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FLAT φ CURVATURE FLOW OF CONVEX SETS

David G. Caraballo

Abstract. For an arbitrary initial compact and convex subset K0 of R
n, and

for an arbitrary norm φ on R
n, we construct a flat φ curvature flow K (t)

such that K (t) is compact and convex throughout the evolution. Previously
and using similar methods, R. McCann had shown that flat φ curvature flow
in the plane preserves convex, balanced sets. More recently, G. Bellettini, V.
Caselles, A. Chambolle, and M. Novaga showed that flat φ curvature flow in
R

n preserves compact, convex sets. We also establish a new Ḧolder continuity
estimate for the flow. Flat φ curvature flows, introduced by F. Almgren, J.
Taylor, and L. Wang, model motion by φ-weighted mean curvature. Under
certain regularity assumptions, they coincide with smooth φ-weighted mean
curvature flows given by partial differential equations as long as the smooth
flows exist.

1. INTRODUCTION

Motion by weighted mean curvature is a model for the time evolution of solids
in which the normal velocity at a boundary point is given by the φ-weighted mean
curvature at that point (cf. [26]). This dynamical process generalizes ordinary
motion by mean curvature by accounting for anisotropic surface tension, as when a
crystal melts or relaxes. Here, φ is a surface energy density function, whose values
model the preferred directions of motion for a non-equilibrium crystal evolving due
to its surface tension. When the unit ball for φ is a sphere, so that no directions
are preferred, φ is isotropic. When φ = φE , the Euclidean norm, φ-weighted mean
curvature is ordinary mean curvature. More generally, we can consider evolutions
where the surface normal velocity is given by

(1) v = M (wmcφ + Ω) ,

where wmcφ is the φ-weighted mean curvature, Ω is a bulk quantity such as under-
cooling below the freezing temperature of a planar interface, and M (the “mobility”)

Received January 12, 2010, accepted January 14, 2010.
Communicated by Der-Chen Chang.
2000 Mathematics Subject Classification: 53C44, 49N60, 49Q20, 52A20.
Key words and phrases: Flat flow, Curvature flow, Convex, Mean curvature, Anisotropic, Mobility,
Crystal growth, Hölder continuity.
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measures the direction-dependent response of the interface to surface tension and
bulk driving forces. When Ω = 0, the resulting motion is motion by φ-weighted
mean curvature with mobility M, or simply motion by φ-weighted mean curvature
if M is identically one on unit vectors. See [25, 26, 17], and [18] for detailed
discussions of the physical motivation.

Curvature-driven flow has been the subject of extensive research by many au-
thors in the last three decades. In this paper, we are interested in the φ-weighted
mean curvature flow K (t) of a compact, convex subset K (0) = K0 ⊂ R

n. In
particular, we will take Ω = 0 throughout this paper.

Most of the work has been in the case where M = φE , so that mobility is
identically one for unit vectors w ∈ R

n (see (4) and Remark 3). For the special
case when φ = φE and n = 2, M. E. Gage and R. S. Hamilton [14, 15] showed
that the evolution remains convex. Also in an isotropic setting, G. Huisken [19] and
later L. C. Evans and J. Spruck [12] showed the same result for all n ≥ 2, using
somewhat different methods. Whereas M. E. Gage, R. S. Hamilton, and G. Huisken
used classical models, L. C. Evans and J. Spruck used a viscosity approach, based
on previous work [24] of S. Osher and J. A. Sethian and conducted independent of
related work [10] by Y. G. Chen, Y. Giga, and S. Goto, to construct weak solutions
which can exist in the presence of singularities and topological changes. The flows
they constructed agree with classical flows so long as the latter exist.

In [2], F. Almgren, J. Taylor, and L. Wang introduced flat φ curvature flow,
a variational time-stepping scheme for φ-weighted mean curvature flow, set in the
context of the integral and rectifiable currents of geometric measure theory (cf.
[13]). Their main result ([2], Theorem 4.5) is an existence and Hölder continuity
theorem for these flows K (t) , for general norms φ (in fact, they do not require
that φ be an even function) and n ≥ 3. They also showed that, under additional
restrictions on K0 and φ, flat φ curvature flows agree with smooth φ-weighted mean
curvature flows given by partial differential equations, so long as the latter flows
remain smooth ([2] § 7).

Their strategy, which we emulate here, was to construct discrete flows, which
approximate motion by φ-weighted mean curvature, and extract a limit “flat” flow
(named after H. Whitney’s flat norm, | |b) as the time step tends to zero. The discrete
flows involved successive minimization steps, in which a surface plus bulk energy
(4) is minimized at each step. (4) was chosen so that, by design, the resulting limit
flow will agree with smooth φ-weighted mean curvature flows when φ and K0 are
sufficiently regular.

Their main existence and Hölder continuity theorem ([2], Theorem 4.5) relies on
a critical density ratio estimate ([2] § 3.4) which involves the ratio (n − 1) / (n − 2)
throughout, and so the results hold for n ≥ 3. The author’s paper [8] completed
the analysis for the case n = 2. S. Luckhaus and T. Sturzenhecker [21] used a
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scheme similar to that of F. Almgren, J. Taylor, and L. Wang, for the special case of
ordinary mean curvature flow in R

n. In the plane, R. J. McCann [23] showed that,
for any norm φ on R

2, any convex and balanced set (K0 = −K0) remains convex
and balanced as it evolves by flat φ curvature flow.

More recently, G. Bellettini, V. Caselles, A. Chambolle, and M. Novaga ([4] and
[9]; also, see [5]) showed that flat φ curvature flow with mobility M = φ preserves
convexity in R

n, for each norm φ on R
n, and for any n ≥ 2. Mathematically, this is

a convenient choice of mobility function for the following reason. The Wulff shape
Wφ for φ is the unit ball of its polar φ◦, defined by

(2) φ◦ (y) = sup
x∈Rn

{〈y, x〉 : φ (x) ≤ 1} ,

where 〈 〉 denotes the usual inner product on R
n. Among all sets with a specified

volume, the one minimizing the surface energy (3) is (up to translation and scaling)
Wφ. The boundary of a round ball evolving by ordinary mean curvature (so that
φ = φE and M = φE as well) will shrink homothetically until it vanishes. More
generally, the boundary of a Wulff shape Wφ evolving by φ-weighted mean curvature
with mobility M will shrink homothetically until it vanishes – but only if M is a
multiple of φ (see, for example, [27]). By choosing M = φ, G. Bellettini, V.
Caselles, A. Chambolle, and M. Novaga ensured that the bulk and surface energy
driving forces would be maximally compatible, so that the flow would tend toward
the Wulff shape for φ in a strong sense (also, see [5]). This allowed them to prove
useful comparison and uniqueness results.

In this paper, we work in R
n for any n ≥ 2, using an arbitrary norm φ on

R
n, and using an isotropic mobility, M = φE , as in [2]. For any initial compact,

convex set K0 ⊂ R
n, we construct a flat φ curvature flow K (t) which is compact

and convex for all t ≥ 0.
In Section 2, we introduce flat φ curvature flows and establish some key results

about convex sets and E-minimizers. Theorems 8 and 9 give volume estimates for
discrete flat φ curvature flows Kj (t) . Using Cantor’s diagonal process, we use
the discrete flows to define a limit flow K (t) for all non-negative dyadic rational
times t. Because the K (t)’s are defined as limits of different sequences of sets,
the flow K (t) as constructed could potentially be pathologically discontinuous in t.
Theorem 10 gives a crucial Hölder estimate which rules out such behavior. Finally,
we establish the existence and Hölder continuity of the flat φ curvature flow K (t) for
all t ≥ 0 (Theorem 11). The convexity of K0 allows us to give different arguments
from those in [2] to establish our main Hölder inequalities, which improve upon
those in [2] for the case we consider.

It follows from ([2] § 7) that, when φ and ∂K0 are sufficiently smooth, and
when φ is elliptic, these flat φ curvature flows agree with smooth φ-weighted mean
curvature flows, until the latter develop singularities.
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2. FLAT φ CURVATURE FLOWS

We will measure volume and surface area in R
n (for n ≥ 2) with n-dimensional

Lebesgue measure Ln and (n − 1)-dimensional Hausdorff measure Hn−1, respec-
tively. For x ∈ R, �x� is the floor function, defined to be the greatest integer w ≤ x,

and 	x
 is the ceiling function, defined to be the least integer y such that y ≥ x.
For each K ⊂ R

n, we let χK be the characteristic function of K, defined by
χK (x) = 1 for x ∈ K and χK (x) = 0 otherwise. For A, B ⊂ R

n, A � B =
(A \B)∪ (B \A) denotes the symmetric difference of A and B. We write A =n B

(i.e., “A is Ln almost equal to B”) provided Ln (A � B) = 0. Similarly, we write
A ⊂n B provided Ln (A \ B) = 0. For K ⊂ R

n, we let conv K denote the convex
hull of K.

Let C denote the collection of all bounded, Ln measurable subsets K ⊂ R
n for

which χK ∈ BV (Rn) . Whenever K ∈ C, we let ∂K (the reduced boundary of
K) be the set of all points x in R

n at which K has a measure-theoretic exterior
unit normal nK(x) in the sense of Federer ([13], § 4.5.5). Each set K ∈ C has
finite perimeter, given by P (K) = Hn−1(∂K) < ∞. We say that a sequence
K1, K2, K3, . . . of Ln measurable subsets of R

n converges in volume to a set
K ⊂ R

n provided Ln (K � Ki) → 0 as i → ∞. Some excellent references that
treat sets of finite perimeter and functions of bounded variation in detail are [1],
[6], [11], [16], [20], and [22].

Throughout this paper, we will let φ denote an arbitrary norm on R
n, and

we will set φ0 = inf {φ(w) : |w| = 1} and φ0 = sup {φ(w) : |w| = 1} . An easy
continuity-compactness argument shows that these extrema are attained and that
0 < φ0 ≤ φ0 < ∞. We define the surface energy of K ∈ C to be its φ-weighted
perimeter, and we write

(3) SE (∂K) =
∫

xε∂K
φ (nK(x)) dHn−1x.

We note that this surface energy functional is lower semicontinuous with respect to
convergence in volume ([13], Theorem 5.1.5).

The following lemma, a consequence of Jensen’s Inequality (cf. [13] § 2.4.19),
asserts that the surface energy of a planar region does not exceed that of any other
region having the same boundary.

Lemma 1. (Half-space comparisons [2], § 3.1.9; cf. [7] Theorem 17, where a
proof is given). Suppose K ∈ C and λ : R

n → R is linear with ‖λ‖ = 1. Then for
every r in R we have SE (∂ (K ∩ {x : λ (x) < r})) ≤ SE (∂K) .

We will now show that, if a set K ∈ C contains a convex set L, then it has at
least as much surface energy as L.
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Proposition 2. (Convex body comparisons). Suppose K ∈ C and L is a convex
set such that L ⊂n K. Then SE (∂L) ≤ SE (∂K) .

Proof. If H is any closed half-space in R
n containing L, then we may write H =

{x : λ (x) ≤ r} and H◦ = {x : λ (x) < r} , for some λ and r as in Lemma 1. Since
K ∩H and K ∩H◦ differ by a set having Ln measure 0, their surface energies are
equal, and so we use Lemma 1 to estimate SE (∂ (K ∩ H)) = SE (∂ (K ∩ H◦)) ≤
SE (∂K) . Intersecting K with each closed half-space containing L gives L (up to
a set of Ln measure 0), without increasing surface energy, and so SE (∂L) ≤
SE (∂K) .

If K0 ∈ C we let ρ (x) = dist (x, ∂K0) denote the ordinary Euclidean distance
function to ∂K0. We define the signed distance function ρ± (x) to be −ρ (x) inside
K0 and ρ (x) outside K0. If K0 is convex, then ρ± (x) is a convex function of x
([23], Lemma 4.2).

For K0 and K in C, with Ln (K0) > 0, and for any ∆t > 0 we define the
energy (cf. [2] § 2.6)

(4) E (K0, K, ∆t) = SE (∂K) +
1

∆t

∫
x∈Ko�K

dist (x, ∂K0) dLnx.

If Ln (K0) > 0, we say that K is an E-minimizer for K0 over ∆t provided

E (K0, K, ∆t) = inf {E (K0, L, ∆t) : L ∈ C} .

If K0 =n ∅, we take K = ∅ to be the E-minimizer for K0.

Remark 3. (Mobilities in flatφ curvature flows). If we wanted to use a norm
M other than the Euclidean norm as the mobility function, we would replace dist
(x, ∂K0) in (4) by

distM (x, ∂K0) = inf
y∈∂K0

M◦ (x − y) ,

where M◦ is the polar of M (see (2)).

If Ln (K � L) = 0, then SE (∂K) = SE (∂L) , and K0 � K =n K0 � L,
so E (K0, K, ∆t) = E (K0, L, ∆t) . Therefore, we do not distinguish between sets
with differ by Ln measure 0. Thus, any convex subset of R

n with empty interior is
equivalent to the empty set. Also, since the boundary of a bounded convex subset
of R

n with non-empty interior has Ln measure zero, we may and will without loss
of generality regard such a set as being closed, hence compact.

Proposition 4. (E-minimizers starting from a compact, convex set). Suppose
K0 is a compact, convex subset of R

n. If K is an E-minimizer for K0 over ∆t,

then K ⊂n K0.
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Proof. If K0 =n ∅, the result is immediate, so we’ll assume Ln (K0) > 0.

If Ln (K \ K0) > 0, then we can find a closed half-space H which contains K0

and for which Ln (K \H) > 0. Let L = K ∩ H. Then SE (∂L) ≤ SE (∂K) by
Proposition 2. Also, K0�L ⊂ K0�K, with Ln ((K0 � K) \ (K0 � L)) > 0, so

E (K0, L, ∆t) = SE (∂L) +
1

∆t

∫
K0�L

ρdLn < SE (∂K) +
1
∆t

∫
K0�K

ρdLn

= E (K0, K, ∆t) ,

which contradicts the E-minimality of K.

The proof of Proposition 4 can be easily modified to show that, for any K0 ∈ C,

if an E-minimizer K exists then it must satisfy K ⊂n conv (K0) . A standard
compactness-lower semicontinuity argument then shows that, for any K0 ∈ C, and
for any ∆t > 0, there is an E-minimizer K ∈ C. This E-minimizer may be empty,
and it need not be unique. However, if Ln (K0) > 0 then for sufficiently small
values of ∆t we will have Ln (K) > 0 as well, because of [2] Theorem 4.4.

When K0 is convex, there exists an E-minimizer which is also convex (though
possibly empty). This was first shown in the plane for convex, balanced sets by R.
McCann ([23], Theorem 4.1), and more recently for general convex sets for each
n ≥ 2 by V. Caselles and A. Chambolle ([9] § 5.5).

Lemma 5. (Convexity of E-minimizers (cf. [23] and [9])). If K0 is a compact,
convex subset of R

n, and ∆t > 0, then there exists a compact, convex set K ∈ C
such that K is an E-minimizer for K 0 over ∆t.

We say that Kj (·) , for j = 1, 2, 3, . . . , are discrete flat φ curvature flows (cf.
[2] § 2.6) of the initial set K0 ⊂ R

n if for each j ≥ 1 we have Kj (0) = K0 and
∆tj = 1/2j, and for each t ≥ 0 we have

(5) Kj (t) = Kj (	t/∆tj
∆tj) ,

where Kj (k∆tj) is an E-minimizer for Kj ((k − 1)∆tj) over ∆tj for each k =
1, 2, 3, . . . .

We say that K (·) : [0,∞) → C is a flat φ curvature flow (cf. [2] § 2.6) if
there exists a sequence {Kj (·)}j=1,2,3,... of discrete flat flows, and a subsequence
s (1) , s (2) , s (3) , . . . of 1, 2, 3, . . . such that

Ln
(
K (t) � Ks(i) (t)

) → 0

locally uniformly for all t.

Remark 6. In [2], the term flat φ curvature flow is used to refer instead to the
evolution of the boundaries ∂K (t) (modeled in the essentially equivalent language
of currents).



Flat φ Curvature Flow of Convex Sets 7

3. EXISTENCE AND HÖLDER CONTINUITY OF FLAT φ CURVATURE

FLOWS STARTING FROM COMPACT CONVEX SETS

We will now restrict our attention to the case when K0 is a compact, convex
subset of R

n. For each j ≥ 1, repeated application of Lemma 5 guarantees the
existence of discrete flat φ curvature flows Kj (t) , such that Kj (t) is compact and
convex for all t.

Next, we will define K (t) for non-negative dyadic rational times t (t = p/2q,

where p and q are non-negative integers). Let {tk}k=1,2,3,... denote the set of all such
times. By Proposition 4, Kj (t) ⊂n K0 for each j and t. By standard compactness
theorems (cf. [2] § 3.1.5), there exist a bounded set Q1 ⊂ R

n and a subsequence
j (1, 1) , j (1, 2) , j (1, 3) , . . . of 1, 2, 3, . . . such that Ln

(
Q1 � Kj(1,i) (t1)

) → 0
as i → ∞. Q1 must be convex since convergence in volume preserves convexity.
Since its boundary has Ln measure zero, as noted above we may replace Q1 by its
closure, so that it is compact.

Similarly, there exist a compact, convex set Q2 ⊂ R
n and a subsequence

{j (2, i)} of {j (1, i)} such that Ln
(
Q2 � Kj(2,i) (t2)

) → 0 as i → ∞. Since
{j (2, i)} is a subsequence of {j (1, i)} , we also have Ln

(
Q1 � Kj(2,i) (t1)

) → 0
as i → ∞. Continuing in this fashion, for each m ≥ 2 there exist a compact, convex
set Qm ⊂ R

n and a subsequence {j (m, i)} of {j (m − 1, i)} such that

(6) Ln
(
Qk � Kj(m,i) (tk)

) → 0 as i → ∞
whenever k ≤ m.

For each i ≥ 1, we set s (i) = j (i, i) . Then, for any positive integer k, since
{s (i)} is a subsequence of {j (k, i)} for each i ≥ k, we have Ln

(
Qk � Ks(i) (tk)

) →
0 as i → ∞. Whenever t = tk for some k, we define

(7) K (t) = Qk,

so that K (t) is defined, compact, and convex for a dense set of times. This will
give us control of the flow once we establish a continuity estimate for the discrete
flows.

Lemma 7. ([2], Proposition 4.1, Step 1) If f : [0, R] → [0, S] , then
∫ R

0
f (z) dz ≤

√
2S

(∫ R

0
zf (z) dz

)1/2

.

Theorem 8. (A volume inequality for E-minimizers of compact, convex sets).
Suppose K0 is a compact, convex subset of R

n. If K is an E-minimizer for K0

over ∆t, then

Ln (K0 � K) ≤
(

2
φ0

)1/2

(SE (∂K0))
1/2 (SE (∂K0) − SE (∂K))1/2 ∆t1/2
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Proof. For each x ∈ R
n let ρ (x) = dist (x, ∂K0) . If K0 has empty interior,

then K =n ∅, and the result is immediate. Suppose, then, that K0 has a positive
inradius, r, so that ρ (x) ≤ r for each x ∈ K0. For each 0 < z < r, let A (z) =
Hn−1

(
(K0 \ K) ∩ ρ−1 {z}) . Then

(8)
A (z) ≤ Hn−1

(
K0 ∩ ρ−1 {z}) = Hn−1 (∂ (K0 ∩ {x : ρ± (x) ≤ −z})) ≤ Hn−1 (∂K0) ,

since the convexity of ρ± ([23], Lemma 4.2) implies that its sublevel sets are convex.
Hence, K0∩{x : ρ± (x) ≤ −z} is a convex subset of K0, and so the last inequality
in (8) follows from Proposition 2. Using Proposition 4 and then Federer’s coarea
formula ([13] § 3.2), we calculate

Ln (K0 � K) = Ln (K0 \ K) = Ln
(
(K0 \ K) ∩ ρ−1 (0, r)

)
=

∫ r

0
A (z) dz.

Applying Lemma 7 with f, R, and S there replaced respectively by A, r, and
Hn−1 (∂K0) we get

(9) Ln (K0 � K) ≤
√

2Hn−1 (∂K0)
(∫ r

0
zA (z) dz

)1/2

.

Using the coarea formula again, we get

(10)
∫ r

0
zA (z) dz =

∫
K0\K

ρdLn.

The E-minimality of K implies E (K0, K, ∆t) ≤ E (K0, K0, ∆t) , so

SE (∂K) +
1

∆t

∫
K0\K

ρdLn ≤ SE (∂K0) ,

which implies

(11)
∫

K0\K

ρdLn ≤ (SE (∂K0) − SE (∂K)) ∆t.

Combining (9), (10), and (11) gives

(12) Ln (K0 � K) ≤
√

2Hn−1 (∂K0) (SE (∂K0) − SE (∂K))1/2 ∆t1/2,

and the result follows since SE (∂K0) ≥ φ0Hn−1 (∂K0) .

Theorem 9. (Hölder inequality for discrete flat φ curvature flows of a compact,
convex set). Suppose K0 is a compact, convex subset of R

n, and that Kj (t) , for
j = 1, 2, 3, . . . , are discrete flat φ curvature flows of the initial set K 0. Then for
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each positive integer j, and for non-negative integers a and b with 0 ≤ a < b, the
quantity Ln (Kj (a∆tj) � Kj (b∆tj)) is bounded above by

(
2
φ0

)1/2

(SE (∂Kj (a∆tj)))
1/2 (SE (∂Kj (a∆tj))

−SE (∂Kj (b∆tj)))
1/2 ((b − a) ∆tj)

1/2 .

Proof. For each m such that a ≤ m ≤ b, let Lm = Kj (m∆tj) . For each m
such that a ≤ m ≤ b− 1, we let ∆SEm,m+1 = SE (∂Lm)−SE (∂Lm+1) , which
must be non-negative since Lm+1 is an E-minimizer for Lm over ∆tj . For each
1 ≤ i ≤ b− a we apply Theorem 8 with K0, K, and ∆t there replaced by La+i−1,
La+i, and ∆tj respectively and then use Cauchy’s Inequality:

Ln (Kj (a∆tj) � Kj (b∆tj))

≤
b−a∑
i=1

Ln (La+i−1 � La+i)

≤
(

2
φ0

)1/2 b−a∑
i=1

(SE (∂La+i−1))
1/2 (∆SEa+i−1, a+i)

1/2 ∆t
1/2
j

≤
(

2
φ0

)1/2

(SE (∂La))
1/2

b−a∑
i=1

(∆SEa+i−1, a+i)
1/2 ∆t

1/2
j

≤
(

2
φ0

)1/2

(SE (∂La))
1/2 (SE (∂La)− SE (∂Lb))

1/2 ((b − a)∆tj)
1/2 .

Theorem 10. (A Hölder estimate for flat φ curvature flows at dyadic ra-
tional times). Suppose K0 is a compact, convex subset of R

n, that Kj (t) , for
j = 1, 2, 3, . . . , are discrete flat φ curvature flows of the initial set K 0, and that
K (t) is defined for non-negative dyadic rational times t according to (7). For any
two such times s and t with 0 ≤ s < t < ∞, we have

(13) Ln (K (s) � K (t)) ≤
(

2
φ0

)1/2

SE (∂K0) (t − s)1/2 .

Proof. For any j ≥ 1, we have

(14)
Ln (K (s) � K (t))

≤ Ln (K (s) � Kj (s)) + Ln (Kj (s) � Kj (t)) + Ln (Kj (t) � K (t)) .

Since s and t are dyadic, we may write s = as/2bs and t = at/2bt , where as, at,

bs, and bt are non-negative integers. Fix ε > 0. Since s and t are dyadic, we may
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fix j so large that the first and third summands of (14) are each bounded above
by ε/2, and so that j > bs and j > bt. It follows that s =

(
as · 2j−bs

)
∆tj and

t =
(
at · 2j−bt

)
∆tj , so that in particular s and t are each integer multiples of ∆tj .

We now apply Theorem 9 with a = as · 2j−bs and b = at · 2j−bt :

Ln (Kj (s) � Kj (t))

≤
(

2
φ0

)1/2

(SE (∂Kj (s)))1/2 (SE (∂Kj (s)) − SE (∂Kj (t)))1/2 (t − s)1/2

≤
(

2
φ0

)1/2

SE (∂Kj (s)) (t − s)1/2 .

Because SE (∂Kj (s)) ≤ SE (∂Kj (0)) = SE (∂K0) , we deduce (13) since ε was
arbitrary.

We can now give our main theorem.

Theorem 11. (Existence and Hölder continuity of flatφ curvature flows of con-
vex sets). Suppose K0 is a compact, convex subset of R

n. Then there exists a flat
φ curvature flow K (t) , where K (0) = K0 and K (t) is a compact, convex (pos-
sibly empty) set for each t ≥ 0. Moreover, for any two real numbers s and t with
0 ≤ s < t < ∞, we have

(15) Ln (K (s) � K (t)) ≤
(

2
φ0

)1/2

SE (∂K0) (t − s)1/2 .

Proof. K (t) is defined for all non-negative dyadic rational numbers t accord-
ing to (7). If t ≥ 0 is not dyadic, we can define K (t) as the limit of the sequence
{K (�2mt� /2m)} , as m → ∞ : because of compactness, and because of Theorem
10, the sequence must converge in volume to a unique bounded set L ⊂ R

n (unique
up to Ln measure zero); moreover, L must be convex since convergence in volume
preserves convexity. As before, since the boundary of L has Ln measure zero we
will replace it by its closure, if necessary, so that it is compact. In this way, we
uniquely extend K (t) to all t ≥ 0. Since we may approximate s and t with dyadic
rationals arbitrarily closely, inequality (15) follows from Theorem 10. That K (t)
is a flat φ curvature flow follows from this uniform estimate.
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