)2

.
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We may compute

(5.13)
ψsitj =

γsitj(as1 + γ) + γsiγtj − δsitj(at1 + δ) − δsiδtj
(as1 + γ)2 − (at1 + δ)2

−2
[γtj(as1 + γ)− δtj(at1 + δ)][γsi(as1 + γ)− δsi(at1 + δ)]

[(as1 + γ)2 − (at1 + δ)2]2

and using (5.1.b) with i, j > 1, we obtain again a polynomial in s1 and t1, identically
zero. By comparing the coefficients of s31 and t31 we find γsitj = 0 and δsitj = 0, for
all i, j = 2, . . . , h. It follows that γsi depend only on s2, . . . , sh and δti depend only
on t2, . . . , th, for all i. From (5.11) we know γsi = δti . Hence, there exist constants
ai ∈ R such that γsi = δti = ai, ∀i = 2, . . . , h. In the same way, there exist constants
bi ∈ R such that γti = δsi = bi, ∀i = 2, . . . , h. It follows that

(5.14)
γ(s2, t2 . . . , sh, th) =

h∑
i=2

aisi +
h∑
i=2

biti + c1,

δ(s2, t2 . . . , sh, th) =
h∑
i=2

bisi +
h∑
i=2

aiti + c2 , c1, c2 ∈ R.

We conclude with

ψ =
1
2

ln ε
[
(as1 + a2s2 + b2t2 + . . .+ ahsh + bhth + c1)2

−(at1 + b2s2 + a2t2 + . . .+ bhsh + ahth + c2)2
]
.

Hence the solution (5.2) is obtained with a1 = a �= 0.

Case 2. Let us come back to the case F = 0 (on a certain open set). From (5.7)
we immediately find η+ζ = Gs1−Kt1 +H , where G,H,K are functions depending
on (s2, . . . , sh, t2, . . . , th), and K = εG, ε = ±1. Thus

ψ =
1
2

ln |(s1 − εt1)G+H |.

We have

ψs1 =
G

2[(s1 − εt1)G+H ]
, ψt1 = − εG

2[(s1 − εt1)G+H ]
,

ψsi =
(s1 − εt1)Gsi +Hsi

2[(s1 − εt1)G+H ]
, ψti =

(s1 − εt1)Gti +Hti

2[(s1 − εt1)G+H ]
, i = 2, . . . , h,

ψsis1 =
Gsi [(s1 − εt1)G+H ]−G[(s1 − εt1)Gsi +Hsi)

2[(s1 − εt1)G+H ]2
, i = 2, . . . , h.

By applying (5.1.a) for j = 1 and i = 2, . . . , h we obtain

2Gsi [(s1 − εt1)G+H ]−G[(s1 − εt1)Gsi +Hsi ] − εG[(s1 − εt1)Gti +Hti] = 0.
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By comparing the coefficients of s1 and t1 we find

(5.15) G(Gsi − εGti) = 0, 2GsiH −G(Hsi + εHti) = 0.

Since G �= 0 we have Gti = εGsi . In the sequel, computing

ψsisj =
(s1 − εt1)Gsisj +Hsisj

2[(s1 − εt1)G+H ]
− [(s1 − εt1)Gsi +Hsi ][(s1 − εt1)Gsj +Hsj ]

2[(s1 − εt1)G+H ]2

for i, j ≥ 2, replacing in (5.1.a) and comparing the coefficients of s21 we find
Gsisj = 0. It follows also Gsitj = 0 and Gtitj = 0. Hence

G(s2, t2, . . . , sh, th) =
h∑
i=2

ai(si + εti) + c, ai, c ∈ R.

Moreover, H should satisfy

(5.16) 2GHsisj −Gsi(Hsj − εHtj) −Gsj (Hsi − εHti) = 0 ,

(5.17) 2HHsisj −HsiHsj +HtiHtj = 0.

Case 2a. If G is a non-zero constant c (and this happens when all ai vanish), then
from the second equation in (5.15) we find Hsi + εHti = 0 for all i ≥ 2. Therefore,
H has the form

H(s2, t2, . . . , sh, th) = Q(s2 − εt2, . . . , sh − εth),

where Q is a function depending only on h variables. From (5.16) we get Hsisj = 0

and then Q is an affine function. Thus H =
h∑
i=2

bi(si−εti)+d, with b2, . . . , bh, d ∈ R.

Consequently,

ψ =
1
2

ln

[
h∑
i=1

bi(si − εti) + d

]
, b1 = c �= 0 .

Case 2b. If there exists at least one ai �= 0, from the second equation in (5.15)
we can express H in the form H = QG, where Q is a function on s2, t2, . . . , sh, th.
Then, for every i ≥ 2,

Hsi + εHti = 2aiQ+G(Qsi +Qti) ,

which combined with (5.15) givesQsi +εQti = 0. Thus, Q = Q(s2−εt2, . . . , sh−εth).
Using (5.16), it follows that Q is an affine function and hence H =

h∑
i=2

bi(si−εti)+d,

with b2, . . . , bh, d ∈ R. Consequently,

ψ =
1
2

ln
{[ h∑

i=1

bi(si − εti) + d
][ h∑

j=2

ai(si + εti) + c
]}
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with b1 = 1. This completes the proof.

6. PR-WARPED PRODUCTS IN Ph+p SATISFYING Sσ = 2p||∇ ln f ||2

In the following, we use letters i, j, k for indices running from 1 to h; a, b, c for
indices from 1 to p; and A,B for indices between 1 and m with m = h+ p.

On E
2(h+p)
h+p we consider the global coordinates (xi, xh+a, yi, yh+a) and the canon-

ical flat para-Kähler structure defined as above.

Proposition 6.1. Let M = N� ×f N⊥ be a space-like PR-warped product in the
para-Kähler (h+p)-plane P h+p with h = 1

2 dimN� and p = dimN⊥. If M satisfies
the equality case of (4.14) identically, then

• N� is a totally geodesic submanifold in P h+p, and hence it is congruent to an
open part of P h;

• N⊥ is a totally umbilical submanifold in P h+p.

Moreover, if N⊥ is a real space form of constant curvature k, then the warping function
f satisfies ||∇f ||2 = k.

Proof. Under the hypothesis, we know from the proof of Theorem 4.1 that the
second fundamental form satisfies

σ(D,D) = σ(D⊥,D⊥) = {0}.
On the other hand, since M = N�×f N⊥ is a warped product, N� is totally geodesic
and N⊥ is totally umbilical in M . Thus we have the first two statements.

The last statement of the proposition can be proved as follows. If R⊥ denotes the
Riemann curvature tensor of N⊥, then we have

RZVW = R⊥
ZVW − ||∇ lnf ||2

(
g(V,W )Z− g(Z,W )V

)
for any Z, V,W tangent to N⊥. See for details [26, page 210] (pay attention to the
sign; see also page 74). If N⊥ is a space form of constant curvature k, then R takes
the form

(6.1) RZVW =
(
k

f2
− ||∇ lnf ||2

)(
g(V,W )Z− g(Z,W )V

)
.

The equation of Gauss may be written, for vectors tangent to N⊥, as

g
(
RZVW,U

)
= 〈R̃ZVW,U〉+ 〈σ(V,W ), σ(Z,U)〉− 〈σ(Z,W ), σ(V, U)〉 .

Since the ambient space is flat and σ(D⊥,D⊥) = 0 due to the equality in (4.14), it
follows that g(RZVW,U) = 0. Combining this with (6.1) gives ||∇ lnf ||2 = k

f2 . This
gives the statement.
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Para-complex numbers were introduced by Graves in 1845 [20] as a generalization
of complex numbers. Such numbers have the expression v = x + jy, where x, y are
real numbers and j satisfies j2 = 1, j �= ±1. The conjugate of v is v̄ = x − jy. The
multiplication of two para-complex numbers is defined by

(a+ jb)(s+ jt) = (as + bt) + j(at+ bs).

For each natural number m, we put Dm = {(x1 + jy1, . . . , xm + jym) : xi, yi ∈
R}. With respect to the multiplication of para-complex numbers and the canonical
flat metric, D

m is a flat para-Kähler manifold of dimension 2m. Once we identify
(x1+jy1, . . . , xm+jym) ∈ Dm with (x1, . . . , xm, y1, . . . , ym) ∈ E2m

m , we may identify
D
m with the para-Kähler m-plane Pm in a natural way.

In the following we denote by Sp,Ep and Hp the unit p-sphere, the Euclidean
p-space and the unit hyperbolic p-space, respectively.

Theorem 6.2. Let N� ×f N⊥ be a space-like PR-warped product in the para-
Kähler (h+ p)-plane P h+p with h = 1

2 dimN� and p = dimN⊥. Then we have

Sσ ≤ 2p||∇ lnf ||2.(6.2)

The equality sign of (6.2) holds identically if and only if N � is an open part of a
para-Kähler h-plane, N⊥ is an open part of Sp, Ep or Hp, and the immersion is given
by one of the following:

1. Φ : D1 ×f S
p −→ Ph+p;

(6.3)

Φ(z, w) =

(
z1 + v̄1(w0 − 1)

h∑
j=1

vjzj, . . . , zh + v̄h(w0 − 1)
h∑
j=1

vjzj ,

w1

h∑
j=1

jvjzj, . . . , wp
h∑
j=1

jvjzj

)
, h ≥ 2,

with warping function
f =

√
〈v̄, z〉2 − 〈jv̄, z〉2,

where v = (v1, . . . , vh) ∈ S2h−1 ⊂ Dh, w = (w0, w1, . . . , wp) ∈ Sp, z = (z1, . . . , zh) ∈
D1 and D1 =

{
z ∈ D

h : 〈v̄, z〉2 > 〈jv̄, z〉2}.
2. Φ : D1 ×f Hp −→ Ph+p;

(6.4)

Φ(z, w) =

(
z1 + v̄1(w0 − 1)

h∑
j=1

vjzj, . . . , zh + v̄h(w0 − 1)
h∑
j=1

vjzj ,

w1

h∑
j=1

jvjzj, . . . , wp
h∑
j=1

jvjzj

)
, h ≥ 1,
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with the warping function f =
√〈v̄, z〉2 − 〈jv̄, z〉2, where v = (v1, . . . , vh) ∈ H2h−1 ⊂

D
h, w = (w0, w1, . . . , wp) ∈ H

p and z = (z1, . . . , zh) ∈ D1.
3. Φ(z, u) : D1 ×f Ep −→ Ph+p;

(6.5)

Φ(z, u) =

(
z1 +

v̄1
2

( p∑
a=1

u2
a

) h∑
j=1

vjzj, . . . , zh +
v̄h
2

( p∑
a=1

u2
a

) h∑
j=1

vjzj,

u1

h∑
j=1

jvjzj, . . . , up
h∑
j=1

jvjzj

)
, h ≥ 2,

with the warping function f =
√

〈v̄, z〉2 − 〈jv̄, z〉2, where v = (v1, . . . , vh) is a light-
like vector in Dh, z = (z1, . . . , zh) ∈ D1 and u = (u1, . . . , up) ∈ Ep,

Moreover, in this case, each leaf Ep is quasi-minimal in P h+p.

4. Φ(z, u) : D2 ×f Ep −→ Ph+p;

(6.6) Φ(z, u) =

(
z1 +

v1
2

p∑
a=1

u2
a, . . . , zh +

vh
2

p∑
a=1

u2
a,
v0
2
u1, . . . ,

v0
2
up

)
, h ≥ 1,

with the warping function f =
√−〈v, z〉, where v0 =

√
b1 + εj

√
b1 with b1 > 0,

D2 = {z ∈ Dh : 〈v, z〉 < 0}, v = (v1, . . . , vh) = (b1 + εjb1, . . . , bh + εjbh), ε = ±1,
z = (z1, . . . , zh) ∈ D2 and u = (u1, . . . , up) ∈ E

p.
In each of the four cases the warped product is minimal in E

2(h+p)
h+p .

Proof. Inequality (6.2) is already given in Theorem 4.4. From now on, let us
assume that Φ : N�×f N⊥ −→ Pm is a space-like PR-warped product satisfying the
equality in (6.2) with m = h + p. Then it follows that ν = 0 and hence

(6.7) σ(X, Y ) = 0, σ(Z,W ) = 0, σ(X,Z) =
(
PX(ln f)

)
FZ,

for all X, Y tangent to N� and Z,W tangent to N⊥. Thus, N� is totally geodesic in
Pm and N⊥ is totally umbilical Pm.

As N� is invariant and totally geodesic in Pm, it is congruent with Ph with
the canonical (induced) para-Kähler structure [15]. On E2h

h we may choose global
coordinates s = (s1, . . . , sh) and t = (t1, . . . , th) such that

(6.8) g� = −
h∑
i=1

ds2i +
h∑
i=1

dt2i , P∂si = ∂ti , P∂ti = ∂si ,

for i = 1, . . . , h.
Let us put ∂si = ∂

∂si
, ∂ti = ∂

∂ti
and so on.

Now, we study the case p > 1.
Since N⊥ is a space-like totally umbilical, non-totally geodesic submanifold in Pm,

it is congruent (cf. [1], [15, Proposition 3.6])
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• either to the Euclidean p-sphere Sp,
• or to the hyperbolic p-plane H

p,
• or to a flat quasi-minimal submanifold E

p.

In what follows we discuss successively, all the three situations.
On Sp we consider spherical coordinates u = (u1, . . . , up) such that the metric g⊥

is expressed by

(6.9) g⊥ = du2
1 + cos2 u1du

2
2 + . . .+ cos2 u1 . . .cos2 up−1du

2
p.

Thus, the warped metric on M is given by

g = g�(s, t) + f2(s, t)g⊥(u).

Then the Levi Civita connection ∇ of g satisfies

∇∂si
∂sj = 0 , ∇∂si

∂tj = 0 , ∇∂ti
∂tj = 0,(6.10.a)

∇∂si
∂ua =

fsi
f

∂ua , ∇∂ti
∂ua =

fti
f
∂ua ,(6.10.b)

∇∂ua
∂ub

= − tanua∂ub
(a < b),(6.10.c)

∇∂ua
∂ua =

a−1∏
b=1

cos2 ub
h∑
i=1

(
ffsi∂si − ffti∂ti

)
(6.10.d)

+
a−1∑
b=1

(
sinub cosub cos2 ub+1 . . .cos2 ua−1

)
∂ub

,

for i, j = 1, . . . , h and a, b = 1, . . . , p.
From now on we put ψ = ln f . Using the relations above, we find that the Riemann

curvature tensor R satisfies

(6.11)

R(∂si , ∂ua) ∂sj =
(

∂2ψ

∂si∂sj
+
∂ψ

∂si

∂ψ

∂sj

)
∂ua

R(∂si , ∂ua) ∂tj =
(

∂2ψ

∂si∂tj
+
∂ψ

∂si

∂ψ

∂tj

)
∂ua

R(∂ti , ∂ua) ∂tj =
(
∂2ψ

∂ti∂tj
+
∂ψ

∂ti

∂ψ

∂tj

)
∂ua .

Moreover we have

σ(∂si , ∂ua) =
∂ψ

∂ti
F∂ua , σ(∂ti, ∂ua) =

∂ψ

∂si
F∂ua .
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Applying Gauss’ equation we find

g̃
(
R̃XZY,W

)
= g

(
RXZY,W

)
+ g̃
(
σ(X, Y ), σ(Z,W )

)− g̃
(
σ(X,W ), σ(Y,Z)

)
,

for X, Y tangent to N� and Z,W tangent to N⊥. Using (6.7) and (6.11) we get

(6.12)

∂2ψ

∂si∂sj
+
∂ψ

∂si

∂ψ

∂sj
+
∂ψ

∂ti

∂ψ

∂tj
= 0

∂2ψ

∂si∂tj
+
∂ψ

∂si

∂ψ

∂tj
+
∂ψ

∂ti

∂ψ

∂sj
= 0

∂2ψ

∂ti∂tj
+
∂ψ

∂si

∂ψ

∂sj
+
∂ψ

∂ti

∂ψ

∂tj
= 0, i = 1, . . . , h.

Let us first consider the case h ≥ 2.
By applying Proposition 5.1 (case 1, in the proof), we know that there exists a

constant vector v = (a1, a2, . . . , ah, 0, b2, . . . , bh), with a1 > 0, such that

ψ =
1
2

ln
[〈v̄, z〉2 − 〈jv̄, z〉2] ,

where z = (s1, . . . , sh, t1, . . . , th) and 〈 , 〉 denotes the pseudo-Euclidean product in
E

2h
h . If a1 < 0 we are allowed to make the isometric transformation in E

2h
h : s1 �→ −s1

and t1 �→ −t1. In the sequel, we apply Gauss’ formula

∇̃Φ∗UΦ∗V = Φ∗∇UV + σ(U, V ), ∀U, V ∈ χ(M),

where Φ∗ denotes the differential of the map Φ. Taking U, V ∈ D we obtain

(6.13)

∂2xA
∂si∂sj

=
∂2xA
∂si∂tj

=
∂2xA
∂ti∂tj

= 0

∂2yA
∂si∂sj

=
∂2yA
∂si∂tj

=
∂2yA
∂ti∂tj

= 0.

For U ∈ D and V ∈ D⊥ we have

(6.14)

∂2xA
∂si∂ua

= ψsi
∂xA
∂ua

+ ψti
∂yA
∂ua

,
∂2xA
∂ti∂ua

= ψti
∂xA
∂ua

+ ψsi
∂yA
∂ua

∂2yA
∂si∂ua

= ψsi
∂yA
∂ua

+ ψti
∂xA
∂ua

,
∂2yA
∂ti∂ua

= ψti
∂yA
∂ua

+ ψsi
∂xA
∂ua

.
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Finally, taking U, V ∈ D⊥ we obtain

(6.15)

∂2xA
∂ua∂ub

= − tanua
∂xA
∂ub

,
∂2yA
∂ua∂ub

= − tanua
∂yA
∂ub

, a < b ,

∂2xA
∂u2

a

=
a−1∏
b=1

cos2 ub
h∑
j=1

(
ffsj

∂xA
∂sj

− fftj
∂xA
∂tj

)

+
a−1∑
b=1

(
sinub cos ub cos2 ub+1 . . .cos2 ua−1

)∂xA
∂ub

,

∂2yA
∂u2

a

=
a−1∏
b=1

cos2 ub
h∑
j=1

(
ffsj

∂yA
∂sj

− fftj
∂yA
∂tj

)

+
a−1∑
b=1

(
sinub cos ub cos2 ub+1 . . .cos2 ua−1

)∂yA
∂ub

.

From (6.13) we get

(6.16)
xA(s, t, u) =

h∑
1

λ
j
A(u)sj +

h∑
1

ρ
j
A(u)tj +CA(u) ,

yA(s, t, u) =
h∑
1

ρ̃
j
A(u)sj +

h∑
1

λ̃
j
A(u)tj + C̃A(u) .

By combining (6.14) with (6.16) we obtain

(6.17)

∂λ̃iA
∂ua

=
∂λiA
∂ua

= ψsi

[
∂λjA
∂ua

(u)sj +
∂ρjA
∂ua

(u)tj +
∂CA
∂ua

]

+ψti

[
∂ρjA
∂ua

(u)sj +
∂λjA
∂ua

(u)tj +
∂C̃A
∂ua

]
,

∂ρ̃iA
∂ua

=
∂ρiA
∂ua

= ψti

[
∂λjA
∂ua

(u)sj +
∂ρjA
∂ua

(u)tj +
∂CA
∂ua

]

+ψsi

[
∂ρjA
∂ua

(u)sj +
∂λjA
∂ua

(u)tj +
∂C̃A
∂ua

]
.

For i = 1 we have

ψs1 =

a1

(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
)

(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
)2 − (a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
)2 ,
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ψt1 =

−a1

(
a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
)

(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
)2 − (a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
)2 .

Substituting in (6.17) we find polynomials in s and t. Comparing the coefficients
corresponding to s1si and s1ti, i > 1, we find

(6.18) λiA(u) = ai
a1
λA(u) + bi

a1
ρA(u) + ciA

a1
, ρiA(u) = bi

a1
λA(u) + ai

a1
ρA(u) + di

A
a1

for i = 2, . . . , h, and λ1
A(u) = λA(u), ρ1

A(u) = ρA(u), where ciA, d
i
A ∈ R.

Comparing the coefficients of s1 and t1 we find that CA and C̃A are constants,
and applying a suitable translation in E2m

m if necessary, one may suppose CA = 0 and
C̃A = 0, A = 1, . . . , m. Replacing in (6.16) and taking into account (6.17) we get

(6.19)

xA(s, t, u) =
1
a1
λA(u)

(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
)

+
1
a1
ρA(u)

(
a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
)

+
1
a1

( h∑
2

c
j
Asj +

h∑
2

d
j
Atj
)
,

yA(s, t, u) =
1
a1
λA(u)

(
a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
)

+
1
a1
ρA(u)

(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
)

+
1
a1

(
d̃As1 + c̃At1 +

h∑
2

d̃jAsj +
h∑
2

c̃jAtj
)
,

where c̃A, d̃A, c̃iA and d̃iA are real numbers. The third equation in (6.15) for a = 1
gives

∂2xA
∂u2

1

=
(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
) [
a1
∂xA
∂s1

+
h∑
2

aj
∂xA
∂sj

−
h∑
2

bj
∂xA
∂tj

]

+
(
a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
) [
a1
∂xA
∂t1

+
h∑
2

aj
∂xA
∂tj

−
h∑
2

bj
∂xA
∂sj

]
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which combined with the first equation in (6.19) yields

(6.20)

(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
) [∂2λA

∂u2
1

(u) + 〈v, v〉λA(u) +DA

]
+
(
a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
) [∂2ρA

∂u2
1

(u) + 〈v, v〉ρA(u) + D̃A

]
= 0,

where DA =
h∑
2

(ajc
j
A − bjd

j
A) and D̃A =

h∑
2

(ajd
j
A − bjc

j
A).

Since ||∇f ||2 = −a2
1 −

h∑
2
a2
j +

h∑
2
b2j , Proposition 6.1 implies 〈v, v〉 = 1. Hence,

considering in (6.20) the coefficients of s1 and t1 one obtains the following PDEs:

(6.21)
∂2λA
∂u2

1

(u) + λA(u) −DA = 0,
∂2ρA
∂u2

1

(u) + ρA(u)− D̃A = 0.

We immediately get

(6.22)
λA(u) = cos u1Θ

(1)
A (u2, . . . , up) + sinu1D

(1)
A (u2, . . . , up) +DA,

ρA(u) = cos u1Θ̃
(1)
A (u2, . . . , up) + sinu1D̃

(1)
A (u2, . . . , up) + D̃A

where Θ(1)
A , D(1)

A , Θ̃(1)
A and D̃

(1)
A are functions depending on u2, . . . , up. The first

equation in (6.15) for a = 1 gives ∂2xA
∂u1∂ub

= − tanu1
∂xA
∂ub

, b > 1 which combined
with (6.19) yields

∂2λA
∂u1∂ub

= − tanu1
∂λA
∂ub

,
∂2ρA
∂u1∂ub

= − tanu1
∂ρA
∂ub

.

Using (6.22), we get ∂D
(1)
A

∂ub
= 0, and ∂D̃

(1)
A

∂ub
= 0, ∀b > 1, hence D(1)

A and D̃(1)
A are real

constants.
Returning to the third equation in (6.15) with a = 2 we get

∂2xA
∂u2

2

= cos2 u1

(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
) [
a1
∂xA
∂s1

+
h∑
2

aj
∂xA
∂sj

−
h∑
2

bj
∂xA
∂tj

]

+ cos2 u2

(
a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
) [
a1
∂xA
∂t1

+!
h∑
2

aj
∂xA
∂tj

−
h∑
2

bj
∂xA
∂sj

]

+ sinu1 cosu1
∂xA
∂u1

.
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This relation together with (6.19) yield a polynomial in s and t, and considering the
coefficients of s1 and t1 respectively, we obtain

∂2λA
∂u2

2

− sinu1 cos u1
∂λA
∂u1

+ (cos2 u1)λA−DA cos2 u1 = 0 ,

∂2ρA
∂u2

2

− sinu1 cos u1
∂ρA
∂u1

+ (cos2 u1)ρA − D̃A cos2 u1 = 0 .

Using (6.22) one gets

∂2Θ(1)
A

∂u2
2

+ Θ(1)
A = 0 ,

∂2Θ̃(1)
A

∂u2
2

+ Θ̃(1)
A = 0

with the solutions

Θ(1)
A = cosu2Θ

(2)
A (u3, . . . , up) + sinu2D

(2)
A (u3, . . . , up) ,

Θ̃(1)
A = cosu2Θ̃

(2)
A (u3, . . . , up) + sinu2D̃

(2)
A (u3, . . . , up),

where Θ(2)
A , D(2)

A , Θ̃(2)
A and D̃(2)

A are functions depending on u3, . . . , up. Continuing
such procedure sufficiently many times, we find

(6.23)

λA(u) = D
(0)
A cosu1 . . . cosp−1 cos up +D

(p)
A cosu1 . . .cosp−1 sinup

+D(p−1)
A cos u1 . . . sinp−1 + . . .

+D(2)
A cos u1 sinu1 +D

(1)
A sinu1 +DA ,

ρA(u) = D̃
(0)
A cosu1 . . . cosp−1 cos up + D̃

(p)
A cosu1 . . .cosp−1 sinup

+D̃(p−1)
A cos u1 . . . sinp−1 + . . .

+D̃(2)
A cos u1 sinu1 + D̃

(1)
A sinu1 + D̃A ,

where D(p)
A , . . . , D

(0)
A , DA, D̃(p)

A , . . . , D̃
(0)
A and D̃A are real constants. At this point let

us make the following notations

w0 = cos u1 . . .cos up−1 cos up

wp = cos u1 . . .cos up−1 sinup

wp−1 = cos u1 . . .sinup−1

. . . . . . . . . . . . . . . . . . . . .

w2 = cos u1 sinu2

w1 = sinu1.
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It follows that λA and ρA may be rewritten as

(6.24) λA(w) = DA +
p∑
a=0

D
(a)
A wa , ρA(w) = D̃A +

p∑
a=0

D̃
(a)
A wa.

Going back to (6.19) we get, after a re-scaling with a1 �= 0

(6.25)

xA(s, t, w) =
(
a1s1+

h∑
2

ajsj+
h∑
2

bjtj
) p∑
a=0

D
(a)
A wa

+
(
a1t1+

h∑
2

ajtj+
h∑
2

bjsj
) p∑
a=0

D̃
(a)
A wa+

h∑
j=1

(αjAsj+β
j
Atj) ,

yA(s, t, w) =
(
a1s1+

h∑
2

ajsj+
h∑
2

bjtj
) p∑
a=0

D̃
(a)
A wa

+
(
a1t1+

h∑
2

ajtj+
h∑
2

bjsj
) p∑
a=0

D
(a)
A wa+

h∑
j=1

(α̃jAsj+β̃
j
Atj).

Let us choose the initial conditions

Φ∗∂si(1, 0, . . . , 0) = (0, . . . , 0,
(i)

1 , 0, . . . , 0, 0, . . . , 0) ,(6.26.a)

Φ∗∂ti(1, 0, . . . , 0) = (0, . . . , 0, 0, . . . ,
(m+i)

1 , 0, . . . , 0) , i = 1, . . . , h ,(6.26.b)

Φ∗∂ub
(1, 0, . . . , 0) = (0, . . . , 0, 0, . . . ,

(m+h+b)
a1, 0, . . . , 0) , b = 1, . . . , p .(6.26.c)

From (6.25) and (6.26.c) and taking into account that

∂wa
∂ub

∣∣∣∣
u=0

=


0, if a = 0
0, if b �= a, a ≥ 1
1, if b = a ,

we obtain that

(6.27)
D

(b)
i = 0, D(b)

h+a = 0, D̃(b)
i = 0, D̃(b)

h+a = 0, (a �= b), D̃(b)
h+b = 1,

i = 1, . . . , h; a, b = 1, . . . , p.

From (6.25) and (6.26.a) we find

(6.28)

aiD
(0)
j + biD̃

(0)
j + αij = δij,

aiD
(0)
h+a + biD̃

(0)
h+a + αih+a = 0 ,

aiD̃
(0)
j + biD

(0)
j + α̃ij = 0, aiD̃

(0)
h+a + biD

(0)
h+a + α̃ih+a = 0 ,

i, j = 1, . . . , h, a = 1, . . . , p, b1 = 0.
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Finally, from (6.25) and (6.26.b) we get

(6.29)

biD
(0)
j + aiD̃

(0)
j + βij = 0, biD

(0)
h+a + aiD̃

(0)
h+a + βih+a = 0 ,

biD̃
(0)
j + aiD

(0)
j + β̃ij = δij, biD̃

(0)
h+a + aiD

(0)
h+a + β̃ih+a = 0 ,

i, j = 1, . . . , h, a = 1, . . . , p, b1 = 0 .

Now, plugging (6.27), (6.28) and (6.29) in (6.25) we obtain

xi(s, t, w) = si +D
(0)
i (w0 − 1)

(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
)

(6.30.a)

+ D̃
(0)
i (w0 − 1)

(
a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
)
,

xh+a(s, t, w) = D
(0)
h+a(w0 − 1)

(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
)

(6.30.b)

+
[
wa + D̃

(0)
h+a(w0 − 1)

](
a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
)
,

yi(s, t, w) = ti +D
(0)
i (w0 − 1)

(
a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
)

(6.30.c)

+ D̃
(0)
i (w0 − 1)

(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
)
,

yh+a(s, t, w) = D
(0)
h+a(w0 − 1)

(
a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
)

(6.30.d)

+
[
wa + D̃

(0)
h+a(w0 − 1)

](
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
)
.

Since Φ is an isometric immersion we have g̃(Φ∗U,Φ∗V ) = g(U, V ) for every U and
V tangent to M . From g̃(Φ∗∂s1 ,Φ∗∂s1) = −1 and (6.30) we get

(w0 − 1)〈D(0), D(0)〉 + 2
p∑
a=1

waD̃
(0)
h+a −

2
a1

D
(0)
1 − (w0 + 1) = 0

for all w ∈ Sp, where

D(0) =
(
D

(0)
1 , . . . , D

(0)
h , D

(0)
h+1, . . . , D

(0)
2h , D̃

(0)
1 , . . . , D̃

(0)
h , D̃

(0)
h+1, . . . , D̃

(0)
2h

)
.



Geometry of PR-warped Products in Para-Kähler Manifolds 1319

Therefore

(6.31) D
(0)
1 = −a1 , D̃

(0)
h+a = 0, ∀a = 1, . . . , p, 〈D(0), D(0)〉 = 1 .

From g̃(Φ∗∂s1 ,Φ∗∂sj ) = 0 and g̃(Φ∗∂s1 ,Φ∗∂tj) = 0, (j ≥ 2), together with (6.30)
and (6.31) it follows

(6.32) D
(0)
j = −aj − bj

a1
D̃

(0)
1 , D̃

(0)
j = bj +

aj
a1

D̃
(0)
1 , ∀j ≥ 2.

Finally, from g̃(Φ∗∂s1 ,Φ∗∂ub
) = 0, (6.30) and (6.31) we get D̃(0)

1 = 0. Hence from
(6.32) one obtains D(0)

j = −aj and D̃(0)
j = bj, for all j = 1, . . . , h (recall b1 = 0),

which combined with 〈D(0), D(0)〉 = 1 yield D(0)
h+a = 0.

We conclude from (6.30) the following

(6.33)

xi(s, t, w) = si − ai(w0 − 1)
(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
)

+bi(w0 − 1)
(
a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
)
,

xh+a(s, t, w) = wa
(
a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
)
,

yi(s, t, w) = ti − ai(w0 − 1)
(
a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
)

+bi(w0 − 1)
(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
)
,

yh+a(s, t, w) = wa
(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
)
.

Computing now xi + jyi and xh+a + jyh+a one gets (6.3).

Let consider the second situation when N⊥ is the hyperbolic space H
p. On H

p

consider coordinates u = (u1, u2, . . . , up) such that the metric g⊥ is expressed by

(6.34) g⊥ = du2
1 + sinh2 u1

(
du2

2 + cos2 u2du
2
3 + . . .+ cos2 u2 . . . cos2 up−1du

2
p

)
,

and the warped metric on M is given by g = g�(s, t) + f2(s, t)g⊥(u). Then the Levi
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Civita connection ∇ of g satisfies

∇∂si
∂sj = 0 , ∇∂si

∂tj = 0 , ∇∂ti
∂tj = 0,(6.35.a)

∇∂si
∂ua =

fsi
f

∂ua , ∇∂ti
∂ua =

fti
f
∂ua ,(6.35.b)

∇∂u1∂ub
= cothu1∂ub

(1 < b),(6.35.c)

∇∂ua
∂ub

= − tanua∂ub
(1 < a < b),(6.35.d)

∇∂u1
∂u1 =

h∑
i=1

(
ffsi∂si − ffti∂ti

)
,(6.35.e)

∇∂ua
∂ua = sinh2 u1

a−1∏
b=2

cos2 ub
h∑
i=1

(
ffsi∂si − ffti∂ti

)
(6.35.f)

− sinhu1 coshu1

a−1∏
b=2

cos2 ub ∂u1

+
a−1∑
b=1

(
sinub cos ub cos2 ub+1 . . .cos2 ua−1

)
∂ub

, (1 < a)

for any i, j = 1, . . . , h and a, b = 1, . . . , p.
In the following we proceed in the same way as in previous case. Since some

computations are very similar we skip them, and we will focus only on the major
differences between the two cases.

The function ψ is obtained from Proposition 5.1 (case 1 in the proof):

ψ =
1
2

ln
[〈v̄, z〉2 − 〈jv̄, z〉2] ,

where v = (a1, a2, . . . , ah, 0, b2, . . . , bh), with a1 > 0 is a constant vector.
Applying Gauss’ formula ∇̃Φ∗UΦ∗V = Φ∗∇UV + σ(U, V ) for U, V ∈ D, re-

spectively for U ∈ D and V ∈ D⊥ we may write (6.19). Using Gauss’ formula for
U = V = ∂u1 , we find

∂λA
∂u2

1

+ 〈v, v〉λA−DA = 0 : DA =
∑
ajc

j
A −∑ bj c̃

j
A

∂ρA
∂u2

1

+ 〈v, v〉ρA− D̃A = 0 : DA =
∑
bjc

j
A −∑aj c̃

j
A.

Here 〈v, v〉 = ||∇f ||2 = −1 and consequently

(6.36)
λA(u) = coshu1D

(0)
A (u2, . . . , up) + sinhu1Θ

(0)
A (u2, . . . , up) −DA ,

ρA(u) = coshu1D̃
(0)
A (u2, . . . , up) + sinhu1Θ̃

(0)
A (u2, . . . , up) − D̃A.
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Taking U = ∂u1 and V = ∂ub
, (b > 1) we find that D(0)

A and D̃
(0)
A are constants.

Next, applying the Gauss formula for U = V = ∂u2 and respectively for U = ∂u2 and
V = ∂ub

, (b > 2) we get

Θ(0)
A = cos u2Θ

(1)
A (u3, . . . , up) +D

(1)
A sinu2 ,

Θ̃(0)
A = cos u2Θ̃

(1)
A (u3, . . . , up) + D̃

(1)
A sinu2, D

(1)
A , D̃

(1)
A ∈ R.

Continuing the procedure sufficiently many times we finally get

λA = −DA +D
(0)
A coshu1 +D

(1)
A sinhu1 cosu2 +D

(2)
A sinhu1 cos u2 sinu3 + · · ·

+Dp−1)
A sinhu1 cos u2 · · ·cos up−1 sinup +D

(p)
A sinhu1 cosu2 · · ·cos up ,

ρA = −D̃A + D̃
(0)
A coshu1 + D̃

(1)
A sinhu1 cosu2 + D̃

(2)
A sinhu1 cos u2 sinu3 + · · ·

+D̃p−1)
A sinhu1 cos u2 · · ·cos up−1 sinup + D̃

(p)
A sinhu1 cosu2 · · ·cos up.

Considering the hyperbolic space H
p embedded in R

p+1
1 with coordinates

(6.37)

w0 = coshu1

w1 = sinhu1 sinu2

w2 = sinhu1 cos u2 sinu3

. . . . . . . . .

wp−1 = sinhu1 cosu2 . . . cosup−1 sinup
wp = sinhu1 cosu2 . . . cosup−1 cosup ,

we may express λA and ρA in terms of w = (w0, w1, . . . , wp):

(6.38)
λA = −DA +D

(0)
A w0 +D

(1)
A w1 + . . .+D

(p)
A wp ,

ρA = −D̃A + D̃
(0)
A w0 + D̃

(1)
A w1 + . . .+ D̃

(p)
A wp .

After a rescaling with the factor a1 �= 0 we may write

xA(s, t, w) =
(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
) p∑
a=0

D
(a)
A wa

+
(
a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
) p∑
a=0

D̃
(a)
A wa +

h∑
j=1

(αjAsj + βjAtj) ,

yA(s, t, w) =
(
a1s1 +

h∑
2

ajsj +
h∑
2

bjtj
) p∑
a=0

D̃
(a)
A wa

+
(
a1t1 +

h∑
2

ajtj +
h∑
2

bjsj
) p∑
a=0

D
(a)
A wa +

h∑
j=1

(α̃jAsj + β̃jAtj)
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which is similar to (6.25). From now on we will put

(6.39) S = a1s1 +
h∑
2

ajsj +
h∑
2

bjtj and T = a1t1 +
h∑
2

ajtj +
h∑
2

bjsj .

Choose the initial point sinit(1, 0, . . . , 0), tinit = (0, 0, . . . , 0), uinit = (ω, 0, . . . , 0)
with ω �= 0 and the initial conditions

Φ∗∂si(1, 0, · · · , 0, ω, 0, · · · , 0) = (0, · · · , 0, (i)1 , 0, · · · , 0, 0, · · · , 0) ,

Φ∗∂ti(1, 0, · · · , 0, ω, 0, · · · , 0) = (0, · · · , 0, 0, · · · , (m+i)

1 , 0, · · · , 0) , i = 1, · · · , h ,
Φ∗∂u1(1, 0, · · · , 0, ω, 0, · · · , 0) = (0, · · · , 0, 0, · · · , (m+h+1)

a1, 0, · · · , 0) ,

Φ∗∂ub
(1, 0, · · · , 0, ω, 0, · · · , 0) = (0, · · · , 0, 0, · · · ,

(m+h+b)

a1 sinhω, 0, · · · , 0), b = 2, · · · , p .

A straightforward computations, similar to previous case, yield

xi(s, t, w) = si + ai
(
W0 − 1

)
S − bi

(
W0 − 1

)
T ,

xh+1(s, t, w) = WpT, xh+a(s, t, w) = wa−1T , a = 2, . . . , p ,

yi(s, t, w) = ti + ai
(
W0 − 1

)
T − bi

(
W0 − 1

)
S ,

yh+1(s, t, w) = WpS , yh+a(s, t, w) = wa−1S , a = 2, . . . , p ,

where W0 = w0 coshω − wp sinhω and Wp = −w0 sinhω + wp coshω. Moreover,
since W 2

0 − W 2
p = w2

0 − w2
p, it follows (W0, w1, . . . , wp−1, Wp) ∈ Hp and after a

re-notation we write

xi(s, t, w) = si + ai
(
w0 − 1

)
S − bi

(
w0 − 1

)
T ,

xh+a(s, t, w) = waT , a = 1, . . . , p ,

yi(s, t, w) = ti + ai
(
w0 − 1

)
T − bi

(
w0 − 1

)
S ,

yh+a(s, t, w) = waS , a = 1, . . . , p ,

where (w0, w1, . . . , wp) ∈ Hp. Computing xi + jyi and xh+a + jyh+a we get (6.4).
Let consider the third situation when N⊥ is the flat space E

p, on which we take
coordinates u = (u1, u2, . . . , up) such that the metric g⊥ is expressed by

(6.40) g⊥ = du2
1 + . . .+ du2

p.

Then the warped metric on M is given by g = g�(s, t) + f2(s, t)g⊥(u). The Levi
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Civita connection ∇ of g satisfies

∇∂si
∂sj = 0 , ∇∂si

∂tj = 0 , ∇∂ti
∂tj = 0 ,(6.41.a)

∇∂si
∂ua =

fsi
f

∂ua , ∇∂ti
∂ua =

fti
f
∂ua ,(6.41.b)

∇∂ua
∂ub

= 0 , (a �= b) ,(6.41.c)

∇∂ua
∂ua =

h∑
i=1

(
ffsi∂si − ffti∂ti

)
,(6.41.d)

for any i, j = 1, . . . , h and a, b = 1, . . . , p.
In the following we will proceed in the same way as in previous cases. Again,

we skip most computations, emphasizing only the major differences appearing in this
situation. The function ψ is obtained from Proposition 5.1 (case 1 in the proof):

ψ =
1
2

ln
[〈v̄, z〉2 − 〈jv̄, z〉2] ,

where v = (a1, . . . , ah, 0, t2, . . . , th), a1 > 0, is a constant vector. Applying Gauss’
formula ∇̃Φ∗UΦ∗V = Φ∗∇UV + σ(U, V ) for U, V ∈ D, respectively for U ∈ D and
V ∈ D⊥ we may write (6.19). Using Gauss’ formula for U = V = ∂u1 , we find

∂λA
∂u2

1

+ 〈v, v〉λA−DA = 0 : DA =
∑
ajc

j
A −∑ bj c̃

j
A

∂ρA
∂u2

1

+ 〈v, v〉ρA− D̃A = 0 : DA =
∑
bjc

j
A −∑ aj c̃

j
A .

Here 〈v, v〉 = ||∇f ||2 = 0. Taking U = ∂u1 and V = ∂ub
(b > 1) we find that

∂2λA
∂u1∂ub

= 0 and ∂2ρA
∂u1∂ub

= 0. As consequence,

λA(u) =
DA

2
u2

1 +D
(1)
A u1 + Θ(1)

A (u2, . . . , up) ,

ρA(u) =
D̃A

2
u2

1 + D̃
(1)
A u1 + Θ̃(1)

A (u2, . . . , up) ,

where D(1)
A , D̃

(1)
A are constants. Continuing the computations in the same manner it

turns that

(6.42)
λA(u) =

DA

2

p∑
a=1

u2
a +

p∑
a=1

D
(a)
A ua +D

(0)
A ,

ρA(u) =
D̃A

2

p∑
a=1

u2
a +

p∑
a=1

D̃
(a)
A ua + D̃

(0)
A ,
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where D(0)
A , D̃

(0)
A and D(a)

A , D̃
(a)
A , a = 1, . . . , p are constants. Choosing suitable ini-

tial conditions and taking into account the property of Φ to be isometric immersion,
straightforward computations yield

(6.43)

xi = si +
1
2
(
aiS − biT

) p∑
1

u2
a , xh+b = ubT ,

yi = ti +
1
2
(
aiT − biS

) p∑
1

u2
a , yh+b = ubS ,

where S and T are as in (6.39). Computing now xi + jyi and xh+b + jyh+b one gets
(6.5). In the end, consider N0

⊥ = {(s0, t0)}×E
p, where (s0, t0) is a fixed point in E

2h
h .

If σ0
⊥ is the second fundamental form of N0

⊥ in E2m
m , we find ||σ0

⊥(∂ua , ∂ua)||2 = 0.
So, the mean curvature vector of N0

⊥ is a light-like vector, so it is nowhere zero.
If h = 1, then v = (a1, 0). Thus ||v||2 < 0. Hence, N⊥ is an open part of the

hyperbolic space Hp. So, we obtain item 2.
Let us now consider the case p = 1. In this case N⊥ is a curve, which can be

supposed to be parameterized by the arc-length u. Hence its metric is g⊥ = du2. We
can make the same computations as in previous case such that (6.19) holds. Yet, a
first difference appear: we are not able to say something about the value of ||∇f ||2 =

−
h∑
i=1

a2
i +

h∑
i=1

b2i .

Using as usual Gauss’ formula (for U = V = ∂ua) one gets

∂2λA
∂u2

= 〈v, v〉λA +DA ,
∂2ρA
∂u2

= 〈v, v〉ρA + D̃A ,

where DA, D̃A ∈ R. Since 〈v, v〉 = −
h∑
i=1

a2
i +

h∑
i=1

b2i is an arbitrary constant, we have

to distinguish three different cases: Case (i) 〈v, v〉 = −r 2, Case (ii) 〈v, v〉 = r2 and
Case (iii) 〈v, v〉 = 0 (r > 0).

Solving the ordinary differential equations and doing the computations in the same
manner as in the case when p > 1, and after a re-scaling of the vector v, we obtain the
first three cases stated in the theorem.

At this point we recall that the PDE system in Proposition 5.1 has also other
solutions. When Case 2a from the proof is considered, doing similar computations we
easily get item 4 of the theorem.

Much more interesting is to consider Case 2b in the proof of Proposition 5.1. We
have to examine again the three situations, namely when N⊥ is Sp, Hp or Ep. In the
following we give only few details for the case M = E

2h
h ×f S

p, the other two being
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very similar. Here the warping function is f =
√
AB, where

A =
h∑
k=1

ak(sk + εtk) , B =
h∑
k=1

bk(sk − εtk) ,

ε = ±1, a1 = 0, b1 = 1, a2 �= 0. Moreover, by Proposition 6.1 we get
h∑
k=1

akbk = −1.

Direct computations, analogue to those done in the first part of the proof, yield

(6.44)
xi = si +

w0 − 1
2

(
biA+ aiB

)
, xh+b =

ub
2
(
A−B) ,

yi = ti + ε
w0 − 1

2
(
biA− aiB

)
, xh+b = ε

ub
2
(
A+ B) ,

where (w0, w1, . . . , wp) ∈ S
p. Put vk = ε

2(ak+bk)+ 1
2 j(ak−bk). We have 〈v, v〉 = 1,

where v = (v1, . . . , vp). Computing xi + jyi and xh+b + jyh+b we obtain (6.3).
Moreover, the warping function could be written as f =

√〈v̄, z〉2 − 〈jv̄, z〉2. So, we
obtain again item 1 of the theorem.

The converse follows from direct computations.

Remark 6.3. In the case 3 of previous proof, if we choose (s0, t0) = (1, 0, . . . , 0),
and v = (1, 0, . . . , 0,

√
3 + 2j), we obtain the “initial” leaf N 0

⊥ given by

Φ(1, 0, u) =
(
1 +

1
2

∑
u2
a, 0, . . . , 0,

(h)√
3

2

∑
u2
a, 0, . . . , 0,

(m+h)

−
∑

u2
a, u1, . . . , up) ,

which represents the submanifold given in [15, Proposition 3.6] up to rigid motions.

Remark 6.4. By applying the same method we may also classify all time-like
PR-warped products N� ×f N⊥ in the para-Kähler (h + p)-plane Ph+p satisfying
h = 1

2 dimN�, p = dimN⊥ and Sσ = 2p||∇ lnf ||2.
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