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ASYMPTOTICS OF MINIMIZERS OF VARIATIONAL PROBLEMS IN A
MULTI-CONNECTED DOMAIN ASSOCIATED WITH THE THEORY OF

LIQUID CRYSTALS

Junichi Aramaki, Kentaro Chinen and Mamiko Kato

Abstract. We consider the asymptotic behavior of minimizers of the Ericksen
functional with the Dirichlet boundary condition in a general domain. We
examine the asymptotic behavior of minimizers of the functional as some of the
elastic coefficients tend to the infinity, according to the de Gennes predictions
with respect to nematic smectic-A phase transition.

1. INTRODUCTION

According to the Oseen-Frank theory, the nematic phase of liquid crystals can be
described by a director field n : Ω → S

2 which is a minimizer of the Oseen-Frank
energy functional

WOF(n) =
∫

Ω
WOF(n,∇n)dx

where Ω ⊂ R3 is a smooth bounded domain occupied by the liquid crystal sample,
and

WOF(n,∇n) =
k1

2
|div n|2 +

k2

2
|n · curl n|2 +

k3

2
|n × curl n|2

+
k2 + k4

2
[Tr(∇n)2 − (div n)2].

Here k1, k2 and k3 are positive material constants, which are called spray constant,
twist constant and bend constant, respectively. Since we consider the Dirichlet
boundary condition, we can drop the term Tr(∇n)2 − (div n)2 (cf. Hardt et al.
[8]). By this Oseen-Frank model, one can clarify the point defect of the nematic
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liquid crystals. However, for the line defect, it is necessary to consider the Ericksen
model

WE(s,n) =
∫

Ω
WE(s,n)dx

where

WE(s,n) =
s2

2
WOF(n,∇n) +

k5

2
|∇s|2 +

k6

2
|∇s ·n|2 + ψ(s).

Here s is a scale function called the degree of orientation. Moreover, the Ericksen
model is prefer to represent the phase transition from nematic phase to smectic-A
phase.

Pan and Qi [13] considered a simplified energy functional

W(u) =
∫

Ω

{
k1

2
|∇u|2 +

k2

2
|curlu|2 + ψ(|u|)

}
dx.

They assumed that ψ is a non-negative C1 function on R such that lims→∞ ψ(s) =
+∞. Under this setting, they considered the following problem due to the de Gennes
prediction. For a given vector field H ∈ H1/2(Γ,R3) and for fixed k1 > 0, let
u(k2) be a minimizer of W on

H(Ω,H) = {u ∈ H1(Ω,R3); u = H on Γ}.

(P) Examine the analysis of the minimal energy W(u(k2)) and the asymptotics
of the minimizer u(k2) as k2 → ∞. More precisely,

(P1) As k2 → ∞, is the total energy W(u(k2)) bounded ?
(P2) If (P1) is yes, does u(k2) converge (in some sense) to a limit which is a

minimizer or stationary point of the functional

I(u) =
∫

Ω

{
k1

2
|∇u|2 + ψ(|u|)

}
dx

with curlu = 0 ? They clarified the problem (P) in the case where Ω is
simply connected domain.

However, in the case where Ω is a multi-connected domain, it remains unknown.
In this paper we shall consider the case where Ω is a multi-connected domain.

Related to this direction, we refer to Aramaki [1], Pan [9], [10], [11], [12]. To
handle multi-connected domains, we must assume that the funciton ψ satisfies a
stronger condition. Thus we assume that ψ is a non-negative function on [0,∞)
and ψ(s) is divergent faster than s2 at the infinity. That is to say, there exist
constants c,M > 0 such that

(1.1) ψ(s) ≥ cs2 for s ≥M.



Asymptotics of Minimizers 563

We note that the important function ψ(s) = λ(1− s2)2 (λ > 0) satisfies (1.1) (cf.
Aviles and Giga [3]).

It is advisable to treat the full trace as the boundary condition, but we are obliged
to treat the restriction of the trace. For a given vector field H on Γ = ∂Ω, we denote
the tangential component of H by HT : HT = H− (H · ν)ν where ν is the outer
unit normal vector field to Γ. We assume that

(1.2) HT ∈ H1/2(Γ,R3) ∩ L∞(Γ,R3).

We define the space

H1
t (Ω,R

3,HT ) = {u ∈ H1(Ω,R3); uT = HT on Γ}

where uT denotes the tangential component of the trace of u to Γ. Instead of W(u)
and I(u), we consider a simplified functional

(1.3) W0(u) =
∫

Ω

{
k1

2
|div u|2 +

k2

2
|curlu|2 + ψ(|u|)

}
dx

and

(1.4) I0(u) =
∫

Ω

{
k1

2
|div u|2 + ψ(|u|)

}
dx

on H1
t (Ω,R3,HT ).

We set our problems as follows.

(Q) Examine the analysis of the minimal energy W0(u(k2)) and the asymptotics
of the minimizer u(k2) as k2 → ∞ for fixed k1 > 0. More precisely,

(Q.1) As k2 → ∞, is the total energy W0(u(k2)) bounded ?
(Q.2) If (Q1) is yes, does u(k2) converge (in some sense) to a limit which is a

minimizer or stationary point of the functional I0(u) with curlu = 0 ?

Fortunately, Pan [12] showed that the variational problem

(1.5) Rt(HT ) := inf
u∈H1

t (Ω,R3,HT )
‖curlu‖2

L2(Ω)

is achieved, and the set Σt(HT ) of all minimizers of (1.5) is given by

(1.6) Σt(HT ) = {u + w; w ∈ H1
t (Ω,R

3, 0), curlw = 0 in Ω}

where u ∈ H1
t (Ω,R

3,HT ) is a fixed minimizer of (1.5). Thus we define

(1.7) a(HT ) = inf
u∈H1

t (Ω,R3,HT )
I0(u).
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and

(1.8) b(HT ) = inf
u∈Σt(HT )

I0(u).

In the present paper, we examine the problem (Q) where Ω is a bounded, multi-
connected domain in R

3 with a smooth boundary.
In order to treat the case where Ω is multi-connected, throughout this paper we

assume that Ω satisfies the following conditions.

(O.1) Ω is a bounded domain in R3 with boundary ∂Ω = Γ which is a manifold of
class Cr (r ≥ 2) of dimension 2, and Ω is locally situated on one side of Γ.
Moreover, Γ has a finite number of connected components Γ1,Γ2, . . . ,Γm+1

where m ≥ 0 and Γm+1 denoting the boundary of the infinite connected
component of R

3 \ Ω.
(O.2) There exist n manifolds Σ1,Σ2, . . . ,Σn, (n ≥ 0) of dimension 2 of class Cr

such that Σi ∩ Σj = ∅ (i 
= j) and they are not tangential to Γ such that
Ω̇ = Ω \ Σ where Σ = ∪n

j=1Σi is simply connected and Lipschitzian.

The number n is called the first Betti number which is equal to the number of
handles of Ω and m is called the second Betti number which is equal to the number
of holes. We say that Ω is simply connected if n = 0, and that Ω has no holes if
m = 0. If we define the spaces

H1(Ω) = {u ∈ L2(Ω,R3) ; curlu = 0, div u = 0 in Ω,u · ν|Γ = 0},
H2(Ω) = {u ∈ L2(Ω,R3) ; curlu = 0, div u = 0 in Ω,u× ν|Γ = 0},

it is well known that

dimH1(Ω) = n and dimH2(Ω) = m.

Moreover, Hi(Ω) (i = 1, 2) is a closed subspace of L2(Ω,R3), and Hi(Ω) ⊂
H1(Ω,R3) for i = 1, 2. Furthermore, if Γ is of class Cr,θ with r ≥ 2 and 0 < θ < 1,
then

Hi(Ω) ⊂ Cr−1,θ(Ω,R3) (i = 1, 2).

For these facts, see Dautray and Lions [6], Girault and Raviart [7] and Temam [14].
We are in a position to state the theorems.

Theorem 1.1. Let Ω be a bounded domain in R
3 satisfying (O.1) and (O.2)

and assume that HT ∈ H1/2(Γ,R3) ∩ L∞(Γ,R3). Then

(1.9) A0(HT ) := inf
u∈H1

t (Ω,R3,HT )
W0(u)

is achieved.
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The answer for the problem (Q) is the following.

Theorem 1.2. Let Ω be a bounded domain in R
3 satisfying (O.1) and (O.2)

and assume that HT ∈ H1/2(Γ,R3) ∩ L∞(Γ,R3). Let u(k2) be a minimizer of
A0(HT ) in H1

t (Ω,R
3,HT ) for fixed k1 > 0. Then for any sequence {k(j)

2 } so that
k

(j)
2 → ∞ as j → ∞, there exists a subsequence (still denoted by {k (j)

2 }) such that
u(k(j)

2 ) → u strongly in H 1(Ω,R3) as j → ∞ where u satisfies that

Rt(HT ) = ‖curlu‖2
L2(Ω,R3), and I0(u) = b(HT ).

Compared with the problem (Q), we can also set an another problem as follows.
(R) Examine the analysis of the minimal energy W0(u(k1)) and the asymptotics

of the minimizer u(k1) as k1 → ∞ for fixed k2 > 0. More precisely,
(R.1) As k1 → ∞, is the total energy W0(u(k1)) bounded ?
(R.2) If (R1) is yes, does u(k1) converge (in some sense) to a limit which is a

minimizer or stationary point of the functional

(1.10) J0(u) =
∫

Ω

{
k2

2
|curlu|2 + ψ(|u|)

}
dx

with div u = 0 ?

For this problem, we assume that

Hn := H · ν ∈ H1/2(Γ) ∩ L∞(Γ)

and define

H1
n(Ω,R3,Hn) = {u ∈ H1(Ω,R3); u ·v = Hn on Γ}.

In our previous paper Aramaki [2], we showed that the variational problem

(1.11) Dn(Hn) := inf
u∈H1

n(Ω,R3,Hn)
‖div u‖2

L2(Ω)

is achieved, and the set Σn(Hn) of all minimizers of (1.11) is given by

(1.12) Σn(Hn) = {u + w; w ∈ H1
n(Ω,R3, 0), divw = 0 in Ω}

where u ∈ H1
n(Ω,R3,Hn) is a fixed minimizer of (1.11). Thus we define

(1.13) c(Hn) = inf
u∈H1

n(Ω,R3,Hn)
J0(u).

and

(1.14) d(Hn) = inf
u∈Σn(Hn)

J0(u).

We can also get the following.
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Theorem 1.3. Let Ω be a bounded domain in R3 satisfying (O.1) and (O.2)
and assume that Hn ∈ H1/2(Γ) ∩ L∞(Γ). Then

B0(Hn) := inf
u∈H1

n(Ω,R3,Hn)
W0(u)

is achieved.

For the problem (R), we can get

Theorem 1.4. Let Ω be a bounded domain in R3 satisfying (O.1) and (O.2)
and assume that Hn ∈ H1/2(Γ)∩L∞(Γ). Let u(k1) be a minimizer of B0(Hn) in
H1

n(Ω,R3,Hn) for fixed k2 > 0. Then for any sequence {k(j)
1 } so that k(j)

1 → ∞ as
j → ∞, there exists a subsequence (still denoted by {k (j)

1 }) such that u(k(j)
1 ) → u

strongly in H 1(Ω,R3) as j → ∞ where u satisfies that

Dn(Hn) = ‖div u‖2
L2(Ω), and J0(u) = d(Hn).

The plan of this paper is as follows. In section 2, we give some basic estimates
and regularities according to [6]. Section 3 is devoted to the proofs of Theorem 1.1,
1.2 and state a further remark. In section 4, we give the proofs of Theorem 1.3, 1.4
and state a further remark.

2. PRELIMINARIES

In this section, we give some properties which are needed for the proofs from
Theorem 1.1 to 1.4. We state the regularities and some estimates which are well
known (cf. [6] and also [14]). Let Ω be a bounded domain in R3 with Ck+2

boundary Γ = ∂Ω (k ≥ 0). Then we see that

(2.1)
Hk+1(Ω,R3) = {u ∈ L2(Ω,R3) ; curlu ∈ Hk(Ω,R3),

div u ∈ Hk(Ω),u · ν|Γ ∈ Hk+1/2(Γ)}
or

(2.2)
Hk+1(Ω,R3) = {u ∈ L2(Ω,R3) ; curlu ∈ Hk(Ω,R3),

div u ∈ Hk(Ω),u× ν|Γ ∈ Hk+1/2(Γ,R3)}.
Here ·|Γ means the trace operator to Γ and ν denotes the unit outer normal vector
field on Γ. Moreover, the following estimate holds : There exists a constant C > 0
such that

(2.3)
‖u‖Hk+1(Ω,R3) ≤ C{‖u‖L2(Ω,R3) + ‖curlu‖Hk(Ω,R3)

+‖div u‖Hk(Ω) + ‖u · ν‖Hk+1/2(Γ)}
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or

(2.4)
‖u‖Hk+1(Ω,R3) ≤ C{‖u‖L2(Ω,R3) + ‖curlu‖Hk(Ω,R3)

+‖div u‖Hk(Ω) + ‖u × ν‖Hk+1/2(Γ,R3)}

for any u ∈ Hk+1(Ω,R3), respectively. Of course, the right hand sides of (2.3) and
(2.4) are estimated by Hk+1(Ω,R3) norm of u.

Here we note that if Ω is simply connected, we can omit the term ‖u‖L2(Ω,R3) in
the right hand side of (2.3), and if Ω has no holes, we can omit the term ‖u‖L2(Ω,R3)

in the right hand side of (2.4) (cf. [2] and Bates and Pan [4]).

3. PROOF OF THEOREM 1.1 AND THEOREM 1.2

In this section, we shall prove Theorem 1.1 and Theorem 1.2. In order to do
so, we first show the existence of the minimizer of b(HT ) defined in (1.8).

Proposition 3.1. b(HT ) = infu∈Σt(HT ) I0(u) is achieved.

Proof. Let {un} ⊂ Σt(HT ) be a minimizing sequence of b(HT ). Then we can
write un = u + wn where u is a fixed minimizer of (1.5) and wn ∈ H1

t (Ω,R3, 0)
satisfies that curl wn = 0 in Ω. Then we may assume that∫

Ω

{
k1

2
|divu + div wn|2 + ψ(|u + wn|)

}
dx = b(Ht) + o(1)

as n → ∞. Since ψ ≥ 0, we see that {divwn} is bounded in L2(Ω). Since it
follows from the hypothesis (1.1) that cs2 ≤ cM2 + ψ(s). Therefore we have

(3.1)
c
∫
Ω |u + wn|2dx ≤ cM2|Ω| +

∫
Ω
ψ(|u + wn|)dx

≤ cM2|Ω|+ b(HT ) + o(1).

It follows that {wn} is bounded in L2(Ω,R3). Since curl wn = 0 in Ω and
wnT = 0 on Γ, it follows from (2.4) that {wn} is boudend in H 1(Ω,R3). Passing
to a subsequence, we may assume that wn → w0 weakly in H1(Ω,R3), strongly
in L2(Ω,R3) and a.e. in Ω. Since curl wn = 0 in Ω and wnT = 0 on Γ, we see
that curlw0 = 0 in Ω and w0T = 0 on Γ. Thus we have u0 := u+w0 ∈ Σt(HT )
and un → u0 weakly in H1(Ω,R3). Therefore, since div un → div u0 weakly in
L2(Ω), ∫

Ω
|div u0|2dx ≤ lim inf

n→∞

∫
Ω
|div un|2dx.

Moreover, since un → u0 a.e. in Ω, it follows from the Fatou lemma that∫
Ω
ψ(|u0|) ≤ lim inf

n→∞

∫
Ω
ψ(|un|)dx.
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Thus we have
I0(u0) ≤ lim inf

n→∞ I0(un) = b(HT ).

This means that u0 is a minimizer of b(HT ).

Remark 3.2. Since the minimizer u0 of b(HT ) satisfies that curl u0 = curlu
in Ω and u0T = uT = HT on Γ, we can replace u in (1.6) with u0. Thus we can
assume that u in (1.6) satisfies that

(3.2) Rt(HT ) =
∫

Ω

|curlu|2dx, I0(u) = b(HT ).

We are in a position to prove Theorem 1.1. For the brevity of notation, we put
k2 = 1/ε2 and write

Wε(u) =
∫

Ω

{
k1

2
|div u|2 +

1
2ε2

|curl u|2 + ψ(|u|)
}
dx.

Then we have

Proposition 3.3. Assume that HT ∈ H1/2(Γ,R3) ∩ L∞(Γ,R3). Then

Aε(HT ) = inf
u∈H1

t (Ω,R3,HT )
Wε(u)

is achieved.

Proof. Let {un} ⊂ H1
t (Ω,R

3,HT ) be a minimizing sequence of Aε(HT ).
That is to say Wε(un) → Aε(HT ) as n→ ∞. Then {div un} is bounded in L2(Ω)
and {curl un} is bounded in L2(Ω,R3). Moreover, since

∫
Ω ψ(|un|)dx is bounded,

{un} is bounded in L2(Ω,R3) from (1.1). Since unT = HT on Γ, it follows
from (2.4) that {un} is bounded in H 1(Ω,R3). Passing to a subsequence, we may
assume that un → uε weakly in H1(Ω,R3), strongly in L2(Ω,R3) and a.e. in Ω.
Since unT = HT on Γ, it follows that uεT = HT on Γ. Thus uε ∈ H1

t (Ω,R3,HT ).
Therefore, we have

Wε(uε) ≤ lim inf
n→∞ Wε(un) = Aε(HT ).

Hence uε is a minimizer of Aε(HT ).

From this proposition, we can easily get Theorem 1.1.
Here we examine the Euler-Lagrange equation for minimizers uε of Aε(HT ).

For any v ∈ H1
t (Ω,R

3, 0), since uε + tv ∈ H1
t (Ω,R

3,HT ) for any t ∈ R, we have

0 =
d

dt

∣∣∣∣
t=0

Wε(uε + tv)

=
∫

Ω

{
k1(divuε)(divv) +

1
ε2

curluε · curl v +
ψ′(|uε|)
|uε| uε · v

}
dx.



Asymptotics of Minimizers 569

In particular, if we take v ∈ C∞
0 (Ω,R3), we have, weakly{ −k1∇(divuε) + 1

ε2 curl 2uε + ξ(|uε|)uε = 0 in Ω,

uεT = HT on Γ

where ξ(s) = ψ′(s)/s.

Proof of Theorem 1.2. Let uε be a minimizer of Wε in H1
t (Ω,R

3,HT ). For
any u ∈ H1

t (Ω,R
3,HT ), we have

I0(u) ≥ a(HT ) and
∫

Ω
|curlu|2dx ≥ Rt(HT ).

Thus we see that

Wε(u) = I0(u) +
1

2ε2

∫
Ω
|curlu|2dx ≥ a(HT ) +

1
2ε2

Rt(HT ).

Let u be a minimizer of (1.5) satisfying (3.2). Then

Wε(u) = I0(u) +
1

2ε2

∫
Ω
|curlu|2dx = b(HT ) +

1
2ε2

Rt(HT ).

Therefore, we have

(3.3) a(HT ) +
1

2ε2
Rt(HT ) ≤ Aε(HT ) = Wε(uε) ≤ b(HT ) +

1
2ε2

Rt(HT ).

Thus we have

a(HT ) ≤ I0(uε)

= Wε(uε)− 1
2ε2

∫
Ω

|curluε|2dx

≤ b(HT ) − 1
2ε2

{∫
Ω
|curluε|2dx−Rt(HT )

}
≤ b(HT ) = I0(u).

It follows that

(3.4) a(HT ) ≤ I0(uε) ≤ b(HT ).

We also have∫
Ω

|curluε|2dx = 2ε2[Wε(uε) − I0(uε)]

≤ 2ε2
[
b(HT ) +

1
2ε2

Rt(HT ) − I0(uε)
]

= Rt(HT ) + 2ε2[b(HT ) − I0(uε)]
≤ Rt(HT ) + 2ε2[b(HT ) − a(HT )].
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From this, we have

(3.5) lim sup
ε→0

∫
Ω
|curluε|2dx ≤ Rt(HT )

and so {curluε} is boudend in L2(Ω,R3). Since∫
Ω

{
k1

2
|divuε|2 + ψ(|uε|)

}
dx = I0(uε) ≤ b(HT ),

we see that {div uε} is bounded in L2(Ω) and {uε} is bounded in L2(Ω,R3). Since
uεT = HT on Γ, it follows from (2.4) that {uε} is bounded in H 1(Ω,R3). Passing
to a subsequence, we may assume that uε → u∗ weakly in H1(Ω,R3), strongly in
L2(Ω,R3) and a.e. in Ω. Since curl uε → curlu∗ weakly in L2(Ω,R3), it follows
from (3.5) that ∫

Ω
|curlu∗|2dx ≤ lim inf

ε→0

∫
Ω
|curluε|2dx

≤ lim sup
ε→0

∫
Ω
|curluε|2dx

≤ Rt(HT ).

Since u∗
T = HT , we see that u∗ ∈ H1

t (Ω,R
3,HT ) and we have

Rt(HT ) ≤
∫

Ω

|curlu∗|2dx,

we get

Rt(HT ) =
∫

Ω

|curlu∗|2dx.

Therefore, we have u∗ ∈ Σt(HT ). Since uε → u∗ a.e. in Ω, we have∫
Ω
ψ(|u∗|)dx ≤ lim inf

ε→0

∫
Ω
ψ(|uε|)dx.

Hence we see that

b(HT ) ≤ I0(u∗) ≤ lim inf
ε→0

I0(uε) ≤ lim sup
ε→0

I0(uε) ≤ b(HT ).

Thus since we have I0(u∗) = b(HT ), we see that u∗ satisfies (3.2). So, we can
take u∗ = u in (1.6) and uε → u weakly in H1(Ω,R3), strongly in L2(Ω,R3) and
a.e. in Ω, and I0(uε) → b(HT ) = I0(u). We have
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k1

2

∫
Ω
|div u|2dx = I0(u) −

∫
Ω
ψ(|u|)dx

≥ I0(u) − lim inf
ε→0

∫
Ω
ψ(|uε|)dx

= I0(u) − lim inf
ε→0

{
I0(uε)− k1

2

∫
Ω
|div uε|2dx

}

= I0(u) − lim
ε→0

I0(uε) + lim sup
ε→0

k1

2

∫
Ω
|divuε|2dx

= lim sup
ε→0

k1

2

∫
Ω
|div uε|2dx.

Therefore, we have

lim
ε→0

∫
Ω
|div uε|2dx =

∫
Ω
|div u|2dx

and
lim
ε→0

∫
Ω
|curluε|2dx =

∫
Ω
|curlu|2dx.

Since div uε → div u weakly in L2(Ω) and curl uε → curlu weakly in L2(Ω,R3),
we see that div uε → div u strongly in L2(Ω) and curluε → curlu strongly in
L2(Ω,R3). Since uε → u strongly in L2(Ω,R3) and uεT = uT on Γ, it follows
from (2.4) that uε → u strongly inH1(Ω,R3). This completes the proof of Theorem
1.2.

We get an immediate consequence of Theorem 1.2.

Corollary 3.4. Assume that the hypotheses of Theorem 1.2 hold and let u ε be
a minimizer of Wε. Then we have the following.

(i) The total energy Wε(uε) is bounded as ε→ 0, if and only if R t(HT ) = 0.
(ii) If Rt(HT ) = 0, for any convergent sequence of {uε} with ε→ 0, there exist

φ ∈ H2(Ω) and h ∈ H1(Ω) such that uε → u := ∇φ + h strongly in H 1(Ω,R3)
and (∇φ+ h)T = HT on Γ.

In particular case where Ω is simply connected, we can write u = ∇φ where
φ ∈ H2(Ω) and satisfies that (∇φ)T = HT on Γ.

Proof. (i) Since∫
Ω

|curluε|2dx = 2ε2[Wε(uε) − I0(uε)] ≤ 2ε2Wε(uε),

if Wε(uε) is bounded,

Rt(HT ) =
∫

Ω
|curlu|2dx ≤ lim inf

ε→0

∫
Ω
|curluε|2dx = 0.
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Conversely, if Rt(HT ) = 0, then from (3.3) Wε(uε) ≤ b(HT ). Thus Wε(uε) is
bounded.

(ii) If Rt(HT ) = 0, then curl u = 0 in Ω. Therefore, it is well known (cf. [6])
that we can write u = ∇φ+ h where φ ∈ H 2(Ω) and h ∈ H1(Ω). If Ω is simply
connected, it suffices to note that H1(Ω) = {0}.

From Corollary 3.4, we see that the problems (Q.1) and (Q.2) are yes, if and
only if Rt(HT ) = 0.

4. PROOF OF THEOREM 1.3 AND THEOREM 1.4

In this section, we consider the case where a given vector field H on Γ satisfies
Hn = H · ν ∈ H1/2(Γ) ∩ L∞(Γ). We define

H1
n(Ω,R3,Hn) = {u ∈ H1(Ω,R3); u · ν∣∣

Γ
= Hn}

and

(4.1) Dn(Hn) = inf
u∈H1

n(Ω,R3,Hn)
‖div u‖2

L2(Ω).

According to [2], we see that Dn(Hn) is achieved and the set Σn(Hn) of all
minimizers is given by

(4.2) Σn(Hn) = {u + w; w ∈ H1
n(Ω,R3, 0), divw = 0}

where u is a fixed minimizer of Dn(Hn) in H1
n(Ω,R3,Hn). As in section 3, we

define
J0(u) =

∫
Ω

{
k2

2
|curlu|2dx+ ψ(|u|)

}
dx,

and
c(Hn) = inf

u∈H1
n(Ω,R3,Hn)

J0(u),

and
d(Hn) = inf

u∈Σn(Hn)
J0(u).

Proposition 4.1. d(HT ) = infu∈Σn(Hn) J0(u) is achieved.

Proof. Let {uk} ⊂ Σn(Hn) be a minimizing sequence of d(Hn). Then we can
write uk = u + wk where u is a fixed minimizer of (4.1) and wk ∈ H1

n(Ω,R3, 0)
satisfies div wk = 0 in Ω. Then we may assume that∫

Ω

{
k2

2
|curlu + curlwk|2 + ψ(|u + wk|)

}
dx = d(Hn) + o(1)
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as k → ∞. Since ψ ≥ 0, we see that {curlwk} is bounded in L2(Ω,R3). From
the hypothesis (1.1) and (3.1),

c

∫
Ω
|u + wk|2dx ≤ cM2|Ω|+

∫
Ω
ψ(|u + wk|)dx ≤ cM2|Ω|+ d(Hn) + o(1).

It follows that {wk} is bounded in L2(Ω,R3). Since div wk = 0 in Ω and wk·ν = 0
on Γ, it follows from (2.3) that {wk} is bounded in H 1(Ω,R3). Passing to a
subsequence, we may assume that wk → w0 weakly in H1(Ω,R3), strongly in
L2(Ω,R3) and a.e in Ω. Since div wk = 0 in Ω and wk · ν = 0 on Γ, we see that
div w0 = 0 in Ω and w0 · ν = 0 on Γ. Thus we have u0 := u + w0 ∈ Σn(Hn)
and uk → u0 weakly in H1(Ω,R3). Therefore, since curl uk → curlu0 weakly in
L2(Ω,R3), ∫

Ω
|curlu0|2dx ≤ lim inf

k→∞

∫
Ω
|curluk|2dx.

Moreover, since uk → u0 a.e. in Ω, it follows from the Fatou lemma that∫
Ω
ψ(|u0|) ≤ lim inf

k→∞

∫
Ω
ψ(|uk|)dx.

Thus we have
J0(u0) ≤ lim inf

k→∞
J0(uk) = d(Hn).

This means that u0 is a minimizer of d(Hn).

Remark 4.2. Since the minimizer u0 of d(Hn) satisfies that div u0 = div u in
Ω and u0 · ν = u · ν = Hn on Γ, we can replace u in (4.2) with u0. Thus we can
assume that u in (4.2) satisfies that

(4.3) Dn(Hn) =
∫

Ω
|div u|2dx, J0(u) = d(Hn).

We are in a position to prove Theorem 1.3. For the brevity of notation, we put
k1 = 1/ε2 and write

Vε(u) :=
∫

Ω

{
1

2ε2
|div u|2 +

k2

2
|curlu|2 + ψ(|u|)

}
dx.

Then we have

Proposition 4.3. Assume that Hn ∈ H1/2(Γ) ∩ L∞(Γ). Then

Bε(Hn) := inf
u∈H1

n(Ω,R3,Hn)
Vε(u)

is achieved.
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Proof. Let {uk} ⊂ H1
n(Ω,R3,Hn) be a minimizing sequence of Bε(Hn).

That is to say Vε(uk) → Bε(Hn) as k → ∞. Then {curluk} is bounded in
L2(Ω,R3) and {divuk} is bounded in L2(Ω). Moreover, since

∫
Ω ψ(|uk|)dx is

bounded, {uk} is bounded in L2(Ω,R3) from (1.1). Since uk · ν = Hn on Γ, it
follows from (2.3) that {uk} is bounded in H 1(Ω,R3). Passing to a subsequence,
we may assume that uk → uε weakly in H1(Ω,R3), strongly in L2(Ω,R3) and
a.e. in Ω. Since uk · ν = Hn on Γ, it follows that uε · ν = Hn on Γ. Thus
uε ∈ H1

n(Ω,R3,Hn). Therefore, we have

Vε(uε) ≤ lim inf
k→∞

Vε(uk) = Bε(Hn).

Hence uε is a minimizer of Bε(Hn).

From this proposition, we can easily get Theorem 1.3.
Here we examine the Euler-Lagrange equation for minimizers uε of Bε(Hn).

For any v ∈ H1
n(Ω,R3, 0), since uε + tv ∈ H1

n(Ω,R3,Hn) for any t ∈ R, we have

0 =
d

dt

∣∣∣∣
t=0

Vε(uε + tv)

=
∫

Ω

{ 1
ε2

(div uε)(div v) + k2curluε · curl v +
ψ′(|uε|)
|uε| uε · v

}
dx.

In particular, if we take v ∈ C∞
0 (Ω,R3), we have, weakly{ − 1

ε2∇(divuε) + k2curl 2uε + ξ(|uε|)uε = 0 in Ω,
uε · ν = Hn on Γ

where ξ(s) = ψ′(s)/s.

Proof of Theorem 1.4. Let uε be a minimizer of Vε in H1
n(Ω,R3,Hn). For any

u ∈ H1
n(Ω,R3,Hn), we have

J0(u) ≥ c(Hn) and
∫

Ω
|divu|2dx ≥ Dn(Hn).

Thus we see that

Vε(u) = J0(u) +
1

2ε2

∫
Ω
|div u|2dx ≥ c(Hn) +

1
2ε2

Dn(Hn).

Let u be a minimizer of (4.1) satisfying (4.3). Then

Vε(u) = J0(u) +
1

2ε2

∫
Ω
|div u|2dx = d(Hn) +

1
2ε2

Dn(Hn).
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Therefore, we have

(4.4) c(Hn) +
1

2ε2
Dn(Hn) ≤ Bε(Hn) = Vε(uε) ≤ d(Hn) +

1
2ε2

Dn(Hn).

Thus we have

c(Hn) ≤ J0(uε)

= Vε(uε) − 1
2ε2

∫
Ω
|div uε|2dx

≤ d(Hn) − 1
2ε2

{∫
Ω

|div uε|2dx− Dn(Hn)
}

≤ d(Hn) = J0(u).

From this inequality, we see that

(4.5) c(Hn) ≤ J0(uε) ≤ d(Hn).

We also have∫
Ω
|div uε|2dx = 2ε2[Vε(uε) −J0(uε)]

≤ 2ε2
[
d(Hn) +

1
2ε2

Dn(Hn) −J0(uε)
]

= Dn(Hn) + 2ε2[d(Hn) −J0(uε)]
≤ Dn(Hn) + 2ε2[d(Hn) − c(Hn)].

From this, we have

(4.6) lim sup
ε→0

∫
Ω
|div uε|2dx ≤ Dn(Hn)

and so {divuε} is bounded in L2(Ω). Since∫
Ω

{
k2

2
|curluε|2 + ψ(|uε|)

}
dx = J0(uε) ≤ d(Hn),

we see that {curluε} is bounded in L2(Ω,R3) and {uε} is bounded in L2(Ω,R3).
Since uε · ν = Hn on Γ, it follows from (2.3) that {uε} is bounded in H 1(Ω,R3).
Passing to a subsequence, we may assume that uε → u∗ weakly in H1(Ω,R3),
strongly in L2(Ω,R3) and a.e. in Ω. Since div uε → div u∗ weakly in L2(Ω), it
follows from (4.6) that∫

Ω
|div u∗|2dx ≤ lim inf

ε→0

∫
Ω
|divuε|2dx

≤ lim sup
ε→0

∫
Ω
|divuε|2dx

≤ Dn(Hn).
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Since u∗ · ν = Hn on Γ, we see that u∗ ∈ H1
n(Ω,R3,Hn). Thus since we have

Dn(Hn) ≤
∫

Ω
|div u∗|2dx,

we get

Dn(Hn) =
∫

Ω

|div u∗|2dx.

Therefore, we have u∗ ∈ Σn(Hn). Since uε → u∗ a.e. in Ω, we have∫
Ω
ψ(|u∗|)dx ≤ lim inf

ε→0

∫
Ω
ψ(|uε|)dx.

Hence we see that

d(Hn) ≤ J0(u∗) ≤ lim inf
ε→0

J0(uε) ≤ lim sup
ε→0

J0(uε) ≤ d(Hn).

Thus since we have J0(u∗) = d(Hn), we see that u∗ satisfies (4.3). So, we can
take u∗ = u in (4.2) and uε → u weakly in H1(Ω,R3), strongly in L2(Ω,R3) and
a.e. in Ω, and J0(uε) → d(Hn) = J0(u). We have

k2

2

∫
Ω
|curlu|2dx = J0(u) −

∫
Ω
ψ(|u|)dx

≥ J0(u) − lim inf
ε→0

∫
Ω
ψ(|uε|)dx

= J0(u) − lim inf
ε→0

{
J0(uε) − k2

2

∫
Ω
|curluε|2dx

}

= J0(u) − lim
ε→0

J0(uε) + lim sup
ε→0

k2

2

∫
Ω
|curluε|2dx

= lim sup
ε→0

k2

2

∫
Ω
|curluε|2dx.

Since curluε → curlu weakly in L2(Ω,R3), we have∫
Ω
|curlu|2dx ≤ lim inf

ε→0

∫
Ω
|curluε|2dx.

Therefore, we have

lim
ε→0

∫
Ω
|curluε|2dx =

∫
Ω
|curlu|2dx

and we also have
lim
ε→0

∫
Ω
|divuε|2dx =

∫
Ω
|divu|2dx.
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Since curl uε → curlu weakly in L2(Ω,R3) and div uε → div u weakly in L2(Ω),
we see that curluε → curl u strongly in L2(Ω,R3) and div uε → div u strongly in
L2(Ω). Since uε → u strongly in L2(Ω,R3) and uε ·ν = u·ν on Γ, it follows from
(2.3) that uε → u strongly in H1(Ω,R3). This completes the proof of Theorem
1.4.

We get an immediate consequence of Theorem 1.4.

Corollary 4.4. Assume that the hypotheses of Theorem 1.4 hold and let u ε be
a minimizer of Vε. Then we have the following.

(i) The total energy Vε(uε) is bounded as ε→ 0, if and only if Dn(Hn) = 0.
(ii) If Dn(Hn) = 0, for any convergent sequence of {uε} with ε→ 0, there exist

w ∈ H2(Ω,R3) and h ∈ H2(Ω) such that uε → u := curl w + h strongly
in H1(Ω,R3) and (curlw + h) · ν = Hn on Γ.

In particular case where Ω has no holes, the above u can be written by u =
curlw where ν · curl w = Hn on Γ.

Proof.

(i) Since ∫
Ω
|div uε|2dx = 2ε2[Vε(uε) − J0(uε)] ≤ 2ε2Vε(uε),

if Vε(uε) is bounded,

Dn(Hn) =
∫

Ω
|div u|2dx ≤ lim inf

ε→0

∫
Ω
|div uε|2dx = 0.

Conversely, if Dn(Hn) = 0, then from (4.4) Vε(uε) ≤ d(Hn). Thus Vε(uε)
is bounded.

(ii) If Dn(Hn) = 0, then div u = 0 in Ω. Therefore, it is well known (cf. [6])
that we can write u = curl w + h where w ∈ H 2(Ω,R3) and h ∈ H2(Ω).
In the case where Ω has no holes, it suffices to note that H2(Ω) = {0}.

From Corollary 4.4, we see that the problems (R.1) and (R.2) are yes if and
only if Dn(Hn) = 0.
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