Vol. 16, No. 2, pp. 713-732, April 2012

This paper is available online at http://journal.taiwanmathsoc.org.tw

TWO-WEIGHT NORM INEQUALITIES FOR CERTAIN SINGULAR INTEGRALS

R. A. Bandaliev* and K. K. Omarova

Abstract. In this paper we prove the boundedness of certain convolution operator in a weighted Lebesgue space with kernel satisfying the generalized Hörmander's condition. The sufficient conditions for the pair of weights ensuring the validity of two-weight inequalities of a strong type and of a weak type for singular integral with kernel satisfying the generalized Hörmander's condition are found.

0. Introduction

Let \mathbb{R}^n be n-dimensional Euclidean space of points $x=(x_1,\ldots,x_n)$, where $n\in\mathbb{N}$. Suppose that ω is a non-negative, Lebesgue measurable and real function defined on \mathbb{R}^n , i.e., ω is a weight function defined on \mathbb{R}^n . By $L_{p,\omega}(\mathbb{R}^n)$ we denote the weighted Lebesgue space of measurable functions f on \mathbb{R}^n such that

$$||f||_{L_{p,\omega}(\mathbb{R}^n)} = \left(\int_{\mathbb{R}^n} |f(x)|^p \omega(x) dx\right)^{1/p} < \infty, \ 1 \le p < \infty.$$

In the case $p=\infty$, the norm on the space $L_{\infty,\omega}(\mathbb{R}^n)$ is defined as

$$||f||_{L_{\infty,\omega}(\mathbb{R}^n)} = ||f||_{\infty} = \operatorname{ess sup}_{x \in \mathbb{R}^n} |f(x)|.$$

For $\omega=1$ we obtain the nonweighted L_p spaces, i.e., $\|f\|_{L_{p,1}(\mathbb{R}^n)}=\|f\|_{L_{\underline{p}}(\mathbb{R}^n)}$.

Consider the linear operator T defined for $f \in L_2(\mathbb{R}^n) \cap L_p(\mathbb{R}^n)$ by $\widehat{Tf}(x) = \chi_{[-1,1]}(x)\widehat{f}(x)$, where $\chi_{[-1,1]}$ denotes the characteristic function of the segment

Received September 28, 2010, accepted January 15, 2011.

Communicated by Aram Arutyunov.

2010 Mathematics Subject Classification: 46B50, 26D15, 47B38.

Key words and phrases: Weighted Lebesgue space, Singular integral, Kernel, Generalized Hörmander's condition, Boundedness.

*The author is supported by the Science Development Foundation under the President of the Republic of Azerbaijan Project No./01/023.

[-1,1] and \widehat{f} denotes the Fourier transformation of a function f. In fact, T can be constructed from multiplication operators and the Hilbert transform, so the boundedness of T on $L_p(\mathbb{R}^n)$ is just a consequence of the L_p boundedness of the Hilbert transform. It is curious that although the L_p boundedness of T follows from results on singular integrals, it does not follow directly, since the kernel of T has a derivative which does not decay quickly enough at infinity to apply the usual theory. For example, if the kernel of T has the form $\frac{\sin x}{x}$ and e.t.c. On the other hand, singular integrals whose kernels do not satisfy Hörmander's condition have been widely considered (for example, oscillatory and other singular integral) (see [4]). For classical singular integral operators the boundedness properties were proved by A.P.Calderon and A.Zygmund [2] (see also [3]). For power weights the boundedness of classical singular integral operators in weighted Lebesgue spaces was proved by E.Stein in [13].

1. Preliminaries

Definition 1. [6]. A positive measurable and locally integrable function g is said to satisfy the reverse L_{∞} condition RL_{∞} or $g \in RL_{\infty}(\mathbb{R}^n)$ if

$$0 < \sup_{x \in B} g(x) \le C \frac{1}{|B|} \int_{B} g(x) dx,$$

where B is an arbitrary ball centered at the origin and C>0 is a constant independent of B.

Let $K \in L_2(\mathbb{R}^n)$ be a function satisfying the following conditions:

- (a) $\|\widehat{K}\|_{\infty} \leq C$;
- (b) $|K(x)| \leq \frac{C}{|x|^n}$;
- (c) there exist the functions $A_1, \ldots, A_m \in L_1^{loc}(\mathbb{R}^n \setminus \{0\})$ and $\Phi = \{\varphi_1, \ldots, \varphi_m\}$ such that $\varphi_i \in L_\infty(\mathbb{R}^n)$ and $|\det[\varphi_j(y_i)]|^2 \in RL_\infty(\mathbb{R}^{nm}), y_i \in \mathbb{R}^n, i, j = 1, \ldots, m;$
- (d) for a fixed $\gamma > 0$ and for any |x| > 2|y| > 0 the inequality

(1.1)
$$\left| K(x-y) - \sum_{i=1}^{m} A_i(x) \varphi_i(y) \right| \le C \frac{|y|^{\gamma}}{|x-y|^{n+\gamma}}$$

is valid, where C > 0 is a constant independent of x and y. In general, the functions A_i , φ_i (i = 1, ..., m) are complex-valued.

Remark 1. Let K be a function satisfying condition (1.1). Then the inequality

(1.2)
$$\int_{|x|>2|y|} \left| K(x-y) - \sum_{i=1}^m A_i(x) \varphi_i(y) \right| dx \le C$$

is valid.

Indeed, integrating both sides of inequality (1.1) with respect to the set |x| > 2|y|, using the inequality $|x-y| \ge |x| - |y| \ge |x| - \frac{|x|}{2} = \frac{|x|}{2}$ and passing to spherical coordinates in \mathbb{R}^n , we have

$$\int_{|x|>2|y|} \left| K(x-y) - \sum_{i=1}^{m} A_i(x) \varphi_i(y) \right| dx \le C \int_{|x|>2|y|} \frac{|y|^{\gamma}}{|x-y|^{n+\gamma}} \\
\le 2^{n+\gamma} C |y|^{\gamma} \int_{|x|>2|y|} \frac{dx}{|x|^{n+\gamma}} = \frac{2^{n+\gamma} \pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)} C |y|^{\gamma} \int_{2|y|}^{\infty} \frac{dt}{t^{\gamma+1}} = \frac{2^n \pi^{\frac{n}{2}}}{\gamma \Gamma(\frac{n}{2}+1)} C = C_1.$$

Therefore condition (1.2) is a weaker condition on the function K than condition (1.1).

Definition 2. [12] It is said that locally integrable weight function ν belongs to $A_p(\mathbb{R}^n)$ if

$$\sup_{B} \left(\frac{1}{|B|} \int_{D} \nu(x) \, dx \right) \left(\frac{1}{|B|} \int_{D} \nu^{1-p'}(x) \, dx \right)^{p-1} < \infty,$$

where the supremum is taken over all balls $B \subset \mathbb{R}^n$, $1 and <math>p' = \frac{p}{p-1}$. Also, $\nu \in A_1(\mathbb{R}^n)$ if there exists a positive constant C such that for any arbitrary ball $B \subset \mathbb{R}^n$ the inequality

$$\frac{1}{|B|} \int_{B} \nu(x) \, dx \le C \operatorname{ess inf}_{x \in B} \nu(x)$$

holds.

Remark 2. It is clear that from condition RL_{∞} implies the well known reverse Hölder inequality

$$\left(\frac{1}{|B|} \int_{B} [g(x)]^{1+\varepsilon} dx\right)^{\frac{1}{1+\varepsilon}} \le C \left(\frac{1}{|B|} \int_{B} g(x) dx\right),$$

where $\varepsilon > 0$. It is well known that the reverse Hölder condition characterizes the condition $A_p(\mathbb{R}^n)$ (see [5]).

For $1 and <math>f \in L_p(\mathbb{R}^n)$ we put

(1.3)
$$Tf(x) = \int_{\mathbb{R}^n} K(x-y) f(y) dy.$$

We will also need the following theorems.

Theorem 1. [14]. Let $1 < r < \infty$ and $\omega \in A_r(\mathbb{R}^n)$ be a weight function on \mathbb{R}^n . Suppose that the kernel of the convolution operator (1.3) satisfies the conditions (a)-(d). Then the following inequality

$$||Tf||_{L_{r,\,\omega}(\mathbb{R}^n)} \le C \, ||f||_{L_{r,\,\omega}(\mathbb{R}^n)}$$

holds, where the positive constant C is independent of f.

For r=1 there exists a positive constant C such that for any $f \in L_{1,\omega}(\mathbb{R}^n)$ and $\lambda > 0$ the inequality

$$\int_{\{x \in \mathbb{R}^n: |Tf(x)| > \lambda\}} \omega(x) \, dx \le \frac{C}{\lambda} \int_{\mathbb{R}^n} |f(x)| \, \omega(x) \, dx$$

holds.

Remark 3. Let the kernel of the convolution operator (1.3) satisfy the conditions (a), (c) and (1.2). Then for $\omega = 1$ Theorem 1 was proved in [5].

Example 1.1. If m = 1, $A_1(x) = K(x)$ and $\varphi_1(x) \equiv 1$, we get the Hörmander's version of the Calderón-Zygmund Theorem (see [8]).

Example 1.2. Let
$$m=2$$
, $K(x)=\frac{\sin x}{x}$, $x\in\mathbb{R}\setminus\{0\}$, $A_1(x)=\frac{e^{ix}}{2i\,x}$ $A_2(x)=-\frac{e^{ix}}{2i\,x}$, $\varphi_1(y)=e^{-iy}$ and $\varphi_2(y)=e^{iy}$. Then the conditions (a)-(d) hold.

Theorem 2. [11]. Let $1 < q < p < \infty$, u(t) and v(t) be positive functions on $(0, \infty)$. Suppose that $F : (0, \infty) \mapsto \mathbb{R}$ be a Lebesgue measurable function.

1. For the validity of the inequality

$$\left(\int_{0}^{\infty} u(t) \left| \int_{0}^{t} F(\tau) d\tau \right|^{q} dt \right)^{1/q} \le C_{1} \left(\int_{0}^{\infty} |F(t)|^{p} v(t) dt \right)^{1/p}$$

it is necessary and sufficient that

$$\int\limits_0^\infty \left[\left(\int\limits_t^\infty u(\tau)\,d\tau \right) \left(\int\limits_0^t v^{1-p'}(\tau)\,d\tau \right)^{q-1} \right]^{\frac{p}{p-q}} v^{1-p'}(t)\,dt < \infty,$$

where $C_1 > 0$ is independent of F.

2. For the validity of the inequality

$$\left(\int_{0}^{\infty} u(t) \left| \int_{t}^{\infty} F(\tau) d\tau \right|^{q} dt \right)^{1/q} \leq C_{2} \left(\int_{0}^{\infty} |F(t)|^{p} v(t) dt \right)^{1/p}$$

it is necessary and sufficient that

$$\int_{0}^{\infty} \left[\left(\int_{0}^{t} u(\tau) d\tau \right) \left(\int_{t}^{\infty} v^{1-p'}(\tau) d\tau \right)^{q-1} \right]^{\frac{p}{p-q}} v^{1-p'}(t) dt < \infty,$$

where $C_2 > 0$ is independent of F.

For q = 1 the following Lemma is valid.

Lemma 1. [10]. Let p > 1 and u(t) and v(t) be positive functions on $(0, \infty)$.

1. If the pair (u, v) satisfies the condition

$$\int_{0}^{\infty} \left(\int_{t}^{\infty} u(\tau) d\tau \right)^{p'} v^{1-p'}(t) dt < \infty,$$

then there exists a positive constant C_1 such that for an arbitrary function $F:(0,\infty)\mapsto \mathbb{R}$ the inequality

$$\int_{0}^{\infty} u(t) \left| \int_{0}^{t} F(\tau) d\tau \right| dt \le C_{1} \left(\int_{0}^{\infty} |F(t)|^{p} v(t) dt \right)^{1/p}$$

holds.

2. If the pair (u, v) satisfies the condition

$$\int_{0}^{\infty} \left(\int_{0}^{t} u(\tau) d\tau \right)^{p'} v^{1-p'}(t) dt < \infty,$$

then there exists a positive constant C_2 such that for an arbitrary function $F:(0,\infty)\mapsto \mathbb{R}$ the inequality

$$\int_{0}^{\infty} u(t) \left| \int_{t}^{\infty} F(\tau) d\tau \right| dt \le C_2 \left(\int_{0}^{\infty} |F(t)|^p v(t) dt \right)^{1/p}$$

holds.

Theorem 3. [9]. Let $1 \le q , <math>u(x)$ and v(x) be weight functions on \mathbb{R}^n . Then the condition

$$\int\limits_{\mathbb{R}^n} \left[u(x) \right]^{\frac{p}{p-q}} \left[v(x) \right]^{-\frac{q}{p-q}} dx < \infty$$

is necessary and sufficient for the validity of the inequality

$$\left(\int\limits_{\mathbb{R}^n} |f(x)|^q u(x) \, dx\right)^{1/q} \le C \left(\int\limits_{\mathbb{R}^n} |f(x)|^p v(x) \, dx\right)^{1/p},$$

where C > 0 is independent of f.

Lemma 2. Let $1 \le q and <math>\alpha \ge 1$. Let u and u_1 be positive increasing functions on $(0, \infty)$, ψ be a positive function on \mathbb{R}^n , $\omega = u\psi$ and $\omega_1 = u_1\psi$. If the weight pair (ω_1, ω) satisfies the condition

(1.4)
$$\int_{\mathbb{D}_n} [u_1(\alpha|x|)]^{\frac{p}{p-q}} [u(|x|)]^{-\frac{q}{p-q}} \psi(x) dx < \infty,$$

then there exists a constant C > 0 such that for any $f \in L_{p,\omega}(\mathbb{R}^n)$

$$\left(\int_{\mathbb{R}^n} |f(x)|^q \,\omega_1(x) \,dx\right)^{1/q} \le C \left(\int_{\mathbb{R}^n} |f(x)|^p \,\omega(x) \,dx\right)^{1/p}.$$

Proof. We have

$$\int_{\mathbb{R}^n} \left[u_1(\alpha|x|) \right]^{\frac{p}{p-q}} \left[u(|x|) \right]^{-\frac{q}{p-q}} \psi(x) \, dx \ge \int_{\mathbb{R}^n} \left[u_1(|x|) \right]^{\frac{p}{p-q}} \left[u(|x|) \right]^{-\frac{q}{p-q}} \psi(x) \, dx = 0$$

$$= \int_{\mathbb{R}^n} \left[u_1(|x|) \, \psi(x) \right]^{\frac{p}{p-q}} \, \left[u(|x|) \, \psi(x) \right]^{-\frac{q}{p-q}} \, dx = \int_{\mathbb{R}^n} \left[\omega_1(x) \right]^{\frac{p}{p-q}} \, \left[\omega(x) \right]^{-\frac{q}{p-q}} \, dx.$$

By Theorem 3 the proof of Lemma 2 is completed.

The following Lemma is proved analogously.

Lemma 3. Let $1 \le q and <math>\alpha \ge 1$. Let u and u_1 be positive decreasing functions on $(0, \infty)$, ψ be a positive function on \mathbb{R}^n , $\omega = u\psi$ and $\omega_1 = u_1\psi$. If the weight pair (ω_1, ω) satisfies the condition

$$\int_{\mathbb{R}^n} \left[u_1 \left(\frac{|x|}{\alpha} \right) \right]^{\frac{p}{p-q}} \left[u(|x|) \right]^{-\frac{q}{p-q}} \psi(x) \, dx < \infty,$$

then there exists a constant C > 0 such that for any $f \in L_{p,\omega}(\mathbb{R}^n)$

$$\left(\int\limits_{\mathbb{R}^n} |f(x)|^q \,\omega_1(x) \,dx\right)^{1/q} \leq C \,\left(\int\limits_{\mathbb{R}^n} |f(x)|^p \,\omega(x) \,dx\right)^{1/p}.$$

2. Main Results

Theorem 4. Let $1 < q < p < \infty$ and the kernel of convolution operator (1.3) satisfy the conditions (a)-(d). Let u and u_1 be positive increasing functions on $(0, \infty)$, $\varphi \in A_q(\mathbb{R}^n)$ is a radial function, $\omega = u\varphi$ and $\omega_1 = u_1\varphi$. If the weight pair (ω_1, ω) satisfies the condition (1.4) and

$$\int\limits_0^\infty \left[\left(\int\limits_t^\infty \omega_1(\tau) \, \tau^{n-nq-1} \, d\tau \right) \! \left(\int\limits_0^t \omega^{1-p'}(\tau) \, \tau^{n-1} \, d\tau \right)^{q-1} \right]^{\frac{p}{p-q}} \omega^{1-p'}(t) \, t^{n-1} dt < \infty,$$

then there exists a constant C>0 such that for any $f\in L_{p,\omega}(\mathbb{R}^n)$ the inequality

$$(2.1) \qquad \left(\int\limits_{\mathbb{R}^n} |Tf(x)|^q \omega_1(|x|) \, dx\right)^{1/q} \le C \left(\int\limits_{\mathbb{R}^n} |f(x)|^p \, \omega(|x|) \, dx\right)^{1/p}$$

holds.

Proof. Without loss of generality we may assume that the function u_1 has the form

$$u_1(t) = u_1(0) + \int_0^t \psi(\tau) d\tau,$$

where $u_1(0)=\lim_{t\to +0}u(t)$ and ψ is a positive function on $(0,\infty)$. Indeed, for increasing functions on $(0,\infty)$ there exists a sequence of absolutely continuous functions $\varphi_n(t)$ such that $\lim_{n\to\infty}\varphi_n(t)=u_1(t),\, 0\leq \varphi_n(t)\leq u_1(t)$ a.e. t>0 and $\varphi_n(0)=u_1(0)$. Furthermore the functions $\varphi_n(t)$ are increasing, and besides

$$\varphi_n(t) = \varphi_n(0) + \int_0^t \varphi'_n(\tau) d\tau,$$

where $\lim_{n\to\infty} \varphi_n'(t) = \psi(t)$. Hence, using Fatou's theorem, we obtain estimate (2.1) for any increasing function on $(0,\infty)$.

Let us estimate the left-hand side of inequality (2.1). We have

$$\begin{split} \left(\int\limits_{\mathbb{R}^n} |Tf(x)|^q \, \omega_1(|x|) \, dx\right)^{1/q} &= \left(\int\limits_{\mathbb{R}^n} |Tf(x)|^q \left(u_1(0) + \int\limits_0^{|x|} \psi(t) dt\right) \, \varphi(|x|) \, dt\right)^{1/q}. \\ &\text{If } u_1(0) = 0, \text{ then } \left(\int\limits_{\mathbb{R}^n} |Tf(x)|^q \, \omega_1(|x|) \, dx\right)^{1/q} = \left(\int\limits_{\mathbb{R}^n} |Tf(x)|^q \varphi(|x|) \left(\int\limits_0^{|x|} \psi(t) dt\right) \, dx\right)^{1/q}. \\ &\text{However, if } u_1(0) > 0, \text{ then} \\ &\left(\int\limits_{\mathbb{R}^n} |Tf(x)|^q \, \omega_1(|x|) \, dx\right)^{1/q} \leq \left(\int\limits_{\mathbb{R}^n} |Tf(x)|^q \, \varphi(|x|) \, u_1(0) dx\right)^{1/q} \\ &+ \left(\int\limits_{\mathbb{R}^n} |Tf(x)|^q \, \varphi(|x|) \left(\int\limits_0^{|x|} \psi(t) dt\right) \, dx\right)^{1/q} = E_1 + E_2. \end{split}$$

First we estimate E_1 . By Theorem 1 and by Lemma 2, we get

$$E_{1} = \left(\int_{\mathbb{R}^{n}} |Tf(x)|^{q} \varphi(|x|) u_{1}(0) dx\right)^{1/q} = (u_{1}(0))^{1/q} \left(\int_{\mathbb{R}^{n}} |Tf(x)|^{q} \varphi(|x|) dx\right)^{1/q}$$

$$\leq (u_{1}(0))^{1/q} \left(\int_{\mathbb{R}^{n}} |f(x)|^{q} \varphi(|x|) dx\right)^{1/q} \leq \left(\int_{\mathbb{R}^{n}} |f(x)|^{q} \varphi(|x|) u_{1}(|x|) dx\right)^{1/q}$$

$$= \left(\int_{\mathbb{R}^{n}} |f(x)|^{q} \omega_{1}(|x|) dx\right)^{1/q} \leq C_{1} \left(\int_{\mathbb{R}^{n}} |f(x)|^{p} \omega(|x|) dx\right)^{1/p}.$$

Let us estimate the integral E_2 . We have

$$E_{2} = \left(\int_{\mathbb{R}^{n}} |Tf(x)|^{q} \varphi(|x|) \left(\int_{0}^{|x|} \psi(t) dt\right) dx\right)^{1/q}$$

$$= \left(\int_{\mathbb{R}^{n}} |Tf(x)|^{q} \varphi(|x|) \left(\int_{0}^{\infty} \psi(t) \chi_{\{|x|>t\}}(x) dt\right) dx\right)^{1/q}$$

$$= \left(\int_{0}^{\infty} \psi(t) \left(\int_{|x|>t} |Tf(x)|^{q} \varphi(|x|) dx\right) dt\right)^{1/q}$$

$$= \left(\int_{0}^{\infty} \psi(t) \left(\int_{|x|>t} \left|\int_{\mathbb{R}^{n}} K(x-y) f(y) dy\right|^{q} \varphi(|x|) dx\right) dt\right)^{1/q}$$

$$\leq 2^{1/q'} \left(\int_0^\infty \psi(t) \left(\int_{|x|>t} \left| \int_{|y|>t/2} K(x-y) f(y) dy \right|^q \varphi(|x|) dx \right) dt \right)^{1/q}$$

$$+2^{1/q'} \left(\int_0^\infty \psi(t) \left(\int_{|x|>t} \left| \int_{|y|\le t/2} K(x-y) f(y) dy \right|^q \varphi(|x|) dx \right) dt \right)^{1/q}$$

$$= E_{21} + E_{22}.$$

We estimate E_{21} . Using Theorem 1, we have

$$E_{21} = 2^{1/q'} \left(\int_{0}^{\infty} \psi(t) \left(\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} K(x - y) f(y) \chi_{\{z:|z| > t/2\}}(y) dy \right)^{q}$$

$$\varphi(|x|) \cdot \chi_{\{|x| > t\}}(x) dx \right) dt \right)^{1/q}$$

$$\leq 2^{1/q'} \left(\int_{0}^{\infty} \psi(t) \left(\int_{\mathbb{R}^{n}} \left| \int_{\mathbb{R}^{n}} K(x - y) f(y) \chi_{\{z:|z| > t/2\}}(y) dy \right|^{q} \varphi(|x|) dx \right) dt \right)^{1/q}$$

$$\leq C_{2} \left(\int_{0}^{\infty} \psi(t) \left(\int_{\mathbb{R}^{n}} |f(x)|^{q} \chi_{\{z:|z| > t/2\}}(x) \varphi(|x|) dx \right) dt \right)^{1/q}$$

$$= C_{2} \left(\int_{\mathbb{R}^{n}} |f(x)|^{q} \varphi(|x|) \left(\int_{0}^{2|x|} \psi(t) dt \right) dx \right)^{1/q}$$

$$\leq C_{2} \left(\int_{\mathbb{R}^{n}} |f(x)|^{q} \varphi(|x|) u_{1}(2|x|) dx \right)^{1/q}$$

$$= C_{2} \left(\int_{\mathbb{R}^{n}} [|f(x)|^{p} \omega(|x|)]^{\frac{q}{p}} u_{1}(2|x|) [\omega(|x|)]^{-\frac{q}{p}} \varphi(|x|) dx \right)^{1/q}$$

$$C_{2} \left(\int_{\mathbb{R}^{n}} [|f(x)|^{p} \omega(|x|)]^{\frac{q}{p}} u_{1}(2|x|) [u(|x|)]^{-\frac{q}{p}} [\varphi(|x|)]^{\frac{p-q}{p}} dx \right)^{1/q}.$$

Now applying the Hölder's inequality with exponents $\frac{p}{q}$ and $\frac{p}{p-q}$ and using the condition (1.4) (for $\alpha = 2$), we obtain

$$\left(\int_{\mathbb{R}^n} \left[|f(x)|^p \, \omega(|x|) \right]^{\frac{q}{p}} \, u_1(2|x|) \, \left[u(|x|) \right]^{-\frac{q}{p}} \, \left[\varphi(|x|) \right]^{\frac{p-q}{p}} \, dx \right)^{1/q}$$

$$\leq \left(\int_{\mathbb{R}^{n}} |f(x)|^{p} \omega(|x|) dx \right)^{1/p} \left(\int_{\mathbb{R}^{n}} [u_{1}(2|x|)]^{\frac{p}{p-q}} [u(|x|)]^{-\frac{q}{p-q}} \varphi(|x|) dx \right)^{\frac{p-q}{pq}} \\
\leq C_{3} \left(\int_{\mathbb{R}^{n}} |f(x)|^{p} \omega(|x|) dx \right)^{1/p} .$$

Now we estimate E_{22} . Note that if |x| > t and $|y| \le \frac{t}{2}$, then $|x - y| \ge |x| - |y|$ $\ge |x| - \frac{|x|}{2} = \frac{|x|}{2}$. We get

$$\begin{split} E_{22} &= 2^{1/q'} \left(\int\limits_0^\infty \psi(t) \left(\int\limits_{|x|>t} \left| \int\limits_{|y| \le t/2} K(x-y) \, f(y) \, dy \right|^q \varphi(|x|) dx \right) dt \right)^{1/q} \\ &\leq C_4 \left(\int\limits_0^\infty \psi(t) \left(\int\limits_{|x|>t} \left(\int\limits_{|y| \le t/2} \frac{|f(y)|}{|x-y|^n} \, dy \right)^q \varphi(|x|) dx \right) dt \right)^{1/q} \\ &\leq C_5 \left(\int\limits_0^\infty \psi(t) \left(\int\limits_{|x|>t} \frac{\varphi(|x|)}{|x|^{nq}} \, dx \right) \left(\int\limits_{|y| \le t/2} |f(y)| \, dy \right)^q dt \right)^{1/q} \\ &= 2 \, C_5 \left(\int\limits_0^\infty \psi(2s) \left(\int\limits_{|x|>2s} \frac{\varphi(|x|)}{|x|^{nq}} \, dx \right) \left(\int\limits_{|y| \le s} |f(y)| \, dy \right)^q ds \right)^{1/q} \\ &= C_6 \left(\int\limits_0^\infty \psi(2s) \left(\int\limits_{2s} \varphi(\tau) \, \tau^{n-nq-1} \, d\tau \right) \right. \\ \left(\int\limits_0^s t^{n-1} \left[\int\limits_{|\overline{y}|=1} |f(t\overline{y})| \, d\sigma(\overline{y}) \right] dt \right)^q ds \right)^{1/q} . \end{split}$$

Besides, we have the following estimates:

$$\int_{t}^{\infty} \psi(2s) \left(\int_{2s}^{\infty} \varphi(r) \, r^{n-nq-1} \, dr \right) \, ds = \frac{1}{2} \int_{2t}^{\infty} \psi(s) \left(\int_{s}^{\infty} \varphi(r) \, r^{n-nq-1} \, dr \right) \, ds$$

$$= \frac{1}{2} \int_{2t}^{\infty} \varphi(r) \, r^{n-nq-1} \left(\int_{2t}^{r} \psi(s) \, ds \right) \, dr \leq \int_{2t}^{\infty} \varphi(r) \, r^{n-nq-1} \, u_1(r) \, dr$$

$$= \int_{2t}^{\infty} \omega_1(r) \, r^{n-nq-1} \, dr \le \int_{t}^{\infty} \omega_1(r) \, r^{n-nq-1} \, dr.$$

Therefore we have

$$\int_{0}^{\infty} \left[\left(\int_{t}^{\infty} \psi(2s) \left(\int_{2s}^{\infty} \varphi(r) r^{n-nq-1} dr \right) ds \right) \right] ds$$

$$\left(\int_{t}^{\infty} \omega^{1-p'}(\tau) \tau^{n-1} d\tau \right)^{q-1} \int_{p-q}^{\frac{p}{p-q}} \omega^{1-p'}(t) t^{n-1} dt$$

$$\leq \int_{0}^{\infty} \left[\left(\int_{0}^{t} \omega_{1}(\tau) \tau^{n-nq-1} d\tau \right) \right] \int_{p-q}^{\frac{p}{p-q}} \omega^{1-p'}(t) t^{n-1} dt < \infty.$$

Further taking $F(t)=t^{n-1}\left[\int\limits_{|\overline{y}|=1}|f(t\overline{y})|\,d\sigma(\overline{y})\right], u(t)=\psi(2t)\int\limits_{2t}^{\infty}\varphi(r)\,r^{n-nq-1}\,dr,$ applying Theorem 2 (part one), and Hölder's inequality, we get

$$C_{6}\left(\int_{0}^{\infty}\psi(2s)\left(\int_{2s}^{\infty}\varphi(\tau)\,\tau^{n-nq-1}\,d\tau\right)\left(\int_{0}^{s}t^{n-1}\left[\int_{|\overline{y}|=1}|f(t\overline{y})|\,d\sigma(\overline{y})\right]dt\right)^{q}ds\right)^{1/q}$$

$$\leq C_{7}\left(\int_{0}^{\infty}\omega(t)\,t^{-(n-1)(p-1)}\left[t^{n-1}\int_{|\overline{y}|=1}|f(t\overline{y})|\,d\sigma(\overline{y})\right]^{p}dt\right)^{1/p}$$

$$= C_{7}\left(\int_{0}^{\infty}\omega(t)\,t^{n-1}\left[\int_{|\overline{y}|=1}|f(t\overline{y})|\,d\sigma(\overline{y})\right]^{p}dt\right)^{1/p}$$

$$\leq C_{8}\left(\int_{0}^{\infty}\omega(t)\,t^{n-1}\left[\int_{|\overline{y}|=1}|f(t\overline{y})|^{p}\,d\sigma(\overline{y})\right]dt\right)^{1/p} = C_{8}\left(\int_{\mathbb{R}^{n}}|f(y)|^{p}\,\omega(|x|)\,dx\right)^{1/p}.$$

This completes the proof of Theorem 4.

Example 2.1. Let

$$\omega_1(t) = \begin{cases} t^{q-1} \ln^{\beta} \frac{1}{t} & for \quad t < e^{-\frac{p}{p-q}} \\ e^{\frac{p(\lambda - q + 1)}{p-q}} \left(\frac{p}{p-q}\right)^{\beta} t^{\lambda} & for \quad t \ge e^{-\frac{p}{p-q}}, \end{cases}$$

$$\omega(t) = \begin{cases} t^{p-1} \ln^{\gamma} \frac{1}{t} & for \quad t < e^{-\frac{p}{p-q}} \\ e^{\frac{p(\mu-p+1)}{p-q}} \left(\frac{p}{p-q}\right)^{\gamma} t^{\mu} & for \quad t \geq e^{-\frac{p}{p-q}}, \end{cases}$$
 where $p-1 < \gamma < \frac{p(p-1)}{p-q}, \, \beta < \frac{q}{p} \, (\gamma+1) - q - 1, \, \beta \neq -1, \, 0 \leq \lambda < \frac{q}{p} \, (\mu+1) - 1$ and $\frac{q}{p} - 1 < \mu < p - 1$. Then the pair (ω, ω_1) satisfies the condition of Theorem 4 for $n=1$

Let $\varphi = 1$ and $\alpha \geq 1$. Then ω and ω_1 are increasing weight functions and

$$\int_{0}^{\infty} \left[\left(\int_{t}^{\infty} \omega_{1}(\tau) \, \tau^{n-nq-1} \, d\tau \right) \left(\int_{0}^{t} \omega^{1-p'}(\tau) \, \tau^{n-1} \, d\tau \right)^{q-1} \right]^{\frac{p}{p-q}} \omega^{1-p'}(t) \, t^{n-1} dt \\
\geq \int_{0}^{\infty} \left[\left(\int_{\alpha \, t}^{\infty} \omega_{1}(\tau) \, \tau^{n-nq-1} \, d\tau \right) \left(\int_{0}^{t} \omega^{1-p'}(\tau) \, \tau^{n-1} \, d\tau \right)^{q-1} \right]^{\frac{p}{p-q}} \omega^{1-p'}(t) \, t^{n-1} dt \\
\geq \int_{0}^{\infty} \left[\left(\int_{\alpha \, t}^{\infty} \tau^{n-nq-1} \, d\tau \right) \left(\int_{0}^{t} \tau^{n-1} \, d\tau \right)^{q-1} \right]^{\frac{p}{p-q}} \left[\omega_{1}(\alpha \, t) \right]^{\frac{p}{p-q}} \left[\omega(t) \right]^{-\frac{q}{p-q}} t^{n-1} dt \\
= C \int_{0}^{\infty} \left[\omega_{1}(\alpha \, t) \right]^{\frac{p}{p-q}} \left[\omega(t) \right]^{-\frac{q}{p-q}} t^{n-1} dt = C_{1} \int_{\mathbb{R}^{n}} \left[\omega_{1}(\alpha \, |x|) \right]^{\frac{p}{p-q}} \left[\omega(|x|) \right]^{-\frac{q}{p-q}} dx.$$

Therefore condition (1.4) holds automatically.

Corollary 1. Let $1 < q < p < \infty$ and the kernel of convolution operator (1.3) satisfy the conditions (a)-(d). Let ω and ω_1 be positive increasing functions on $(0, \infty)$ satisfying the condition

$$\int\limits_0^\infty \left[\left(\int\limits_t^\infty \omega_1(\tau) \, \tau^{n-nq-1} \, d\tau \right) \left(\int\limits_0^t \omega^{1-p'}(\tau) \, \tau^{n-1} \, d\tau \right)^{q-1} \right]^{\frac{p}{p-q}} \, \omega^{1-p'}(t) \, t^{n-1} dt < \infty.$$

Then inequality (2.1) holds.

Representing the decreasing function $u_1(t)$ as $u_1(t) = u_1(\infty) + \int_{t}^{\infty} \eta(\tau) d\tau$,

where

 $u_1(\infty)=\lim_{t\to\infty}u_1(t)$ and η is a positive function on $(0,\infty)$, using Theorem 1 and Theorem 2 (part two), Lemma 2 and arguing as in the proof of Theorem 4, we get the following Theorem.

Theorem 5. Let $1 < q < p < \infty$ and the kernel of convolution operator (1.3) satisfy the conditions (a)-(d). Let u and u_1 be positive decreasing functions on $(0, \infty)$, $\varphi \in A_q(\mathbb{R}^n)$ be a radial function, $\omega = u\varphi$ and $\omega_1 = u_1\varphi$. If the weight pair (ω_1, ω) satisfies the condition (1.5) and

$$\int_{0}^{\infty} \left[\left(\int_{0}^{t} \omega_{1}(\tau) \tau^{n-1} d\tau \right) \left(\int_{t}^{\infty} \omega^{1-p'}(\tau) \tau^{-1-n(p'-1)} d\tau \right)^{q-1} \right]^{\frac{p}{p-q}}$$

$$\omega^{1-p'}(t) t^{-1-n(p'-1)} dt < \infty.$$

then there exists a constant C > 0 such that for any $f \in L_{p,\omega}(\mathbb{R}^n)$ inequality (2.1) holds.

Let $\varphi = 1$. Then the following Corollary is valid.

Corollary 2. Let $1 < q < p < \infty$ and the kernel of convolution operator (1.3) satisfy the conditions (a)-(d). Let ω and ω_1 be positive decreasing functions on $(0, \infty)$ satisfying the condition

$$\int_{0}^{\infty} \left[\left(\int_{0}^{t} \omega_{1}(\tau) \, \tau^{n-1} \, d\tau \right) \left(\int_{t}^{\infty} \omega^{1-p'}(\tau) \, \tau^{-1-n(p'-1)} \, d\tau \right)^{q-1} \right]^{\frac{p}{p-q}}$$

$$\omega^{1-p'}(t) \, t^{-1-n(p'-1)} dt < \infty.$$

Then inequality (2.1) holds.

Remark 4. Note that for p=q Theorem 4 and Theorem 5 were proved in [1]. In the case p=q for some sublinear operator, Theorem 4 and Theorem 5 were proved in [7]. Also, at $\varphi=1$ for other type singular integral the Theorem 4 and Theorem 5 was proved in [10].

For q = 1 a weak (p, 1) type two-weight inequalities are valid.

Theorem 6. Let $1 and the kernel of convolution operator (1.3) satisfy the conditions (a)-(d). Let u be a positive and <math>u_1$ be a positive increasing function on $(0, \infty)$, $\varphi \in A_1(\mathbb{R}^n)$ be a radial function, $\omega = u\varphi$ and $\omega_1 = u_1\varphi$. If the weight pair (ω_1, ω) for q = 1 satisfies condition (1.4) and

$$\int_{0}^{\infty} \left(\int_{t}^{\infty} \frac{\omega_{1}(\tau)}{\tau} d\tau \right)^{p'} \omega^{1-p'}(t) t^{n-1} dt < \infty,$$

then there exists a constant C>0 such that for any $f\in L_{p,\omega}(\mathbb{R}^n)$ and $\lambda>0$

the inequality

(2.2)
$$\int_{\{x \in \mathbb{R}^n : |Tf(x)| > \lambda\}} \omega_1(|x|) dx \le \frac{C}{\lambda} \left(\int_{\mathbb{R}^n} |f(x)|^p \omega(|x|) dx \right)^{1/p}$$

holds.

Proof. In first we consider the increasing functions of the form

$$u_1(t) = u_1(0) + \int_0^t \delta(\tau) d\tau,$$

where $u_1(0) = \lim_{t \to +0} u(t)$ and δ is a positive function on $(0, \infty)$ (see Theorem 4). We have

$$\int\limits_{\{x\in\mathbb{R}^n:\,|Tf(x)|>\lambda\}}\omega_1(|x|)\,dx=\int\limits_{\{x\in\mathbb{R}^n:\,|Tf(x)|>\lambda\}}\varphi(|x|)\left(u_1(0)+\int\limits_0^{|x|}\delta(t)dt\right)\,dx.$$
 If $u_1(0)=0$, then
$$\int\limits_{\{x\in\mathbb{R}^n:\,|Tf(x)|>\lambda\}}\omega_1(|x|)\,dx=\int\limits_{\{x\in\mathbb{R}^n:\,|Tf(x)|>\lambda\}}\varphi(|x|)$$

$$\left(\int\limits_0^{|x|}\delta(t)dt\right)\,dx.$$
 However, if $u_1(0)>0$, then
$$\int\limits_{\{x\in\mathbb{R}^n:\,|Tf(x)|>\lambda\}}\omega_1(|x|)\,dx=\int\limits_{\{x\in\mathbb{R}^n:\,|Tf(x)|>\lambda\}}\varphi(|x|)\,dx$$

$$+\int\limits_{\{x\in\mathbb{R}^n:\,|Tf(x)|>\lambda\}}\varphi(|x|)\left(\int\limits_0^{|x|}\delta(t)dt\right)\,dx=F_1+F_2.$$

In first we estimate F_1 . By Theorem 1 and by Lemma 2, we have

$$F_{1} = \int_{\{x \in \mathbb{R}^{n}: |Tf(x)| > \lambda\}} \varphi(|x|) u_{1}(0) dx = u_{1}(0) \int_{\{x \in \mathbb{R}^{n}: |Tf(x)| > \lambda\}} \varphi(|x|) dx$$

$$\leq u_{1}(0) \frac{C}{\lambda} \int_{\mathbb{R}^{n}} |f(x)| \varphi(|x|) dx \leq \frac{C_{1}}{\lambda} \int_{\mathbb{R}^{n}} |f(x)| \varphi(|x|) u_{1}(|x|) dx$$

$$= \frac{C_{1}}{\lambda} \int_{\mathbb{R}^{n}} |f(x)| \omega_{1}(|x|) dx \leq \frac{C_{2}}{\lambda} \left(\int_{\mathbb{R}^{n}} |f(x)|^{p} \omega(|x|) dx \right)^{1/p}.$$

Let us estimate the integral F_2 . We have

$$F_{2} = \int_{\{x \in \mathbb{R}^{n}: |Tf(x)| > \lambda\}} \varphi(|x|) \begin{pmatrix} \int_{0}^{|x|} \delta(t)dt \end{pmatrix} dx$$

$$= \int_{\{x \in \mathbb{R}^{n}: |Tf(x)| > \lambda\}} \varphi(|x|) \begin{pmatrix} \int_{0}^{\infty} \delta(t) \chi_{\{|x| > t\}}(x)dt \end{pmatrix} dx$$

$$= \int_{0}^{\infty} \delta(t) \begin{pmatrix} \int_{|x| > t} \chi \left\{ x \in \mathbb{R}^{n}: |Tf(x)| > \lambda \right\} \varphi(|x|) dx \end{pmatrix} dt$$

$$\leq \int_{0}^{\infty} \delta(t) \begin{pmatrix} \int_{|x| > t} \chi \left\{ x \in \mathbb{R}^{n}: \left| \int_{|y| > \frac{t}{2}} K(x - y) f(y) dy \right| > \frac{\lambda}{2} \right\} \varphi(|x|) dx \end{pmatrix} dt$$

$$+ \int_{0}^{\infty} \delta(t) \begin{pmatrix} \int_{|x| > t} \chi \left\{ x \in \mathbb{R}^{n}: \left| \int_{|y| \leq \frac{t}{2}} K(x - y) f(y) dy \right| > \frac{\lambda}{2} \right\} \varphi(|x|) dx \end{pmatrix} dt$$

$$= F_{21} + F_{22}.$$

By Theorem 1 we get

$$F_{21} = \int_{0}^{\infty} \delta(t) \left(\int_{\mathbb{R}^{n}} \chi \left\{ x \in \mathbb{R}^{n} : \left| \int_{|y| > \frac{t}{2}} K(x - y) f(y) dy \right| > \frac{\lambda}{2} \right\}$$

$$\varphi(|x|) \chi_{\{|x| > t\}}(x) dx) dt$$

$$\leq \int_{0}^{\infty} \delta(t) \left(\int_{\mathbb{R}^{n}} \chi \left\{ x \in \mathbb{R}^{n} : \left| \int_{|y| > \frac{t}{2}} K(x - y) f(y) dy \right| > \frac{\lambda}{2} \right\} \varphi(|x|) dx \right) dt$$

$$= \int_{0}^{\infty} \delta(t) \left(\int_{\{x \in \mathbb{R}^{n} : |Tf\chi_{\{|x| > t/2\}}(x)| > \lambda/2\}} \varphi(|x|) dx \right) dt$$

$$\leq \frac{C_{2}}{\lambda} \int_{0}^{\infty} \delta(t) \left(\int_{\mathbb{R}^{n}} \chi_{\{|x| > \frac{t}{2}\}}(x) |f(x)| \varphi(|x|) dx \right) dt$$

$$= \frac{C_{2}}{\lambda} \int_{\mathbb{R}^{n}} |f(x)| \varphi(|x|) \left(\int_{0}^{2} |x| \delta(t) dt \right) dx \leq \frac{C_{2}}{\lambda} \int_{\mathbb{R}^{n}} |f(x)| \varphi(|x|) u_{1}(2|x|) dx$$

$$= \frac{C_2}{\lambda} \int_{\mathbb{R}^n} [|f(x)|^p \omega(|x|)]^{\frac{1}{p}} [\omega(|x|)]^{-\frac{1}{p}} u_1(2|x|) \varphi(|x|) dx$$

$$= \frac{C_2}{\lambda} \int_{\mathbb{R}^n} [|f(x)|^p \omega(|x|)]^{\frac{1}{p}} u_1(2|x|) [u(|x|)]^{-\frac{1}{p}} [\varphi(|x|)]^{\frac{1}{p'}} dx.$$

Now, applying the Hölder's inequality and using condition (1.4) (for $\alpha=2$ and q=1), we obtain

$$\frac{C_2}{\lambda} \int_{\mathbb{R}^n} [|f(x)|^p \omega(|x|)]^{\frac{1}{p}} u_1(2|x|) [u(|x|)]^{-\frac{1}{p}} [\varphi(|x|)]^{\frac{1}{p'}} dx$$

$$\leq \frac{C_2}{\lambda} \left(\int_{\mathbb{R}^n} |f(x)|^p \omega(|x|) dx \right)^{1/p} \left(\int_{\mathbb{R}^n} [u_1(2|x|)]^{p'} [u(|x|)]^{-\frac{1}{p-1}} \varphi(|x|) dx \right)^{1/p'}$$

$$\leq C_3 \left(\int_{\mathbb{R}^n} |f(x)|^p \omega(|x|) dx \right)^{1/p} .$$

Now we estimate F_{22} . Note that if |x| > t and $|y| \le \frac{t}{2}$, then $|x-y| \ge |x| - |y| \ge |x| - \frac{|x|}{2} = \frac{|x|}{2}$. We have

$$F_{22} = \int_{0}^{\infty} \delta(t) \left(\int_{|x|>t} \varphi(|x|) \chi \left\{ x \in \mathbb{R}^{n} : \left| \int_{|y| \le \frac{t}{2}} K(x-y) f(y) dy \right| > \frac{\lambda}{2} \right\} dx \right) dt$$

$$\leq \frac{2}{\lambda} \int_{0}^{\infty} \delta(t) \left(\int_{|x|>t} \varphi(|x|) \left| \int_{|y| \le \frac{t}{2}} K(x-y) f(y) dy \right| dx \right) dt$$

$$\leq \frac{C_{5}}{\lambda} \int_{0}^{\infty} \delta(t) \left(\int_{|x|>t} \varphi(|x|) \left(\int_{|y| \le \frac{t}{2}} \frac{|f(y)|}{|x-y|^{n}} dy \right) dx \right) dt$$

$$\leq \frac{C_{6}}{\lambda} \int_{0}^{\infty} \delta(t) \left(\int_{|x|>t} \frac{\varphi(|x|)}{|x|^{n}} dx \right) \left(\int_{|y| \le \frac{t}{2}} |f(y)| dy \right) dt$$

$$= \frac{2C_{6}}{\lambda} \int_{0}^{\infty} \delta(2t) \left(\int_{|x|>2t} \frac{\varphi(|x|)}{|x|^{n}} dx \right) \left(\int_{|y| \le t} |f(y)| dy \right) dt$$

$$= \frac{C_{7}}{\lambda} \int_{0}^{\infty} \delta(2t) \left(\int_{2t}^{\infty} \frac{\varphi(r)}{r} dr \right) \left(\int_{0}^{t} s^{n-1} \left[\int_{|\overline{y}|=1} |f(s\overline{y})| d\sigma(\overline{y}) \right] ds \right) dt$$

Besides we have the following estimates:

$$\int_{s}^{\infty} \delta(2t) \left(\int_{2t}^{\infty} \frac{\varphi(r)}{r} dr \right) dt = \frac{1}{2} \int_{2s}^{\infty} \delta(t) \left(\int_{t}^{\infty} \frac{\varphi(r)}{r} dr \right) dt =$$

$$= \frac{1}{2} \int_{2s}^{\infty} \frac{\varphi(r)}{r} \left(\int_{2s}^{r} \delta(t) dt \right) dr \le \int_{2s}^{\infty} \frac{\varphi(r) u_{1}(r)}{r} dr =$$

$$= \int_{2s}^{\infty} \frac{\omega_{1}(r)}{r} dr \le \int_{s}^{\infty} \frac{\omega_{1}(r)}{r} dr.$$

Therefore we have

$$\int_{0}^{\infty} \left(\int_{s}^{\infty} \delta(2t) \left(\int_{2t}^{\infty} \frac{\varphi(r)}{r} dr \right) dt \right)^{p'} \omega^{1-p'}(s) s^{n-1} ds \le$$

$$\leq \int_{0}^{\infty} \left(\int_{s}^{\infty} \frac{\omega_{1}(\tau)}{\tau} d\tau \right)^{p'} \omega^{1-p'}(s) s^{n-1} dt < \infty.$$

Further taking $F(t)=\int\limits_0^t s^{n-1}\left[\int\limits_{|\overline{y}|=1}|f(s\overline{y})|\,d\sigma(\overline{y})\right]\,ds,\ u(t)=\delta(2s)\int\limits_{2s}^\infty \frac{\varphi(r)}{r}\,dr$ and applying Lemma 1 (part one) and Hölder's inequality, we get

$$\frac{C_7}{\lambda} \int_0^\infty \delta(2t) \left(\int_{2t}^\infty \frac{\varphi(r)}{r} dr \right) \left(\int_0^t s^{n-1} \left[\int_{|\overline{y}|=1} |f(s\overline{y})| d\sigma(\overline{y}) \right] ds \right) dt
\leq \frac{C_8}{\lambda} \left(\int_0^\infty \omega(t) t^{-(n-1)(p-1)} \left[t^{n-1} \int_{|\overline{y}|=1} |f(t\overline{y})| d\sigma(\overline{y}) \right]^p dt \right)^{1/p}
= \frac{C_8}{\lambda} \left(\int_0^\infty \omega(t) t^{n-1} \left[\int_{|\overline{y}|=1} |f(t\overline{y})| d\sigma(\overline{y}) \right]^p dt \right)^{1/p}
\leq \frac{C_9}{\lambda} \left(\int_0^\infty \omega(t) t^{n-1} \left[\int_{|\overline{y}|=1} |f(t\overline{y})|^p d\sigma(\overline{y}) \right] dt \right)^{1/p}
= \frac{C_8}{\lambda} \left(\int_{\mathbb{R}^n} |f(x)|^p \omega(|x|) dx \right)^{1/p} .$$

This completes the proof of Theorem 6.

Example 2.2. Let

$$\omega(t) = \begin{cases} \frac{1}{t} \ln^{\beta} \frac{1}{t} & for \quad t < e^{2\beta} \\ e^{-2\beta(\lambda+1)} (-2\beta)^{\beta} t^{\lambda} & for \quad t \ge e^{2\beta}, \end{cases}$$

$$\omega_{1}(t) = \begin{cases} \frac{1}{t} \ln^{\gamma} \frac{1}{t} & for \quad t < e^{2\beta} \\ e^{-2\beta(\mu+1)} (-2\beta)^{\gamma} t^{\mu} & for \quad t \ge e^{2\beta}, \end{cases}$$

where $\mu > p(\lambda + 1) - 1$, $-1 < \lambda < 0$, $\beta < -1$ and $\gamma > p(\beta + 2) + 1$. Then the pair (ω, ω_1) satisfies the condition of Theorem 6.

For $\varphi = 1$ the following Corollary is valid.

Corollary 3. Let $1 < q < p < \infty$ and the kernel of convolution operator (1.3) satisfy the conditions (a)-(d). Let ω be a positive and ω_1 be a positive increasing function on $(0, \infty)$ satisfying the condition

$$\int_{0}^{\infty} \left(\int_{t}^{\infty} \frac{\omega_{1}(\tau)}{\tau} d\tau \right)^{p'} \omega^{1-p'}(t) t^{n-1} dt < \infty.$$

Then inequality (2.2) holds.

Representing the decreasing function $u_1(t)$ as $u_1(t) = u_1(\infty) + \int_t^\infty \eta(\tau) d\tau$,

where $u_1(\infty) = \lim_{t \to \infty} u_1(t)$ and η is a positive function on $(0, \infty)$, using Theorem 1 (for r=1) and Lemma 1 (part two), Lemma 3 and arguing as in the proof of Theorem 6, we get the following Theorem.

Theorem 7. Let $1 and the kernel of convolution operator (1.3) satisfy the conditions (a)-(d). Let u be a positive and <math>u_1$ be a positive decreasing function on $(0, \infty)$, $\varphi \in A_1(\mathbb{R}^n)$ be a radial function, $\omega = u\varphi$ and $\omega_1 = u_1\varphi$. Suppose that the weight pair (ω_1, ω) for q = 1 satisfies condition (1.4) and

$$\int_{0}^{\infty} \left(\int_{0}^{t} \omega_{1}(\tau) \tau^{n-1} d\tau \right)^{p'} \omega^{1-p'}(t) t^{n(1-p')-1} dt < \infty.$$

Then inequality (2.2) holds.

Analogously for $\varphi = 1$ the following Corollary is valid.

Corollary 4. Let $1 < q < p < \infty$ and the kernel of convolution operator (1.3) satisfy the conditions (a)-(d). Let ω be a positive and ω_1 be a positive decreasing function on $(0, \infty)$ satisfying the condition

$$\int_{0}^{\infty} \left(\int_{0}^{t} \omega_{1}(\tau) \tau^{n-1} d\tau \right)^{p'} \omega^{1-p'}(t) t^{n(1-p')-1} dt < \infty.$$

Then inequality (2.2) holds.

Remark 5. Note that for other type singular integral at $\varphi = 1$, Theorem 6 and Theorem 7 were proved in [10]. For some sublinear operator at p = q = 1, Theorem 6 and Theorem 7 were proved in [7].

REFERENCES

- 1. R. A. Bandaliev, Two-weight inequalities for convolution operators in Lebesgue spaces, *Mat. Zametki*, **1** (80) (2006), 3-10 (in Russian); English translation: *Math. Notes*, **80(1)** (2006), 3-10.
- 2. A. P. Calderòn and A. Zygmund, On the existence of certain singular integrals, *Acta Math.*, **88** (1952), 85-139.
- 3. A. P. Calderòn and A. Zygmund, On singular integrals, *Amer. J. Math.*, **78(2)** (1956), 289-309.
- 4. K. Davis and Y. Chang, *Lectures on Bochner-Riesz means*, London Math. Soc., Lecture Note Ser. 114, Cambridge Univ. Press, 1987.
- 5. J. Garsia-Cuerva and J. L. Rubio de Francia, *Weighted norm inequalities and related topics*, North-Holland Math. Studies, Amsterdam, 1985, p. 116.
- 6. D. J. Grubb and C. N. Moore, A variant of Hörmander's condition for singular integrals, *Colloq. Math.*, **73(2)** (1997), 165-172.
- 7. V. S. Guliyev, Two-weight inequalities for singular integrals satisfying a variant of Hörmander condition, *Journal of Function Spaces and Appl.*, **7(1)** (2009), 43-54.
- 8. L. Hörmander, Estimates for translation invariant operators in L_p spaces, *Acta Math.*, **104** (1960), 93-140.
- 9. V. P. Kabaila, On the embedding $L_p(\mu)$ into $L_q(\nu)$, Litovsky Mat. Sb., **21** (1981), 143-148 (in Russian).
- 10. V. Kokilashvili and A. Meskhi, Two-weight inequalities for singular integrals defined on homogeneous groups, *Proc. A. Razmadze Math. Inst.*, **112** (1997), 57-90.
- 11. V. G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin, 1985.

- 12. B. Muckenhoupt, Weighted norm inequalities for Hardy maximal function, *Trans. Amer. Math. Soc.*, **165** (1972), 207-226.
- 13. E. M. Stein, Note on singular integral, *Proc. Amer. Math. Soc.*, **8(2)** (1957), 250-254.
- 14. R. Trujillo-Gonzàles, Weighted norm inequalities for singular integrals operators satisfying a variant of Hörmander condition, *Comment. Math. Univ. Carolinae*, **44(1)** (2003), 137-152.

R. A. Bandaliev

Institute of Mathematics and Mechanics of National Academy of Sciences of Azerbaijan Baku, Az 1141

Azerbaijan

E-mail: bandalievr@rambler.ru

K. K. Omarova

Institute of Cybernetics of National Academy of Sciences of Azerbaijan Baku, Az 1141

Azerbaijan

E-mail: konul-kamal@rambler.ru