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GEOMETRY OF PR-WARPED PRODUCTS IN PARA-KAHLER
MANIFOLDS

Bang-Yen Chen and Marian loan Munteanu

Abstract. In this paper, we initiate the study of 7P R-warped products in para-
Kahler manifolds and prove some fundamental results on such submanifolds. In
particular, we establish a general optimal inequality for P R-warped products
in para-Kahler manifolds involving only the warping function and the second
fundamental form. Moreover, we completely classify P R-warped products in the
flat para-Kahler manifold with least codimension which satisfy the equality case
of the inequality. Our results provide an answer to the Open Problem (3) proposed
in [19, Section 5].

1. INTRODUCTION

An almost para-Hermitian manifold is a manifold M equipped with an almost
product structure P # +1 and a pseudo-Riemannian metric g such that

(1.1) P2=1, §(PX,PY)=—g4(X,Y),

for vector fields X, Y tangent to M, where T is the identity map. Clearly, it follows
from (1.1) that the dimension of A is even and the metric g is neutral. An almost
para-Hermitian manifold is called para-Kahler if it satisfies VP =0 identically, where
V denotes the Levi Civita connection of /. We define || X ||, associated with § on M
by [|X]|2 = 9(X, X).

Properties of para-Kahler manifolds were first studied in 1948 by Rashevski who
considered a neutral metric of signature (m, m) defined from a potential function on
a locally product 2m-manifold [27]. He called such manifolds stratified spaces. Para-
Kahler manifolds were explicitly defined by Rozenfeld in 1949 [28]. Such manifolds
were also defined by Ruse in 1949 [29] and studied by Libermann [23] in the context
of G-structures.

Received August 23, 2011, accepted September 5, 2011.

Communicated by Jen-Chih Yao.

2010 Mathematics Subject Classification: 53B25, 53B30, 53C15, 53C20.

Key words and phrases: Para-K ahler manifold, P R-Submanifold, Warped product.

1293



1294 Bang-Yen Chen and Marian loan Munteanu

There exist many para-Kahler manifolds, for instance, it was proved in [22] that a
homogeneous manifold M = G/H of a semisimple Lie group G admits an invariant
para-Kahler structure (g, P) if and only if it is a covering of the adjoint orbit Adgh of
a semisimple element h. Para-Kahler manifolds have been applied in supersymmetric
field theories as well as in string theory in recent years (see, for instance, [16, 17, 18]).
(For a nice survey on para-Kahler manifolds, see [19].) .

A pseudo-Riemannian submanifold M of a para-Kahler manifold M is called in-
variant if the tangent bundle of M is invariant under the action of P. M is called
anti-invariant if 2 maps each tangent space 7', M, p € M, into the normal space TpiM.

A Lagrangian submanifold M of a para-Kahler manifold M is an anti-invariant sub-
manifold satisfying dim M = 2dim M. Such submanifolds have been investigated
recently in [12, 13, 14, 15]. .

A pseudo-Riemannian submanifold M of a para-K&hler manifold M is called a
‘P R-submanifold if the tangent bundle T'AM of M is the direct sum of an invariant
distribution D and an anti-invariant distribution D+, i.e.,

T(M)=D @D+, PD=D, PD-CT-M).
p

A P R-submanifold is called a P R-warped product if it is a warped product N+ x ¢
N of an invariant submanifold N+ and an anti-invariant submanifold NV .

In this paper we initiate the study of P R-warped products in para-Kahler manifolds.
The basic properties of P R-warped products are given in section 3. We establish in
section 4 a general optimal inequality for P R-warped products in para-Kahler manifolds
involving only the warping function and the second fundamental form. In section 5,
we provide the exact solutions of a PDE system associated with P R-warped products.
In the last section, we classify P R-warped products N1 x ; V| with least codimension
in the flat para-Kahler manifold which verify the equality case of the general inequality
derived in section 4.

2. PRELIMINARIES

2.1. Warped product manifolds

The notion of warped product (or, more generally warped bundle) was introduced
by Bishop and O’Neill in [4] in order to construct a large variety of manifolds of
negative curvature. For example, negative space forms can easily be constructed in this
way from flat space forms. The interest of geometers was to extend the classical de
Rham theorem to warped products. Hiepko proved a result in [21] which will be used
in this paper.

Let us recall some basic results on warped products. Let B and F' be two pseudo-
Riemannian manifolds with pseudo-Riemannian metrics g g and g respectively, and f
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a positive function on B. Consider the product manifold Bx F. Letn; : BXF — B
and m : B x F' — F be the canonical projections.

We define the manifold A/ = B x ¢ I and call it warped product if it is equipped
with the following warped metric

(2.1) 9(X,Y) = gp(m1(X), m(Y)) + f2(m1(p))gr (72.(X), m2(Y))

forall X,Y € T,(M), p € M, or equivalently,

(2.2) g=gp+ f? gr.

The function f is called the warping function. For the sake of simplicity we will
identify a vector field X on B (respectively, a vector field Z on F) with its lift X
(respectively Z) on B x; F.

If vV, VB and VI denote the Levi-Civita connections of A/, B and F, respectively,
then the following formulas hold

VxY =VEY,
(2.3) VxZ=VzX =X(nf) Z,
VW =VEW — g(Z,W) V(In f)
where X, Y are tangent to B and Z, W are tangent to F. Moreover, V(In f) is the
gradient of In f with respect to the metric g.
2.2. Geometry of submanifolds

Let M be an n-dimensional submanifold of 1Z. We need the Gauss and Weingarten
formulas:

(G) VxY =VxY+o(X,Y), (W) Vxé=-AX +V%E,

for vector fields X,Y tangent to M and £ normal to M, where V is the induced
connection, V+ is the normal connection on the normal bundle 7+ (M), o is the
second fundamental form, and A is the shape operator associated with the normal
section £&. The mean curvature vector H of M is defined by H = %trace h.

For later use we recall the equations of Gauss and Codazzi:

(EG) g(RxyZ,W)=3(RxyZ,W)+§(o(Y, Z),0(X,W))~4(o(X, Z),0(Y,W)),
(EC) (RxyZ)*: = (Vxo)(Y,Z) - (Vyo)(X, Z)

for X,Y,Z and W tangent to M, where R, R are the curvature tensors on M and
M, respectively, (RXyZ)l is the normal component of RxyZ and V is the van der
Waerden - Bortolotti connection defined as

(2.4) (Vxo)(Y,2)=V%o(Y,Z)—o(VxY,Z)—o(Y,Vx, Z).
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In this paper the curvature is defined by Rxy = [Vx, Vy] — Vx y]-

A submanifold is called totally geodesic if its second fundamental form vanishes
identically. For a normal vector field £ on M, if Ac = X1, for certain function A
on M, then ¢ is called a umbilical section (or M is umbilical with respect to &). If
M is umbilical with respect to every (local) normal vector field, then M is called a
totally umbilical submanifold. A pseudo-Riemannian submanifold is called minimal if
the mean curvature vector H vanishes identically. And it is called quasi-minimal if H
is a light-like vector field.

Recall that for a warped product M = B x; F', B is totally geodesic and F' is
totally umbilical in M.

2.3. Para-Kahler n-plane

The simplest example of para-Kahler manifold is the para-Kahler n-plane (E2", P,
go) consisting of the pseudo-Euclidean 2n-space E2", the standard flat neutral metric

n n
(2.5) go=—> dz?+) dy?,
j=1 j=1
and the almost product structure
9 9
(2.6) Pzzga—%®dxj+2%j®dyj.
J= J=

We simply denote the para-Kahler n-plane (E2", P, go) by P".
3. P R-SUBMANIFOLDS OF PARA-KAHLER MANIFOLDS

For any vector field X tangent to M, we put PX = tan(PX) and FX =
nor(PX), where tan, and nor, are the natural projections associated to the direct
sum decomposition

Ty(M) = T,(M) ® T,-(M) , p € M.

Then P is an endomorphism of the tangent bundle 7'(M) and F' is a normal bundle
valued 1-form on M. Similarly, for a normal vector field &, we put t{ = tan(P¢) and
& = nor(PE) for the tangential and the normal part of P&, respectively.

Let v denote the orthogonal complement of PD* in T-(M). Then we have

TH(M) =PD o

Notice that v is invariant, i.e., Pv = v.
The following proposition characterizes P R-submanifolds of para-Kahler mani-

folds. A similar result is known for CR-submanifolds in Kahlerian manifolds and
contact C'R-submanifolds in Sasakian manifolds. See e.g. [30].
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Proposition 3.1. Let M — M be an isometric immersion of a pseudo-Riemannian
manifold M into a para-Kahler manifold A/. Then a necessary and sufficient condition
for M to be a P R-submanifold is that F' o P = 0.

Proof. For U tangent to M we have the following decomposition
U =P?U = PU + FPU + tFU + fFU.
By identifying the tangent and the normal parts respectively, we find

P?4+tF=1 and FP+ fF =0.

Suppose that M is a P R-submanifold. After we choose U = X € D we have
PX = PX and FX = 0. Hence P2 =T and FP = 0 on D. On the other hand, if
U =7 ="D", we have PZ = 0. Hence FP = 0 on D' too.

Conversely, suppose that F'P = 0. Put

D={XecT(M):PXcT(M)}and D* ={Z cT(M):PZc T+(M)}.
Then by direct computations we conclude that D and D+ are orthogonal such that
T(M)="D& D, m

The following results from [15] are necessary for our further computations.

Proposition 3.2. Let M be a P R-submanifold of a para-K ahler manifold M. Then
(i) the anti-invariant distribution D+ is a non-degenerate integrable distribution;
(ii) the invariant distribution D is a non-degenerate minimal distribution;

(iii) the invariant distribution D is integrable if and only if o (PX,Y) = o(X, PY),
forall X,Y € D;
(iv) D is integrable if and only if & is symmetric, equivalently to ¢(PX,Y) =
d(X, PY). Here & denotes the second fundamental form of D in M.
Now, let us give some useful formulas.

Lemma 3.3. If M is a P R-submanifold of a para-K ahler manifold M, then
(a) 9(ArzU, PX) = g(VuZ, X),
(b) Apzw = AFWZ and Ang = —AgPX,

forall X,Y € D, Z,W € D+, U € T(M) and ¢ € T(v).
We need the following for later use.

Proposition 3.4. Let M be a P R-submanifold of a para-K ahler manifold AZ. Then
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(i) the distribution D+ is totally geodesic if and only if
(3.1) §(o(D, DY), PDY) =0
(ii) the distribution D is totally geodesic if and only if
(3.2) §(o(D, D), PD) =0
(i) D is totally umbilical if and only if there exists Z, € D+such that

(3.3) o(X,Y) = g(X,PY) FZy (mod v) , ¥V X,Y € D.

Proof. This can be proved by classical computations: see e.g. [6] or [24]. |

3.1. PR-products

A P R-submanifold of a para-Kahler manifold is called a P R-product if it is locally
a direct product Nt x N, of an invariant submanifold N+ and an anti-invariant
submanifold V| .

The next result characterizes P R-products in terms of the operator P.

Proposition 3.5. (Characterization). A P R-submanifold of a para-Kahler manifold
is @ P R-product if and only if P is parallel.

Proof. By straightforward computations (as in [6, Theorem 4.1] or [24, Theorem
2.2]) we may prove that

(VuP)V =Vy(PV)—-PVyV =0, VUV € x(M),
which implies the desired result. ]

The following result was proved in [15, page 224].

Proposition 3.6. Let N7 x N be a P R-product of the para-Kahler (h + p)-plane
Phtr with h = %dim N+ and p = dim N . If N is either spacelike or timelike,
then the 7P R-product is an open part of a direct product of a para-K ahler h-plane P"
and a Lagrangian submanifold L of PP, i.e.,

Nt x N, C P"x L c Pt x pP = phtp,

3.2. PR-warped products

Let us begin with the following result.
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Proposition 3.7. If a PR-submanifold M is a warped product N | x; Nt of
an anti-invariant submanifold N ; and an invariant submanifold N+ with warping
function f : N, — R,, then M is a PR product N, x NI, where N7 is the

manifold N+ endowed with the homothetic metric g7 = f2g+.
Proof. Consider X,Y € D and Z € D+. Compute

§(o(X,Y),FZ) = §(VxY,PZ) = —g(Y,PVxZ) = g(PY,VxZ) =
=g(PY,Z(Inf) X)=Z(Inf) g(X, PY).

Since o (-, -) is symmetric and g(- , P-) is skew-symmetric, it follows that Z(In f)
vanishes for all Z tangent to N,. Consequently, f is a constant and thus the warped
product is nothing but the product N x N{f. ]

The previous result shows that there do not exist warped product P R-submanifolds
in para-Kaehler manifolds of the form N x; N+, other than P R-products. Thus, in
view of Proposition 3.7 we give the following definition:

Definition 3.8. A P R-submanifold of a para-Kahler manifold M is called a PR-
warped product if it is a warped product of the form: Nt x; N, where N in an

invariant submanifold, N, is an anti-invariant submanifold of M and f is a non-
constant function f : Nt — R..

Since the metric on Nt of a P R-warped product Nt x ; N is neutral, we simply
called the P R-warped product N+ x s IV space-like or time-like depending on V| is
space-like or time-like, respectively.

The next result characterizes P R-warped products in para-Kahler manifolds.

Proposition 3.9. Let M be a proper P R-submanifold of a para-K ghler manifold.
Then M is a P R-warped product if and only if

(3.4) ApzX = (PX(u)Z , ¥ X €D, Z € D+,
for some smooth function x on M satisfying W (u) =0,V W € D+.

The proof of this result is similar as in the case of Kahler or Sasakian ambient
space. The key is the characterization of warped products given by Hiepko in [21].

4. AN OPTIMAL INEQUALITY

Theorem 4.1. Let M = Nt x; N be a PR-warped product in a para-Kahler

manifold M. Suppose that V', is space-like and V+ (PN1) C PN,. Then the second
fundamental form of M satisfies

(4.1) So < 20|V In fll + (07 [],
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where p = dim N, S, = g(o,0), Vin f is the gradient of In f with respect to
the metric g and ||o||, = §(0,(D, D), 0,(D, D)). Here the index v represents the
v-component of that object.

Proof. If we denote by gt and g, the metrics on N1 and N, then the warped
metric on M is g = g1 + f?g.. Let us consider
e on Nt: an orthonormal basis {X;, X;, = PX;}, i = ., h, where
h = dim N—; moreover, one can suppose that ¢ := g(X;, X;) = 1 and hence
Eix = g(Xz*,Xz*) = —1, for all 4.
e on N, : an orthonormal basis {Z,},a =1,...,p; We put e, := g1 (Za, Z,) =

for all a;
o in each point (z,y) € M: Zu(x,y) = 357 Za(v);
e in v: an orthonormal basis {{., {ax = f&ax}, @ = 1,...,q; moreover, one can

suppose that €, := g(&a, {a) = 1 and hence ens := G(€as, ax) = —1.
Now, we want to compute
9(o,0)
=g(o(D, D), o(D, D)) + 2§(o(D, DF),0(D, DY) + G(o(DL, D), o (D, DF)),
where
§(c(D,D),a(D, D))
h

wy " le (eiejg(a(xi, X;), (X0, X;))

Feine;G(0(Xins X), 0(Xiny X)) + €i€ug (0(Xiy Xju), (X5, X))

+€i*€j*§(U(Xi*7Xj*) J(Xl*vXj*))>

§(o(D, D), 0(D, DY) ZZ (ei€ad(0(Xi, Za), 0(Xs, Za)
(43) i=1 a=1

+€i*€a§(U(Xz‘*7 Za), 0 (Xix, Za)))
and
p
(4.9) §(o(D+, DY), 0(Dh, D)) = Z €a€69(0(Za, Zb), 0(Za, Zp)).
a,b=1

To do so, first we analyze (D, D). Since D is totally geodesic, we have (D, D) €
v. Hence one can write the following

J(szXj) = 0_2‘03’506 + 0_%*506*7 J(Xz*vXj) = Ug‘jfa + Uff;fa*v
J(Xz*vXj*) = Jz‘ofkj*ga + ng?*ga*v J(X’MXJ*) = J%*fa + Jzoﬁkga*
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It follows that

h q

as TO@PL@D) =30 5 {[ - @] - [ - 085

—[(05)2 = (0522 + (085> = (05507 .

Due to the integrability of D we deduce that of;; = o7, 0fi = o, ofl . = 0F;

i%] i Ve g

of. = of". Furthermore, using Lemma 3.3, we may write
9(c(X,Y), &) =—g(c(X,PY), f§) ,VX,Y €D, £€v
and consequently we have
ol = g(0(Xi, X)), &a) = —9(0(Xi, Xju), €ax) = 035,
of = —g(0(Xi, Xj), €ax) = §(0(Xi, Xju), €a) = -
By replacing all these in (4.5), we obtain
h g
48)  g(o(D.D),o(D.D) =0yl =4 Y [(07)° ~ (o5)7].
ij=1a=1
Let us focus now on g(o(D, D+), o(D, Dt)). As before, we write
0(Xi, Za) = 02, F Zp 4+ 0% &o + 085 o,
0(Xins Za) = 00 aF 2y + 08 0o + 055 Ee

It follows that

9(0(Xi, Za),0(Xi, Za)) = = (00,2 + D [(00)* = (05)7],
b=1 a=1
g(J(Xi*v Za)v U(Xi*v Z(l)) - - Z(Jg?*a)2 + Z [(Jgka)2 - (O-'ng)ﬂ :
b=1 a=1
We obtain
§(o(D, Dh),0(D, D))
h
_ P2 (gb )2
(47) - ;Q;I [( m) ( z»m) ]
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From Lemma 3.3 we have
§(0(PX,2), [€) = —g(0(X, 2),€)
and consequently
080 = 9(0(Xix, Za), &a) = —9(0(Xi, Za), o) = 07,
ofe = =9(0(Xix, Za), €ax) = §(0(Xi, Za), €a) = 0fy, -

Moreover we know that g(o(PX, Z), FW) = —X (In f)g(Z, W). This yields

(4.8)

(4.9) 0%, = PX;(In f) 6 and o%,, = X;(In f) 0.

By combining (4.7), (4.8) and (4.9) we get

h
7(o(D, DY), 0(D, DY) =p Y [(Xi(ln f))* - (PXi(In f))?]
(4.10) =L
2> > > (o) = (i)’
i=1 a=1 a=1

As g(o(X,2), f€) = —g(Vx FZ,¢) and using the hypothesis V3 PDL C PDH we
get o(D, D) C PDL. Hence o, and o vanish. Thus

(4.11) §(oc(D, D), 0(D, DY) =p g(VInf,Vin f).
Finally, we study g(o(D+, DY), o(DL, D). We write

U(Zm Zy) = ool Ze + ogp8a + Ugljfoc*

and hence
p p q
G(o(D5 DY), 0(DE D) == D (057 + DD [(0n)* = (05)°].
a,b,c=1 a,b=1 a=1

As g(o(2, W), f€) = —g(VEFW,€) and using the hypothesis V5, PD+ C
PDL we get o(DL, D) C PDL. Hence 0%, and o< vanish. We conclude with

p
(4.12) J(o(DH,DH), oD DY) == > (04)* .
a,b,c=1

From these we obtain the theorem. ]
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Remark 4.2. If the manifold N, in Theorem 4.1 is time-like, then (4.1) shall be
replaced by

(4.13) So = 2p||VIn [, + [lo) ||

~_ Remark 4.3. For every P R-warped product Nt x N, in a para-Kahler manifold
M, dim M > dim N1 + 2dim N, holds. Thus the smallest codimension is dim V| .

Theorem 4.4. Let N7 x ¢ N be a P R-warped product in a para-Kahler manifold
M. If N is space-like (respectively, time-like) and dim M = dim N+ + 2dim N,
then the second fundamental form of M satisfies

(4.14) Se < 2p||[VInf||, (respectively, Sy > 2p||VIn fl|,).
If the equality sign of (4.14) holds identically, we have
(4.15) o(D, D) = o(D+, DY) = {0}.

Proof. Inequality (4.14) follows from (4.1). When the equality sign holds, (4.15)
follows from the proof of Theorem 4.1. ]

5. ExacT SoLUTIONS FOR A SPECIAL PDE’S SYSTEM

We need the exact solutions of the following PDE system for later use.

Proposition 5.1. The non-constant solutions ¢» = v (s1, ..., Sx, t1,-- ., ts) Of the
following system of partial differential equations

P 00w 0w 0 _

A =
(5 a) 8siasj 8sz~ aSj 8ti 8tj 07
Py O 9 A
5.1.b — —+— —=0 =1,...,h
( ) 832015]» * 8sz~ 8tj * 8ti aSj b ’ T
Py O I Y I
1. S ANT G At
(5 C) 8tz~8tj + 8ti 8tj + 8sz~ aSj 0
are either given by
1 2 . 2
(5.2) ) = §ln‘[(<v,z>+cl) — ((jv,2) + c2) ]‘,
where z = (s1,82,...,Sn, t1,t2,...,tn), v = (a1,as,...,an,0,bs,...,by) is @ con-
stant vector in R?" with a; # 0, ¢1,co € R and jv = (0, ba, . .., by, ay, as, . . ., ap);

or given by

(5.3) ) = %ln |((v1,2) +¢) ((va, 2) + d)],
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where v = (0, as,...,ap,0,€a, ..., eah), Vo = (bl, ..., bp,—€by, ..., —ebh) with
b1 #0, z is as above and ¢, d € R.
Here ( , ) denotes the Euclidean scalar product in R 2",

Proof. Let us make some notations: t,, := 3—;@; Vops, 1= 8‘2;;@],, and similar for
Y,y Vst respectively ¢y, The same notations for any other function.

If in (5.1.b) we take i = j one gets v,;, = —2¢5, 9y, forall i =1,..., h. Since ¢
is non-constant, there exists iy such that at least one of ¢, or ¢, is different from

0. Without loss of the generality we suppose iy = 1. Both situations yield

e = C(t1,s2,t2, ..., Sh, th) +n(s1,82,t2, ..., 5h, th),

where ¢ and 7 are functions of 2k — 1 variables such that ¢ +» > 0 on the domain of
. It follows that

w _ Tlsq w _ Ns1s1 (C + 77) - 7731
(5.4) To2(CHn) T T 2(C+m)?
- Ct1 " _ Ct1t1 (C + 77) - 77t21
PU(CHn) T T 2(CH)?
Using (5.1.a) and (5.1.c) we obtain
(55) 2778181 (C + 77) = 77?1 - Ct21 ) 2Ct1t1 (C + 77) = Ct21 - 77?1 .

Since ¢ + n # 0, adding the previous relations, one gets
Nsysy (51,82, 12, -+ oy Shy th) + Gy (1, 52, T2, -+ S, th) = 0
and hence, there exists a function F' depending on ss, to, ..., sp, t5 such that

Nsysy (81, 82,82, .., Shyth) = 2F(sa,ta, ..., Sh,th),
Ct1t1 (tlv 52, t27 -+ -5 Shy th) - _2F(827 t27 -+ -3 Sh, th) .
At this point one integrates with respect to s; and t; respectively and one gets
n(s1, 89, t9, ..., 8p,tp) = Fs2+ Gsy + H,

(5.6)
C(tl,SQ,tg, .. .,Sh,th) = —Ft% — Kt — L,

where G, H, L and K are functions depending on so, t, .. ., sp, t Satisfying the fol-
lowing condition

(5.7) 4F(H - L) = G? - K*.

It follows that n + ¢ = (F'sf + Gs1 + H) — (Ft] + Kty + L).
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Case 1. Suppose F' £ 0; being continuous, it preserves constant sign; denote it by

e. From (5.7) we have H — L = 024_;(2 which combined with (5.6) yields

G \2 K \2
= F s+ — Ft+ .
n+C 5[(5 eF s1 2\/5_F> <5\/5 1 2\/5_F>]
We make some notations: a = eVeF, v = ﬁE_F and § = % all of them being
functions depending on ss, to, . . ., sp, tr. We are able to re-write the function ) as
1
(5.8) = 5 Ine [(as1 + 7)? = (aty + (5)2] )
We compute now
alas + ) —a(at; + 9)
5-9 s1 — s —
(5.9) Vs (as1 + )2 — (at1 + )2 ¥ (as1 + )% — (at1 + )2
and for ¢ # 1
Vs, = (asl + 7)(0’81'31 + 781') - (atl + 5)(a8it1 + 581)
Si T 2 _ 2 ’
(5.10) (as1 +7)? — (aty + 0)
(asl + 7)(0’7?1'31 + %fi) — (atl + 5)(atit1 + 5tz)
Vi, = .
‘ (as1 +7)% — (at; + 0)?
Computing also 5,5, we can use (5.1.a) for j =1,¢=2,..., h and obtain

[a(as,51 +7s,) + as, (as1 +7)][(asy +7)* — (aty + 6)]
—a(as1 +7)[(as1 +7)(as,51 +7s) — (at1 + 6)(as,ty + 0s,)]
—a(aty +0)[(as1 + 7)(as1 + ) — (at1 + 0)(ag;t1 + 6¢,)] = 0.

This represents a polynomial in s; and ¢, identically zero, and hence, all its coefficients
must vanish. Analyzing the coefficients for s3 and #; we obtain a, = 0 and a;, = 0
forall i =2,..., h. Consequently « is a real constant.

Replacing in the previous equation we get

ds; (as1 +7v) — vs, (at1 +0) — v, (as1 +v) + &, (aty +6) = 0.
Looking at the coefficients of s; and ¢; we have
(5.11) 0s; =Y, and 6y, = s, Vi =2,...,h.
Therefore (5.10) gives

_ si(asy +y) — b, (aty +6)

Ve, (as1 + ) — 0, (aty +9)
512) b, = — i
(5.12) s, (as1 +7)% — (at1 +9)?

» Yo = (as1 +7)2 — (at; + 6)?
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We may compute
" _ Vsitj (asl + ) + Vs Vt; — 5sit]’ (atl +6) — 55i5t]’
sits (as1 + )% — (aty +9)?
o [y(as1 +9) — o, (aty + 0)][ys (as1 +7) — ds,(ats + )]
[(asy +7)? = (at1 + 0)°]?

and using (5.1.b) with 4, j > 1, we obtain again a polynomial in s; and ¢, identically
zero. By comparing the coefficients of s{ and ¢ we find ~,;, = 0 and d,,;, = 0, for

(5.13)

all 7,7 =2,...,h. It follows that 5, depend only on ss, ..., s, and &, depend only
on ta,...,t,, for all i. From (5.11) we know s, = d;,. Hence, there exist constants
a; € R such that v, = &, = a;, Vi =2, ..., h. In the same way, there exist constants

b; € R such that v, = d,, = b;, Vi =2,..., h. It follows that

h h
')/(82, to...,Sh, th) = Z a;S; + Z bit; + c1,
=2 ;

(5.14) =2

h h
O(s2,ta. .. sp,th) = D bisi+ Y aiti+ca, cr,c2 €R.
i=2 i=2

We conclude with
1
P = 3 lng[(asl + a98y + boto + ... 4+ apspy + bpty + 61)2
—(at1 + bosy + asto + ...+ bysy, + apty + 62)2}.

Hence the solution (5.2) is obtained with a1 = a # 0.

Case 2. Let us come back to the case F' = 0 (on a certain open set). From (5.7)
we immediately find n+ ¢ = Gs; — Kt1 + H, where G, H, K are functions depending
on (s,...,8n,ta,...,ty), and K = eG, e = +1. Thus

1
= 5111\(31 —et1)G+ H|.

We have
G eG
s, = » Yt = — )
2[(81—6t1)G+H] 2[(81 —etl)G—f—H]
(81 — etl)Gs. + H,, (81 — etl)Gt. + Hy, .
S; - : : ) P : c ) - 27 AR h7
Vs = Sl — )G H] T o —et)G L H]
'Lﬂsisl _ Gsi[(sl — etl)G + H] — G[(Sl — th)Gsi + Hsi) —92.. . h

2[(81—6t1)G+H]2 ’
By applying (5.1.a) for j =1 and i = 2, ..., h we obtain
2Gsi[(31 — etl)G + H] — G[(Sl — th)Gsi + Hsi] — GG[(Sl — th)Gti + Hti] =0.
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By comparing the coefficients of s; and ¢; we find
(5.15) G(G, — €Gy,) =0, 2G4 H — G(H,, +€eH;,) = 0.
Since G # 0 we have Gy, = eG,. In the sequel, computing
Yo, = (51— €t1)Gsis;, + Hyis;, (51— @1)Gs; + Hy ][(s1 — €t1)Gs; + Hy) ]

2[(81—6t1)G+H] 2[(81—6t1)G+H]2
2

for i,57 > 2, replacing in (5.1.a) and comparing the coefficients of sy we find
Gs;s; = 0. It follows also G, = 0 and Gy,¢; = 0. Hence

h
G(s2,t2, ..., 8p,tp) = a;i(s; +et;)) +¢, a;,ceR.
i=2
Moreover, H should satisfy
(5.16) 2GH,s; — Gs,(Hs; —eHy,) — G, (Hy, —eHy,) =0,
(5.17) 2HH,,,, — Hy,H,, + Hy,Hy, = 0.

Case 2a. If G is a non-zero constant ¢ (and this happens when all a; vanish), then
from the second equation in (5.15) we find Hy, + eH;, = 0 for all < > 2. Therefore,
H has the form

H(SQ,tQ, .. .,Sh,th) = Q(SQ —€tg, ..., Sp — eth),

where @ is a function depending only on £ variables. From (5.16) we get Hy,s, = 0

h
and then @ is an affine function. Thus H = > b;(s; —e€t;) +d, with by, ..., b, d € R.
i=2

w_—ln[Zb ) +d

Case 2b. If there exists at least one a; # 0, from the second equation in (5.15)
we can express H in the form H = QG, where @ is a function on s, to, ..., sp, th.
Then, for every i > 2,

Consequently,

1)1:67&0.

Hsi + thi = QG,ZQ + G(Qsz + Qtz) )

which combined with (5.15) gives Qs, +€Qy, = 0. Thus, Q = Q(sa—eta, ..., sp—elp).
h
Using (5.16), it follows that () is an affine function and hence H = >_ b;(s; —et;) +d,

i=2
with bo, ..., by, d € R. Consequently,

¢:%1H{[Zzh;bz‘(3z‘— szh;az s; + et;) ”
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with b; = 1. This completes the proof. ]

6. PR-WARPED PRODUCTS IN PPP SATISFYING 5, = 2p||V1n £l],

In the following, we use letters ¢, j, k for indices running from 1 to A; a, b, ¢ for
indices from 1 to p; and A, B for indices between 1 and m with m = h + p.

On Ei(jf;p) we consider the global coordinates (x;, xp+q, ¥i, Yn+a) and the canon-
ical flat para-Kahler structure defined as above.

Proposition 6.1. Let M = Nt xy N be a space-like P R-warped product in the
para-Kahler (h+ p)-plane P"*? with h = 1 dim Nt and p = dim N ;. If M satisfies
the equality case of (4.14) identically, then

e N is a totally geodesic submanifold in 2 "+P, and hence it is congruent to an

open part of P";
e N, is a totally umbilical submanifold in P "+7.

Moreover, if N is a real space form of constant curvature k&, then the warping function
f satisfies ||V f||, = k.

Proof. Under the hypothesis, we know from the proof of Theorem 4.1 that the
second fundamental form satisfies

o(D,D) = o(D+, D) = {0}

On the other hand, since M = Nt x; N is a warped product, N is totally geodesic
and N is totally umbilical in M. Thus we have the first two statements.

The last statement of the proposition can be proved as follows. If R denotes the
Riemann curvature tensor of N, then we have

RzvW = RzyW — [|[VIn f||,(g(V,W)Z — g(Z,W)V)

for any Z,V, W tangent to N,. See for details [26, page 210] (pay attention to the
sign; see also page 74). If N, is a space form of constant curvature k, then R takes
the form

(6.1) RoyW = (%

The equation of Gauss may be written, for vectors tangent to N, , as

- vam) (9(V,W)Z - g(2,W)V).

g(RoyW,U) = (RyyW,U) + (o(V, W), 0(Z,U)) — (o(Z, W), a(V,U)) .

Since the ambient space is flat and o (DL, D) = 0 due to the equality in (4.14), it

follows that g(Rzy W, U) = 0. Combining this with (6.1) gives ||V In f||, = % This
gives the statement. u
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Para-complex numbers were introduced by Graves in 1845 [20] as a generalization
of complex numbers. Such numbers have the expression v = x + jy, where x,y are
real numbers and j satisfies j2 = 1, j # +1. The conjugate of v is o = = — jy. The
multiplication of two para-complex numbers is defined by

(a+jb)(s+jt) = (as + bt) + j(at + bs).

For each natural number m, we put D™ = {(z1 + jy1,. .-, Tm + jYm) : Ti, Yi €
R}. With respect to the multiplication of para-complex numbers and the canonical
flat metric, D™ is a flat para-Kahler manifold of dimension 2m. Once we identify
(T1+jY1,s - T +jYm) € D™ With (21, ..., T, Y1, - - -, Ym) € E2™, we may identify
D™ with the para-Kahler m-plane P™ in a natural way.

In the following we denote by SP,[EP and HP the unit p-sphere, the Euclidean
p-space and the unit hyperbolic p-space, respectively.

Theorem 6.2. Let N7 x; N, be a space-like P R-warped product in the para-
Kahler (h + p)-plane P"+7 with h = 1 dim Nt and p = dim N, . Then we have

(6.2) So < 2p[[VIn fl[5.

The equality sign of (6.2) holds identically if and only if N+ is an open part of a
para-Kahler h-plane, N, is an open part of S?, [EP or HP, and the immersion is given
by one of the following:

1. ®: Dy x;SP — Phte;

h h

<I>(z,w) = (Zl + 1_)1(’[1)0 — 1) Z’szj‘, .y 2R +17h(w0 — 1) Z’szj‘,

J=1 J=1

h h
w1 Zjvjzj, .. .,prjvjzj>, h>2,
j=1 J=1

(6.3)

with warping function

f=(0,2)? = (jv,2)2,
where v = (vy, ..., v5) € S?P71 C D", w = (wo, w, ..., wp) €SP, 2 = (21,...,21) €
Dy and Dy = {z € D": (v,2)? > (jv, 2)?}.
2. d:Dq Xpr —>'Ph+p;

h h
O(z,w) = (,21 + v1(wp — 1) Zvjzj, ooy 2n + Up(we — 1) Zvjzj,
=1 j=1

h h
w1 Zjvjzj, .. .,prjvjzj>, h>1,
J=1 J=1

(6.4)
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with the warping function f = /(v, 2)2 — (ju, 2)2, where v = (vy, ..., v) € H2""1 C
D", w = (wo, w1, ..., wp) € HP and z = (21,...,2,) € D1.
3. ®(z,u) : Dy x; EP — Phtp;
5 P h T P h
<I>(z,u):<21+5<Zu3>Zvjzj,...,zh—i—?( ui)Zvjzj,

(65) h a=1 jzl a=1 jil

Up Zjvjzj, .. .,uijvjzj>, h > 2,

=1 j=1

with the warping function f = /{7, 2)2 — (ju, 2)2, where v = (v1, ..., vs) is a light-
like vector in D*, z = (z1,...,2,) € Dy and u = (uy, ..., u,) € EP,

Moreover, in this case, each leaf EP is quasi-minimal in P "+?,
4. O(z,u) : Do X5 EP — Pphtp:

P P
(6.6) P(z,u)= (zl—i—g—lz ug,...,zh—i—%z u?, U—Oul,...,v—oup>, h>1,
a=1 a=1

2 2
with the warping function f = \/—(v, z), where vy = /b1 + €jy/b1 Wwith b; > 0,
Dy={zeD": (v,2) <0}, v=(v1,...,08) = (b1 +€jb, ..., by + €jbn), € = %1,
z=(z1,...,2) € Dyand u = (u1,...,up) € EP.
2(h+p).

In each of the four cases the warped product is minimal in E ;%

Proof.  Inequality (6.2) is already given in Theorem 4.4. From now on, let us
assume that ® : N1 x; N — P™ is a space-like P R-warped product satisfying the
equality in (6.2) with m = h + p. Then it follows that » = 0 and hence

(6.7) o(X,Y)=0, 0(Z,W)=0, o(X,Z) = (PX(In f))FZ,

for all X,Y tangent to N+ and Z, W tangent to N,. Thus, N+ is totally geodesic in
P™ and N is totally umbilical P™.

As N+ is invariant and totally geodesic in 2™, it is congruent with P with
the canonical (induced) para-Kahler structure [15]. On E%h we may choose global

coordinates s = (s1,...,s,) and t = (¢1, ..., ty) such that
h h

(6.8) gr=—_dsi+ Y dt}, Pdy, =d,, P =0,
=1 =1

fori=1,...,h.

Let us put 95, = g% , &, = a1 and so on,
Now, we study the case p > 1.

Since N is a space-like totally umbilical, non-totally geodesic submanifold in P™,
it is congruent (cf. [1], [15, Proposition 3.6])
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e either to the Euclidean p-sphere SP,
e or to the hyperbolic p-plane HP,
e or to a flat quasi-minimal submanifold EP.

In what follows we discuss successively, all the three situations.
On SP we consider spherical coordinates v = (u1, . .., u,;) such that the metric g
is expressed by

(6.9) gL = du% + cos? uldu% + ...+ cos? uj .. .cos? up_ldui.
Thus, the warped metric on M is given by
g= gT(Sv t) + f2(37 t)gl(u)

Then the Levi Civita connection V of g satisfies

(6.10.&) Vasiasj =0, Vasiat]. =0, Vatiat]. =0,
(6.10.b) Vasiﬁua = f;i Ouy » Vati Ou, = % Oug »
(6.10.c) Vo, 0u, = —tanu,0y, (a <b),
a—1 h
(6.10.d) Vou,Ous = [ [ cos®us Y (£f5,0s, — F11,00,)
b=1 i=1
a—1
+ Z (sin Up COS Uy, COS> Upt] - - .cos? ua_l)ﬁub,
b=1

fori,5=1,....,hand a,b=1,...,p.
From now on we put ¢» = In f. Using the relations above, we find that the Riemann
curvature tensor R satisfies

9%y oY O
R(asiv aua) 83]- - <88283j * a_sza—sj> aua
2
Oy oy o,
0s;0t;  0s; Ot; ’

%Y OOy
R(ativaua) at]' - <atzatj a_tza_tj aua '

(6.11) R(s;,0u,) O, = (

Moreover we have

9y

_ % _
_8sz~

U(asi7 aua) — O, Fauav J(ati7 aua)

Fo,, .
ot “
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Applying Gauss’ equation we find
G(RxzY,W) = g(RxzY, W) +§(a(X,Y),0(Z,W)) — g(o(X, W), (Y, Z)),

for X, Y tangent to Nt and Z, W tangent to NV, . Using (6.7) and (6.11) we get

2
O 0vov v ov

95,05, " 05,05, "ot ot "
Oy ooy  opoyY
12
(612 0508, 0%, 01, Ot 0s;
2
0w 0000 000 _ iy

otot, " 9si0s; | ot 0t;
Let us first consider the case h > 2.

By applying Proposition 5.1 (case 1, in the proof), we know that there exists a
constant vector v = (ay, ag, . .., an, 0,bs,...,by), with a; > 0, such that

Y= 55,22 - (o2,

where z = (s1,...,8p,t1,...,t,) and (, ) denotes the pseudo-Euclidean product in
E2". If a1 < 0 we are allowed to make the isometric transformation in EZ": sy — —s;
and ¢ — —t1. In the sequel, we apply Gauss’ formula

Vao.0®,V = ®,VyV +0o(U, V), YU,V € x(M),
where &, denotes the differential of the map ®. Taking U,V € D we obtain

9%x 4 B 9%x 4 9%x 4

8siasj N 832015]» N 8tz~8tj N

(6.13)
Pya  Pya  Pya _0
8siasj - 832015]» - 8tz~8tj -
For U € D and V € Dt we have
0%x 4 0%x 4 0ya
Bs,0u, — 3 a A 43 a T — w5t a Vs
(6.14)
%y 9%ya Oya 0z 4

D50, =y a A, a T L W
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Finally, taking U, V € D+ we obtain

O x4 = —tanu, 0z a 82y,4 = —tanu % a<b
OugOup “ 8ub ’ 8ua8ub “Ouy ’
e H Z 71,000 gy, 2
oz cos” uy g a Yot
a—l a(L'A
. 2 2
(6.15) + bZ; (sin up cos up COS” Upp - - . COS” Uq—1) Duy
dya 5yA
S H ubz (455 e 0 5
—1
a—1 a
+ Z sin uy, cos up cos® Upy 1 - . . COS% Ug_ 1) 821/:1 )
b
b=1

From (6.13) we get

h

xA(s,t,u):Z sj—i—ZpA )ti +Ca(u),
(6.16)

1
h

yA(s,t,u):Z sj—f—Z)\j )t + Ca(u).
1

By combining (6.14) with (6.16) we obtain

ONy, AN, A ap, dCs
ﬁua 8u = Vs [ a( u)s; + 8—%(u)tj * Oug

ap’, A dCs

(6.17) RdE a( )% +5—ua( )t + Oug |’

: ap;_apA_w aAJA() +ap1’1( )t‘+acA
Ou,  Oug 7| Oug wsj Ou, e Ou,

ap, N, dCa

+w3i a a(u)sj + aua (u)tj aua

For : = 1 we have

h h
ai (a131 + Z a;s; + Z bjtj)

" 2 2
51 h h h h ’

(ars1+ > ajsi+ 3 bit;)? — (arts + D aiti+> bjs;)’
2 2 2 2

1313
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h h
—ay (a1t + Z a;t; + Z bis;)
2 2
h h ) h h 9
(a131 + Z a;s; + Z bjtj) — (a1t1 + Z ajtj + Z bij)
2 2 2 2

Substituting in (6.17) we find polynomials in s and ¢t. Comparing the coefficients
corresponding to sis; and s1¢;, ¢ > 1, we find

Yy, =

(6.18) N\ (u) = aAa(u) + g—ij(u) + % , pYy(u) = %AA(u) + &tpa(u) + %

ai

for i =2,...,h, and A} (u) = Aa(u), py(u) = pa(u), where ¢, diy € R.
Comparing the coefficients of s; and ¢; we find that C'4 and C 4 are constants,

and applying a suitable translation in E2™ if necessary, one may suppose C4 = 0 and

Cy=0,A=1,...,m. Replacing in (6.16) and taking into account (6.17) we get

za(s t,u) = —AA )(ars1 + Zajsj Zh:bjtj)
+1pA altl—i—Zajt +Zb s7)
i@casﬁzdm
ya(s, t,u) = —AA ) (a1ts +Zajt + Zb 55)
+1pA a131+2ajsj+2bt

h h

+ai(cZAsl teati+ Y dhsi+ ) Et))
! 2 2

(6.19)

where ¢4, da, &@, and d’, are real numbers. The third equation in (6.15) for a = 1
gives

82 P h 9 5
e o s o 200 [t -3
“”1*2%75 +Z” 2 [“1% +Z Ja“ Z JW]




Geometry of P R-warped Products in Para-Kahler Manifolds 1315
which combined with the first equation in (6.19) yields

h h
(a131 —|—Zajsj +ijt [
altl—i—Zajt —|—Zb sj [8 (u) 4+ (v, v)pa(u )—i—DA] =0,

(u) + (v, v)Aa(u )—|—DA]

HL\D

(6.20)

h , , 5 h , ,
where Dy = > (a;c’y —b;d’) and Dg =Y (a;d’y — bc).
2 2

Since ||V ||, = —a? — Za + ZbQ, Proposition 6.1 implies (v, v) = 1. Hence,

considering in (6.20) the coeﬁlments of s1 and t; one obtains the following PDEs:

9?4 0%pa ~
(6.21) au% (u) + )\A(’U,) —Dy=0, au% (’LL) + pA(u) —Djg=0.
We immediately get
6.22) Aa(u) :cosul@(Al)(ug,...,up)—|—sinu1D(Al)(u2,...,up)+DA,
6.22
pa(u) = cos ul(:)(Al)(ug, CoUp) F sinulﬁ(j)(ug, o yup) + Da

where ©1), DIV, 61 and DY) are functions depending on us, ..., u,. The first
equation in (6.15) for a = 1 gives a‘i”ggb — —tanu; §%4 , b > 1 which combined
with (6.19) yields

82)% = —tanu —a)\A 82/),4 = —tanu 8/),4

Ouiduy Yow, T Ouiduy You,

=0, b > 1, hence D and D{ are real

constants
Returning to the third equation in (6.15) with a = 2 we get

021 4 0z A h 0z A 0z A
ﬁ—ug = cos® uy alsl—i—Zajsj—i—th [al —|—Zaj ij o,
h

h h
0 O a 9
+cos®up(arts + ) ajtj+ Y bs;) [a1 TA, HY ay Ot Z ’ 5:1]
2 2 2

. Oxa
+sinup cosu;—=—— .
8u1
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This relation together with (6.19) yield a polynomial in s and ¢, and considering the
coefficients of s; and ¢; respectively, we obtain

Pra .
— sinwuy cosul% + (cos?uy)Aa — Dacos’u; =0,

2

Ous

Ppa . -

8—1[1,)2 — sinwuy cosulg'%‘ + (cos?u1)pa — Dacos?u; = 0.
2

Using (6.22) one gets

826541) (1) 82(:)(1) <1
el =0 416y =0
ou2 94 T Oud O
with the solutions
@(Al) = cosug@(j)(ug, CoUp) F sinuszf)(u& s Up),
(:)(Al) = cos ug(:)(AZ)(ug, CoUp) F sinugf)(j)(ug, CUp),
where %, D 6? and D'?) are functions depending on us, . . ., u,. Continuing

such procedure sufficiently many times, we find
)

0 .
Aa(u) = D(A) COSUJ . .. COSp_1 COS Uy + D(f COSUJ . ..COSp_1 Sin Uy
-1 .
—|—ng )cosul...smp_l—i—...

—|—D(A2) cos u1 sinuy + D(Al) sinuy + Dy,

©29 palu) = D(f) COSUJ . .. COSp_1 COS Uy + [?(f) COSUJ . ..COSp_1 Sin Uy
—|—l~?(f_1) cosuy ...sin,_1+...
—|—l~?(A2) cosui sinuj + [)(Al) sinuj + [)A ,

where D). DO p,, DY .. DY) and D, are real constants. At this point let

us make the following notations

wo = COSUJ...COSUp_1 COS Up
Wp = COSUJ...COSUp_1 SN Uy,
Wp—1 = COSUI...SinUp_|

wWo = Cosuisinuy

w1 = sinuj.
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It follows that A4 and p4 may be rewritten as

p P
624)  Aa(w)=Da+ > DVwa, pa(w)=Da+y Dilw..
a=0 a=0

Going back to (6.19) we get, after a re-scaling with a; # 0

p
zA(s,t,w) = alsl—i—Zajsj—i—th Z

a=0
p h ‘ ‘
Harty +Z a;t; +Zb 55) Z a""z(ailsj"'ﬁiltj)’
(6.25) p 2
yA(S,t,'U) = a1$1+2aj3j+Zb t Z awa

a=0
P h
Harty +Z ajt; +Zb s;) ZD(“ wat Y (&ys;+F)t;5)-
j=1

Let us choose the initial conditions

23

(6.26.8) ®,0,,(1,0,...,0)=(0,...,0,1,0,...,0,0,...,0),

(m+i)
(6.26.0) ®.9,.(1,0,...,0)=(0,...,0,0,..., 1 ,0,...,0),i=1,....h,
m~+h+b
(6.26.0) .04, (1,0,...,0) = (0,...,0,0,.... a7 0,..,0), b=1,....p.
From (6.25) and (6.26.c) and taking into account that
5 0, ifa=0
Yal ) 0, ifb#a, a>1
aub u=0 .
1, ifb=a,
we obtain that
D" =0, DY) =0, D =0, DY) =0.(a#b), DY), =1,

(6.27)
i=1,...,h; a,b=1,...,p

From (6.25) and (6.26.a) we find
aZ‘Dﬁ»O) + bzﬁﬁo) + Oé? = 5ij7
(0)
a;D
(6.28) hta
B+ 0D+ 6 =0, B0, + DI, + e =0,

+bD§1(12a+a};+a:0,

t,j=1,...,h, a=1,...,p, by =0.
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Finally, from (6.25) and (6.26.b) we get
sz§O) + aiD§O) + ﬁz - 0 bi Dgﬁza + azD}ﬁi—a + ﬁh—f—a =Y,
(6.29) 0D + 0,0\ + 3 = 6,5, D) +a; D)+ fi i, =0,
i,j=1,...,h,a=1,...,p, by =0.

Now, plugging (6.27), (6.28) and (6.29) in (6.25) we obtain

h h
(6.30.a) zi(s, t,w) = s; + DZ(O)(wO —1)(ars1 + Z a;sj + Z bjt;)
2

h h
+ [)Z(O)(’wo - 1) (a1t1 + Z ajt; + Z bjsj) ,
2 2

h
(6.30.b)  zpia(s, t,w) = Dfﬁza( —1)(ars1 + Z a;sj + Z bjt;)
2 2

+ [wa + Dfﬁza( 1)] (a1t1 + Z ajt; + Z bjsj) ,
h ? h ?
(6.30.C) yi(s, t, ’U)) = tz‘ + D,L(O)('U)O — 1) (a1t1 + Z ajtj + Z bij)
2

h h
+ [)Z(O)(’wo — 1)(0,131 + Zaij + ijtj) ,
2 2

h
(6.30.d)  yntals, t,w)= Dfﬁza(wo —1)(arty + Z ajt; + Z bjs;)
2 2
+ [wa + [);ﬁga(’wo — 1)] (a131 + Z a;s; + Z bjtj)
2 2

Since @ is an isometric immersion we have g(®.U, ®.V) = g(U, V') for every U and
V tangent to M. From g(®.0s,, ®.0s,) = —1 and (6.30) we get

2
—Z DO (wy+1)=0

_ ) pO)y (0)
(wo — 1(DY, D +22waD -

h+a
a=1

for all w € SP, where

D(O) (DY))?" D(O) D(O) D(O) D(O) N D(O) D(O)

H(0)
ht1o s Pop s h+17""D2h)'
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Therefore

(631) Dg()) = —a, D(O) = O,VCL: 17 - Dy <D(O)7D(O)> =1.

From §(®.0s,, ®.0s;) = 0 and (.0, , ®.0;;) = 0, (j > 2), together with (6.30)
and (6.31) it follows

(6.32) DV = —q; = 2L DO PO —p. 4 % POy
J aq J ap

Finally, from §(®,8,,, ,0,,) = 0, (6.30) and (6.31) we get D'*) = 0. Hence from
(6.32) one obtains Dﬁo) = —a; and Dﬁo) =b;, forall j =1,...,h (recall by = 0),

which combined with (D(®), D) = 1 yield D{") = 0.
We conclude from (6.30) the following

h h
II,'Z‘(S,t,'U)) =S8 — a”i(wo - 1)(0’181 + Za’jsj + ijtj)
2 2

h h
+bi(wo — 1) (arts + > ajt; + > bjs;),
h 2h 2
Thia(s,t,w) = we(arts + Z a;t; + Z bjs;i),
(6.33) 2 2

h h
yi(s, t,w) =t; — a;(wo — 1) (arts + Zajtj + ijsj)
- -
+bi(wo — 1) (ars1 + ) ajsj+ ) bity),
2 2

h h
Yhta(S, t,w) = wa(alsl + Z a;s; + Z bjtj)-
2 2

Computing now z; + jy; and xp1q + jyn+q ONE gets (6.3).
Let consider the second situation when N is the hyperbolic space HP. On HP
consider coordinates u = (u1, ug, . . ., u,) such that the metric g, is expressed by

(6.34) g, = du% + sinh? uy (du% + cos? ugdug + ...+ cosuy...cos? up_lduf)) ,

and the warped metric on M is given by g = g7(s,t) + f?(s,t)g1 (u). Then the Levi
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Civita connection V of g satisfies

(6353) Vasiﬁsj = 0, VQSiﬁt]. = 0, v(‘)ti 8,5]. = 0,

6355) Vo0 =20, Vo0 =20,

(6.35.c)  Vgu, 0y, = cothui0,, (1<b),

(6.35.d) Vy,, 0y, = —tanu,0d,, (1<a<b),
h

(6.35.) Vo, 0w = > (ffs0s — [f100),

=1

a—1 h
(6.35.f) Vo, 0u, =sinh®uy [ cos®up Y (£Fs, 05 — F11,00,)
b=2 i=1

a—1
— sinh u; coshu H cos? up Ou,

=2
a—1 b

+ Z (sin Upy COS Upy COS> Upy] - - . COS” ua_l)ﬁub, (1<a)
b=1
foranyi,5=1,...,hand a,b=1,...,p.

In the following we proceed in the same way as in previous case. Since some
computations are very similar we skip them, and we will focus only on the major
differences between the two cases.

The function ¢ is obtained from Proposition 5.1 (case 1 in the proof):

1 _ .
)= §ln (B, 2)* — (jv, 2)7] ,
where v = (a1, az, . . ., an, 0, ba, . .., by), With a1 > 0 is a constant vector.

Applying Gauss’ formula Vg,y®.V = @, VyV + o(U,V) for U,V € D, re-
spectively for U € D and V' € D+ we may write (6.19). Using Gauss’ formula for
U=V =0, we find

oA , y
a—u%l—l—<’l),’l)>)\,4—DA=0 . Da=Ya;d - b,
Opa Da=0 : Ds=3bd )
a—u%+<vvv>ﬂA— A= : A= bjcy =) a;c).

Here (v,v) = ||V f||, = —1 and consequently

(6.36) Aa(u) = coshulD(f)(ug, CoUup) + sinhul@f)(ug, c.oup) — Dy,

palu) = coshulﬁ(f)(ug, CoUup) + sinhul(:)(f)(ug, .o up) — Da.
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Taking U = 0,, and V' = 0y,, (b > 1) we find that D(f) and [)(f) are constants.
Next, applying the Gauss formula for U = V' = §,, and respectively for U = 9,, and
V = 0y,, (b > 2) we get

@(f) = cos ug@(Al)(ug, CoUp) F D(Al) sinus ,
(:)(f) = cos ug(:)(Al)(ug, CoUp) F D(Al) sin uo, D(Al), D(Al) e R.
Continuing the procedure sufficiently many times we finally get

Ag=—Dy+ D(f) coshui + D(Al) sinh uj cosug + D(A2) sinh w1 cosug sinug + - - -
)

1) . . .
—|—Dlz1 ) sinh uy cosug - - - cos u,_1 sinuy, + D(f sinh uy cosug - - -cosuy,

pA = —[)A + [)(f) coshui + [?(Al) sinh uj cosug + lN?(A2) sinh uj cosug sinug + - - -
)

=p—1) . . ~ .
—|—Dlz1 ) sinh uy cosug - - - cos u,_1 sinuy, + D(f sinh uy cosus - - - cos uy,.

Considering the hyperbolic space H” embedded in R’l’“ with coordinates
wo = cosh uq
wy = sinh w7 sin uy

w9 = sinh uq cos ug sin ug

(6.37)
wp—1 = sinhwuy cosus . .. cosu,_1sinu,
wy = sinh uq cosusy . . . cos Up—1 COS Up ,
we may express Ay and p4 in terms of w = (wp, wy, . . ., wp):
A= =D+ DVwy+ DPwy + ...+ DPw,,
(6.38)

pA = —[?A + [?ff)wo + Dil)wl +. [?ff)wp.
After a rescaling with the factor a; # 0 we may write

p
zA(s,t,w) = alsl—i—Zajsj—i—th Z Awa
a=0

h h P h ) )
Farts+ Y aity + > bysi) Y DY wa+ Y (s + Bhts)
2 2 a=0 J=1

h h P
ya(s, t,w) = (a131 + Z a;s; + Z bjtj) Z fo)wa
2 2 a=0
h h h
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which is similar to (6.25). From now on we will put

h

h h h
(639) S =ay1s1 + Z a;s; + Z bjtj and T = ait] + Z ajtj + Z bij.
2 2 2 2

Choose the initial point si,i¢(1,0, .. .,0), tinit = (0,0,...,0), Uit = (w,0,...,0)
with w # 0 and the initial conditions

(@
@,ﬁsi(l,o,---,O,w,O,---,O):(O,---,O, i,O,---,0,0,---,O),

(m+i) )
(I)*ati(l,o,"',O,W,O,"',O):(O,"',0,0,"', 1 707"'70)71:17"'7}"7
+h+1
(I)*a’ln(lvov"'vovwvov“'70):(07"'70707"'7(ma’17 )07"'70)7
(m~+h+b)

$,0,,(1,0,---,0,w,0,---,0) =(0,---,0,0,---,aysinhw, 0,---,0), b=2,---,p.

A straightforward computations, similar to previous case, yield

xi(s,t,w) =S; + ai(Wo — 1)S — bz‘(WO — 1)T
Thri(s, t,w) = WpT, apqa(s,t,w) =we1T, a=2,...,p,
yi(s,t,w) =1; + ai(Wo — 1)T — bz‘(WQ — 1)5,
Ynt1(s,t,w) = WpS, ynhtal(s, t,w) =we1S, a=2,...,p,
where Wy = wg coshw — wy,sinhw and W), = —wysinhw + w, coshw. Moreover,
since W§ — W72 = w§ — w3, it follows (Wo, w1, ..., w,_1,W,) € HP and after a
re-notation we write
zi(s, t,w) = s; + a; (wo — l)S — bi(wo — l)T7
Thia(s, t,w) =w, T, a=1,...,p,
yi(s, t,w) =t; + az(wo — 1)T b; (wo — l)S
yh+a(3,t7w): azlv"'upu
where (wg, wy, ..., wp) € HP. Computing z; + jy; and x4 + jyn+q We get (6.4).
Let consider the third situation when N | is the flat space EP, on which we take
coordinates u = (uy, ug, . . ., u,) such that the metric g, is expressed by
(6.40) g1 =du? + ...—f—du]%.

Then the warped metric on M is given by g = g7(s,t) + f%(s,t)g.(u). The Levi
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Civita connection V of g satisfies

(6.41.&) Vasiasj =0 s Vasiat]. =0 s Vatiat]. = 0,
(6.41.b) Vo, Ou, = Jsi Ouy » Vo, Ou, = fi Oug »
i f i f
(6.41.c) Vaua Ou, =0, (a#b),
h
(6.41.d) VouOus = O (£f5,05, — £ 11,00,)
=1

foranyi,j=1,...,hand a,b=1,...,p

In the following we will proceed in the same way as in previous cases. Again,
we skip most computations, emphasizing only the major differences appearing in this
situation. The function « is obtained from Proposition 5.1 (case 1 in the proof):

y= 305,27 (5,27

where v = (a1, ...,an,0,t2,...,t), a1 > 0, is a constant vector. Applying Gauss’
formula Vg,y®.V = &, VyV + o (U, V) for U,V € D, respectively for U € D and
V € D+ we may write (6.19). Using Gauss’ formula for U = V = 9,,, we find

) | )
ag+<v7v>)\A—DA:0 : DA:ZajCQ_ijCQ
9 ) | )
8L1é+<v,v>pA—DA:0 . Dy=bid, — S a;é,

Here (v,v) = ||V f||, = 0. Taking U = 9,, and V" = 9,, (b > 1) we find that
D°A4 () and 2224 — (. As consequence,

OurOup Ou10uy
D
Aa(u) = 2A w2+ DWuy +0W(uy, .. up),
D
pa() = 5% uf + D + 04 (un . )

where D(Al), D(Al) are constants. Continuing the computations in the same manner it
turns that

Da (a) (0)
7 + Z D Ugq + D s
6.42
(6.42) B,
2

a 1

+ ZD(“ uq + DY,
a=1

3
e
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where D' D) and D@ DI o = 1,... p are constants. Choosing suitable ini-
tial conditions and taking into account the property of ® to be isometric immersion,
straightforward computations yield

1 p
T =sitg Zu Thab = upT',

(6.43) )
yi =ti+ azT biS)> ul, Ynip = S,

1

where S and T are as in (6.39). Computing now x; + jy; and xp4p + jyn+s ONe gets
(6.5). In the end, consider NO = {(so,t9)} x EP, where (s, to) is a fixed point in E?",
If 69 is the second fundamental form of N9 in E2, we find ||o (Ou,, Ou, )|, = 0
So, the mean curvature vector of N is a light-like vector, so it is nowhere zero.

If h =1, then v = (a1,0). Thus ||v||]2 < 0. Hence, N, is an open part of the
hyperbolic space HP. So, we obtain item 2.

Let us now consider the case p = 1. In this case N, is a curve, which can be
supposed to be parameterized by the arc-length w. Hence its metric is g = du®. We
can make the same computations as in previous case such that (6.19) holds. Yet, a
first difference appear: we are not able to say something about the value of ||V f||, =

h h
— > ai+ Yy by
=1 =1

Using as usual Gauss’ formula (for U = V' = 9,,,) one gets

9%\ 4 0%pa .
W = <’U7’U>)\A+DA7 8u2 = <’U7’U>pA+DA7
-~ - h h - -
where D4, D4 € R. Since (v,v) = — > a? + Y b? is an arbitrary constant, we have
i=1 i=1
to distinguish three different cases: Case (i) (v,v) = —r2, Case (ii) (v,v) = r? and

Case (iii) (v,v) =0 (r > 0).

Solving the ordinary differential equations and doing the computations in the same
manner as in the case when p > 1, and after a re-scaling of the vector v, we obtain the
first three cases stated in the theorem.

At this point we recall that the PDE system in Proposition 5.1 has also other
solutions. When Case 2a from the proof is considered, doing similar computations we
easily get item 4 of the theorem.

Much more interesting is to consider Case 2b in the proof of Proposition 5.1. We
have to examine again the three situations, namely when N, is SP, HP or EP. In the
following we give only few details for the case M = ]Eih x r SP, the other two being
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very similar. Here the warping function is f = v/ AB, where

h

h
A:Zak(sk—i—etk) , BZZbk(sk—etk),
k=1

k=1

h
e==1,a; =0, by =1, ay # 0. Moreover, by Proposition 6.1 we get > aib, = —1.

k=1
Direct computations, analogue to those done in the first part of the proof, yield

Up
i:z+ bA+az y Th b:_A_B)v
(6.44) E ( ) =5

Yi :ti+€w0 (biA—aiB) y Th+b 26%(A+B),
where (wo, wy, . .., w,) € SP. Put vy, = $(ag +by) + 3j(ar — bx). We have (v, v) = 1,
where v = (vq,...,v,). Computing z; + jy; and zp4s + jynts We obtain (6.3).
Moreover, the warping function could be written as f = \/(v, )2 — (jv, 2)2. So, we
obtain again item 1 of the theorem.

The converse follows from direct computations. ]

Remark 6.3. In the case 3 of previous proof, if we choose (s, t) = (1,0,...,0),
and v = (1,0,...,0,v/3 + 2j), we obtain the “initial” leaf Nﬁ given by

(h)
\/g (m+h
2
®(1,0,u) = (1+ = Zua,() 0,72%,0,.. =y Ul )
which represents the submanifold given in [15, Proposition 3.6] up to rigid motions.

Remark 6.4. By applying the same method we may also classify all time-like
PR-warped products Nt x; N in the para-Kahler (h + p)-plane Phtr satisfying
h=1dimNr, p=dimN, and S, = 2p||VIn f||,.
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