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PACKING CONSTANTS IN ORLICZ-LORENTZ SEQUENCE SPACES
Yagiang Yan

Abstract. We discussed the upper and lower bounds of packing constants in
Orlicz-Lorentz sequence spaces equipped with both the Luxemburg norm and
the Orlicz norm. Provided ® € A5(0), we showed that the Kottman constant
of Ao ., and G , satisfies
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As a corollary, the packing constant of Lorentz space ), , is 1/(1 + 21_%).

The packing constants of Orlicz spaces were studied by many researchers. How-
ever, there are few results on geometric constants of Lorentz spaces as well as
Orlicz-Lorentz spaces. In this paper, we shall study the packing constant in Orlicz-
Lorentz sequence spaces \g ., and \g  (equipped with the Luxemburg norm and
the Orlicz norm respectively). We will obtain the nontrivial lower and upper bounds
of the Kottman constant. Both the technical ideas and the computational methods
are practical and can be employed to estimate some other geometric constants in
Orlicz-Lorentz spaces.

1. INTRODUCTION

Let ®(u) = f0|“| ¢(t)dt be an N-function, i.e., it is even, convex, lin% ‘I’—Ej‘l =0,
U—

and lim ‘I’—Ej‘l = 00, ¢ being right continuous, nondecreasing, positive for ¢ > 0.

U—00

The following indices have been well researched (see [8, 10, 11]):

0 . o tot) 0 1 to(t)
(1.1) Ay = h?l,lonf 30 BY = hrtnjoup Ok
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<I>_1(u) ﬂ% = lim sup <I>_1(u)

1.2 9 = liminf ———— —_—.
(1.2 G = N 31 (2u) w0 ®L(2u)

We say that & € Ay(0) if there is ug > 0 and K > 1 such that ®(2u) < K®(u)
whenever v < ug and that ® € 72(0) if ¥ € Ay(0). We define ¥(v) = f0|”| P(s)ds
to be the complementary N-function of ® (¢ is the right inverse of ¢).

The indices have the well known relationship (see [8, 13, 17]):

(1.3) S S P S

' Ay By Ay By
(1.4) 200y = 1 = 204, 8¢;
_ 1 _ 1

(15) 2 %% <o <pBy<2 P

In [17], the author studied the functions which produce the quantitative indices:

(1.6) Folt) = %, Gole,u) =

¢ (u)

‘I’T(CU) (c>1)

and proved that Fy(t) is increasing (decreasing) on (0, ®~!(ug)] if and only if
Ga(c,u) is increasing (decreasing) on (0, “2] for every ¢ > 1. It follows that if
Fy(t) or Go(c,u) is monotonic on some interval near zero, then the inequalities

(1.5) become equalities. We denote G¢(2,u) = ;’_%((22) by Gg(u). It is easy to see
that (see [8, 12, 13]) 1 < Fig(t) < 00(0 < t < 00), 2 < Go(u) < 1(0 < u < 0)
for any N-function ® and ® € Ay(0) < 3 < 1 & BY < o0, & € V3(0) &
By > %< By > 1.

The concept of Orlicz-Lorentz space was first introduced by A.Kamifska in
1990 [5]. Many important results concerning the qualitative geometry properties
such as rotundities and H-properties were researched. However, few achievements
about quantitative geometry properties (geometric constants) were obtained on com-
parison of the classical Orlicz spaces (see [13]) due to the difficulties from the
rearrangements. So it is meaningful to explore the technique for packing constants
of Orlicz-Lorentz sequence spaces.

We call a decreasing positive sequence w = (w1,ws,---) a weight sequence,
write IT to be the set of all permutations = of natural number set V. For a sequence
of real numbers © = (x1, x2, - - -), we define z* = (27,3, - - -) the rearrangement
of z, i.e., itis the result of the permutation under which the sequence (|z 1|, |z2], - - -)
becomes decreasing. We define the modula of x by

pa(r) = Z O (27 (i))wi-

=1
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It was proved [20] that
pa(x) = sup Z O(x(m(i)) - wi.

The Orlicz-Lorentz sequence space Ao, is the set
{z : pa(Ax) < oo for someX > 0} .

The Luxemburg norm and the Orlicz norm of = are defined respectively to be

. x
x.7) ||z|| = inf {c >0: pp <E> < 1},
(1.8) | ]|° = sup {Zw i cwi s pu(y) < 1} :
i=1
It is easy to see that (A, || - ||) and (Aew, || - [|°) are both Banach spaces. In the

sequel, we denote them by Ae ., and Ag , respectively. It was verified [16] that
for any 0 # = € Ao, We have ||z|| < ||z]|° < 2||z||. So the above norms are
equivalent. The following two statements holds:
(1) If > w; < oo, then there exist an isometric copy of (> contained in A\g .
i=1
Therefore, it is not reflexive (see [5, 23]);
(2) If > w; = o0, then g, is reflexive if and only if & € Ay(0) N 72(0) (see
i=1
[7, 20]).

Let X be an infinite dimensional Banach space, B(X) and S(X) be the unit
ball and the unit sphere of X respectively. The packing constant P(X) of X is

P(X) = sup{r > 0 : infinitely many balls of radius r are packed into B(X) }

The Kottman constant of an infinite dimensional Banach space X is defined as

(1.9) K(X)= sup {inf ‘x(”)—x(m)u:x(”),w(m)eX},
xcs(x) (n#Fm

o0

where X = {(™} ™ is a point sequence in S(X).
Clearly, 1 < K(X) < 2. For a Banach space X, one has [6] (also see Ye [21])

K(X)

(1.10) P(X) = TR
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Early in 1955, Rankin [11] established P(X) for an infinite dimensional Hilbert
space X. Slightly later, Burlack, Rankin and Robertson [1] generalized it to P(I?).
In 1994, Ye, Zhang and Pluciennik [22] found P(d(w,p)) for Lorentz sequence
spaces d(w,p)(1 < p < +o0). For the Orlicz sequence spaces equipped with
Luxemburg norm and Orlicz norm with & satisfying the A,-condition, Wang [14]
and Ye [21] gave the expressions for Kottman constants. In 2001, the author [17]
obtained some estimations for real computation which answered Rao and Ren’s [12]
open problem concerning the exact value of some Orlicz sequence spaces. In 2007,
the author [19] showed another method to compute the value of Kottman constants
of some class of Orlicz spaces. Now we devote this paper to the Orlicz-Lorentz
sequence spaces with the Luxemburg norm and the Orlicz norm.

Hudzik [3] verified that K (X) = 2 if X is a nonreflexive Banach lattice,
therefore P(X) = 1. Since Ag, and A% ., are Banach lattices, it suffices to consider

[e.°]
the Kottman constant when > w; = co and ® € A,(0) N V2(0). So in the sequel,
i=1

o
we always assume 3 w; = oo.

=1
We now show some auxiliary lemmas:

Lemma 1.1. The following statements holds:
(1) |lznll = 0 = pa(xy) — 0, pa(xn) — 1 = ||z,]| — 1. @ € Ag(0) if and
only if po(x,) — 0 = |lz,|| — 0 if and only if ||z,|| — 1 = po(z,) — 1
(n — oo) (see [9]).
(2) For the point x = (1,1,..., 1k, 0,0,---), we have (see[2, 15])

k
_ 1
@) = Il = e | o
i=1 w;
=1

(3) Let x € Ao, then (see [16]) ||z||° = énfo £ (1 + po(kz)). Moreover,
>

(1.12) 2] = 7 (1 + pa(kx))

| =

holds if and only if £ € K(x) := [k*, k™], where £* = inf{k > 0 :
pu(d(klz])) = 1}, k™ = sup{k > 0 : pu(o(k|z[)) < 1}.

~—

Lemma 1.2. Assume ® € Ay(0), 2,y € Ao . Thenforanye; > 0and L > 0,
there exists € > 0 such that

(1.13) pa(z) < L, pa(y) < e = |pa(z +y) — po(x)] <e1.
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Proof. Since the modula functional pg is convex in the space g ,. It is
easy to check that the proof can be employed without any change from that of the

corresponding classical Orlicz spaces (see [2, 21]). |
Lemmal.3. Let Go(u) = f_%(g;)), u € (0,u). Thenforanyt € (0, ®~1(2up)]
1 1
(1.14) d <G¢(§¢>(t)) : t) = 50(t).

Proof. Sett= ®~!(2u), then u = 1®(t), and hence ® (Go(u) - ®~1(2u)) =
u. Therefore (1.14) holds. ]
For x = (z1,z9,- ), We write

x[l,i] = (1’1,1’2, Tt 7xi70707 )7
x(z,oo) = (0707 T 707xi+17wi+27 o ')7
x(Z,j] = (0707 e 707xi+17wi+27 Tt ,fL'j,0,0, )

Lemma 1.4. Let ® € A,(0). For any sequence of points Xy = {z(™}™°
S (Aow), there is a subsequence Z := {z(’“)}:il C Xy and a sequence of natural

numbers ip < i3 < i < --- < 4 < -+ < g < --- satisfying the following
conditions:

(L.15) Hz((’jj OO)H <

(1.16) |40l <2e Gz ks,

(1.17) ‘ G >1).

<z(j> _ x(o>) -
20

The above three inequalities are also holds for the Orlicz norm owing to the equiv-
alence of the norms.

Proof.  For any z(™ € A;, one has ® <x(1”)> w1 < pa(z) =1, which implies

x(ln) <ot <wil> forn =1,2,---. Therefore there exists a convergent subsequence
o o

{x(ln’“)} in {x(ln)} .+ Inother words, there is a subsequence {2V} =& C
n=

X such ?ﬁét the first coordinates of X; converge to some x;. By the same reason,
there is a subsequence {x(”’Q)} = Xy C X7 whose second coordinates converge to
some z. Inductively, there is a sequence Xy D - -+ X D Xgy1 D -~ such that the
first & coordinates of X}, are convergent.
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Denotes (¥ = (21)2,. We show [2(9)|| < 1 and hence 2° € A\g . Suppose
the contrary, i.e., |2(?| > 1. Then there is sufficiently large number i such that

Joa] > 1

Since for every 5 (1 < j <) in A;, the jth coordinate convergent to xﬁo). Moreover
the space Xj[; ;) := span {xff)ﬂ 2 e QQ} is finite dimensional, so the conver-
gence in coordinate is equivalent to the convergence in norm. Therefore, there exists

N, such thatH ﬁ”] > 1 whenever n > N. This results in ||z > H ﬁ”] > 1

which contradicts the fact that ||z(™?|| = 1.

Let ¢ > 0 be an arbitrary small number. Since ® € A,(0), there exist iy such
that H”CESJOO)H < e. Delete some finite elements in X;, if necessary we obtain a
subsequence ); € X;, such that

IKy_ﬂm%ud

for every y € );. We denote the first element in ), by z(1). Next we select
11 > 1g such that Hz(?) )H < e. The elements in le[l ;] are convergent to 0 1

(41,00 [1,i
in coordinate. Moreover, ngzo il ‘ < ‘x(io OO)H < e. Therefore, we obtain a
subsequence YV, C Y from A&;, by deleting some finite elements such that

‘ (0)

(i0=i1]

Y60, || < H <y - x“”)(io’il] ‘ < 2.

We denote the first element in ) after z(1) by 2(2). Then we select iy > iy,
such that HZ&)@@H < ¢, obtaining a subsequence Y3 C )» from A;, satisfying
9o || < 2¢.

Inductively, if )}, and (%) was selected such that z((fk),oo) < &, we obtain a
subsequence Vi1 C Vi from &;, satisfying ||y, ,,]|| < 2e. Then we denote
the first element in V1 after 2(*) by 25+ In this way we obtain a sequence

Z = {z(’“)}:ozl C Xp and a sequence of natural numbers ig < i1 < iy < -+ <
i < -+ <ip<--- satisfying (1.15)-(1.17). ]

For any given k& > 1, let

1

k
> Wi

=1

(1.18) Zy = (0,0,---,0) and X = & !

(1717"'71)
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with dim Z; = dim X = k. We produce a sequence Y = {y(™1°, € S (o),

where
1
Yy =(Xp1, 22, 23,0, ) = (cb-l <—> 00>
w1
1 1
y(Q)Z(Zl,X<1>72,Z3,O,---):<O)q)_1( >;¢’_1< >;0;Oa"'>)
w1 +wso w1 +wsa
y(") = (Zl, ZQ, s ,Zn—I, X‘b,n; Z’rH-la Oa o )
(1.19)
1 1
== 0,"',0,q)_1 n ) ";q)_l n ;0505 ’
N——
nno1) Z:lwi Z:lwi
2 1= 1=

n

We claim that for every e > 0, there exists a sequence {2(}>°, C S (\s.),
such that

(1.20) P <z(”) - z(m)> >2—¢e. (n#m)

In fact, the candidate can be selected from the above ).
Take ny = 1, i.e., y™) = <¢>—1 < ) ,0,0,-- ) we denote it by z(1). Since

1
w1

o0
>~ w; = oo, there is ny such that -2 < e. Let 2(?) = y("2), then
i=1

w;
i=1
1 1 et w1 — w
p¢<z(1)—z(2)>:w—w1+n2 Zwi:Q—%>2—g.
! > Wy =2 > Wi
i=1 i=1
n9 n3 -
Choose n3 > ng, such that 3" w;/ > w; < ¢, then let 2(®) = y(s)_ Inductively,
=1 =1
7 . 7 -
choose ny, > ny_1, such that > w;/ > w; < ¢, then let z(¥) = (™) Now for
=1 =t

any pair of k& > [, we have

n;+ng

1 & 1
Po <z(k) - Z(Z)> ~ Zwi + n, Z Wi
Z w; =1 Z w; t=ny+1
=1

=1
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ny ng+ng ny Ng_|
dwi— Y w > wi > wi
=1 i=ng+1 i=1 i=1
=2 - o >2—nk > 2 — ™ >2—¢€.
> wi w; > wi
i=1 =1 i=1

2. EsTimATION OF K (Mg )

In this section, we deal with the Kottman constant of Orlicz-Lorentz sequence
space quipped with the Luxemburg norm, namely, K (A¢.,).
The lower bounds have the following result:

Theorem 2.1. For any N-function ®, we have

(2.1) K(A\ow) ZmaX{ : ,1 }

where aq(0) is defined as in (1.2), ag, , == lgfl

—
&9
I -
/;/—\
[
~ o]~
>
~—
——
n
—
oy
N—
I
=
&

Proof.  We first prove

1
Oéq>(0

K ()\q),w) Z

~—

Construct the sequence Y = {y(™}2° | c S (\g,,) Of (1.19). For any 6 > 0 there

is a sequence U = {uy}o2; with u,, \, 0(n — oo) such that f__ll((;;n)) < ag(0)+94.

o0
Given ¢ > 0, because ) w; = oo, there is a nature number Nj such that for

=1
every n > Ny we have
n
> wi .
=1 1
(2.2) o 2l g >

Z W Z W;
i=1 i=1

o
The set of the intervals L1 forms a division of the
2 Z 223 2 Z 223
i=1 i=1 j:NO
interval (0, to] where ¢, = —-—. So we can selecta u,, € U such that ——5— <
2> wi 2 ) wi
=1 =1

Up, < —— satisfying ny > Ny. Define z(1) = (™),
23 w;
i=1

7
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Since > w; = oo, there is a natural number N, such that for every n > N;
i=1
ni n
one has > w;/ > w; < e. Select ny > N such that some u,,, € U located on the
=1 i=1
i 1 ine 2(2) — ¢(n2) |j (1)
interval (22?21+1 ,222 = | Then define =z Yy like z
NEg—1
Inductively, choose ny, > nj_1, suchthat > w;/ Z w; < ¢, and some uy,,, €U
i=1 i=1
located on the interval | ——7—, —— |. Then define
2 Z wj 2zwi
i=1
20 = ) = |0, 0, nl e, @t 1 ,0,0, -
N’ k Nk
(np—Lng Z Wy Z Wi
2 i=1 i=1
e

We obtain a subsequence Z = {z(M}2° | ¢ S (\o,,) and u,, € U
For any pair of k,1 (k > 1), we have

J <(aq>(0) +0) <z(k) — z(l)>>

1
= Z P Oéq> )+0) P ™ Wi
Wi
=1

n;+ng

1
+ Z + 5) o W
i=n;+1 Z Wwj

> Z(I) (I)_l(unz)

1

o — | W

2% 57(2u,,) Zw) Z
i=1

n;+ng

+ > 0 71 )

P!
2
i=n;+1 unk)

n, Wi
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n;+n _
unl o A 1 k (I) 1(unk) ) 1 )
> Z i) - DT (2up,) | wi + Z Q| ———5 - D7 (2up, ) | wi

—1
n;+ng
= Z <I> unl w; + Z d (fb_l(unk)) w;
i=n;+1
n;+ng
—Zumwz—i— Z U, Wi
i=n;+1
ng 1 np+ng 1
>anTiwi+AZ WT.LUZ‘
i=1 9 Z w; i=ny+1 9 Z w;
=1 =1
n;+ng
Wi
1 1 ny 1 ny+ng 1 i1
=3 |sm Zwi—i—nkﬂ Z wi| >3 [1—et(l-e) =
Z w; i=1 Z w; i=n;+1 Z w;
=1 =1 =1
ng ny+ng Nkg—1
Z Wi — Z Wi + Z Wi Z W;
1—¢ i=1 i=ng+1 1—¢ —
= M T
3w . wi
i=1 i=1

155(2_5)>(1—5)2.

We know from Lemma 1.1.1 that for every & > 0, there is ¢ > 0 such that
pa(x) > 1 —¢ implies ||z|| > 1 — e;. Therefore,

(2.3) Hz(k) — z(Z)H > ﬁ.

By the arbitrariness of § and ¢; we obtain

1
) > ; k) _ O >
@4 K 0w 2 s ot =0 2 2

where Z., s denotes the sequence {z(”)};’o depending on 1, 4.

Next we show .

K ()\q),w) Z
dw

Let Z;, and X¢ 5, be described as in (1.18), and define

x(”) = (Zk, Zk;, oty an X‘P,k‘v Zk‘v Zk‘v o )(n Z 1)7
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with X ¢, being at the nth position. Then ||z(™|| =1 (n > 1), and for n # m

me>_aﬁmuzz@—1 - o7 | o _ 1
—1
> wi S wi > (5w
i=1 i=1
It follows that
o1 (L
(2.5) K(Ap ) > sup inf H (n) _ x(m)‘ = sup <S(k)> = /1
k>1 n#Em k>1 o1 <—S(§k)) Qg o

and we finishes the proof. |

To show the upper bounds of K (A\g ), We cite the index in \g , as in [21]:

26 dy = C,>0: -£>:1.
(2.6) A sup ){ >0 pq><cm 2}

z€S (A

It is easy to see that 1 < dy < 2. For every z € S (\p,,) We have

27) po ( i ) .

Theorem 2.2. If & € A(0), then
(2.8) K (M) < d.

Proof.  Suppose &j to be the arbitrary sequence in Lemma 1.4, we have a
subsequence Z satisfying (1.15)-(1.17). For every pair of k,1 (k > [), we have

) L0

pPd <Z(k)d;/\zu> —7sr1€11r)[ LZ;@ ( 0 )wz}
. Zzgk)_zzgz)

~ Z‘P( 7 )W]
i [0 L0

= sup Z;‘I’< ZdAZ ) Wr(4) +Z(I><

) _ (1)
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By (1.15) and (1.16) we have

<

ell
(xEO) B zZ(l)) [1,0]
ZZ

i zz(k) _ zz(l)
= el LZ;@ (@) Ww(z‘)]
=0 [Z‘b (Eaeri D“’w(z‘)] <
(z’(k) B x20)> [1i0]
i (k)‘ i
en LZZO;LI ® ( dy ) ww(z‘)] < sup [HZO;LI P ( z; )D Ww(i)]
< 2e.

< [
It follows from Lemma 1.2 that

i (k) o (k) )
l zZ:, 0 — 2 2.0 z:. .
’ ’ (d0,t1] (0,41
I, :=su E O — | was) = _— -
2 WEIT)IZ ot ( dy ) (@ = pe ( dy d )

l
—_— 13 - .
= po dy 1> 5 1

Secondly, by (1.17), we have
O]

Zi

sup S| — | wy < H y OOH <e.
mell |:zzzl—:|—1 ( d}\ ) @ :| ( fo+1,
Therefore,

o0 k) _ 0 (k) 0)
I3 := sup Z ) 721 i Wr(i) = Po Fioo) _ Elioo)
ﬂ—eHZ i1+1 d>\ 71'(1) d>\ d>\

Z(k)
< TN I <1—|—5
=S Po dy 1_2 1-

Consequently, we obtain

(k) — ()
Pd <u> <L +I+1s
dx

<2+ 1+ 2¢e;.
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Observing ® € Ay(0), we can see that

L) ()

<1
d>\ <1+e9

for some arbitrary 5 > 0. It follows that

2.9 inf
(2.9) Jnf

20 < g 40 0] <1 i

By the arbitrariness of & we have
(2.10) K()\@M) < (1 —|—€2)d>\.

Thus, (3.8) holds in view of the arbitrariness of . ]

Corollary 2.3. If ® € A3(0), then
1

(2.11) K ()\q>,w)
AP

> '(u)

Where ap w = inf m

u€(0,1/2w1]

Proof.  If u < 51— = ug, then t = &' (2u) < &~ <wi1> = t, which is the

upper bound of every coordinate of arbitrary x € Ay ,. From the definition of ag
we deduce from Lemma 1.3 that

- 1 1
(2.12) pa (e wr) < 5/)@(35) =3
which implies
1
(2.13) dy < —,
P w
whence we finishes the proof. ]

Corollary 2.4. Let ® € Ay(0), Go(u) = f_%(g;)). We have:

(1) If Go(u) is increasing on the interval (0, Q—l(ﬁ)], then
2.14 K(gy) = ——
( ) ( P, ) 7@(0)
where v4(0) := lin% Go(u).
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(2) If Go(u) is decreasing on (0, @‘1(%)], then
1 “1(1/w) _1(1/w1)
(2.15) max{ } —_—

(0) o 1 1/ w1 —|—w2 (1/2w1)

Particularly, if wy = wo, then K (Ap) 1(1/w1

—1(1/2w1)"
Proof.

(1) Observe that s, = a¢(0) under the condition, besides, the limit v4(0)
exists. So (2.14) holds.

1 (1/wn

(2) If Go(u) is decreasing on (0,® (L -)l, then ag = FT(1/20)) while
%’w < %}L@. Note that %’w need not be less than ~4(0) if
wy < W1. [ ]

Corollary 2.5. For any weight sequence w, the Lorentz space A, (p > 1)
have the constants:

1 1
(2.16) K (Apw) = 27, whence P (A,,) = ———.
1+2 »
Proof. In fact, The space )\, ., is generated by the N —function ®(u) = %\u\l’.
The function G (u) = g%((;‘i — 27% is a constant, 50 v (0) = 27 7. =

Example 2.6. For a pair of complementary N —functions

(2.17) M(u) = el —|u| — 1 and N(v) = (1 + |v]) In(1 + |v]) — |v],

since Fis(t) = W s increasing on (0, 00), Gar(u) = 24 js also increasing
M%) M-T1(2u)

n (0, 00). One can simply count out tliHOIFM(t) =2 = Ap(0) = Bps(0), which

implies by (1.5) that v,,(0) = 272, Thus, by Corollary 2.4.1 we have

(2.18) K (Anw) = V2

and hence the packing sphere constants, according to (1.10), is
1

2.19 PAyw)=——.

Meanwhile, Fiy(t) is decreasing on (0, oo) which implies G n(u) is also decreasing
n (0,00). We select a weight sequence w = {1, 4 3 3, -+~ }. In that case,

N
- ~ 1.26320,
N_

—
wWinN| =
~—
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while m = /2 ~ 1.41421 according to (1.5). We estimate by (2.15) that
)

1(3)

3. EsTimaTION OF K <)\%’w>

1 N=Y(
')/N(O) S K ()‘N,w) S

—_

(2.20) 1.41421 ~ ~ 1.48699.

N =

We now estimate the Kottman constant of Orlicz-Lorentz sequence space quipped
with the Orlicz norm, namely, K <)\%’w>. We first give the lower bound.

Theorem 3.7. For any N-function ®, we have

(3.1) K( %’w) > max{; ! }

ap (0) ’ O‘%,w

k
where aq(0) is defined as in (1.2), Denoting S(k) = > wj, then
i=1

2 v = inf
(3.2) Gew T 5 S(2k) g1 (80
Proof. For any given k& > 1, let

1
Zk:(0,0,---,O), Y\I/,k: (1717...71)7

k 1
> w Ut k
i=1

(3.3)

with dim Z, = dim Yy, = k. We first construct a sequence ) = {y(”) o, C
S <)\%’w> , Where

1
y(l) - (Y\I/,17227Z370707"') - 70707 )
Pl <wL> w1
1
y® = (21, Ya 2, 73,0,0,- )
1 1

= 07

y-1 <w1—1kw2> (w1 4+ wg) WL <w1-lkw2> (w1 + wo)

y(n) = (217 v ,Zn—17YlI/,n7 Zn+170707 o )
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Then [|y™]|” =1 for n = 1,2, - (see (1.11)).
Let § > 0 be arbitrary. By the definition of 53 (0), there is a sequence V =

{on}52y With v, \, 0(n — o0) such that g—r 32 > 3y (0) - 6.

Analogous to the way in Theorem 2.1. Let ¢ > 0 be arbitrary. For the sequence

5(1) - (X\I/,17227Z370707 . ) - <\I}_1 <i> 70707 : ) )

1 1
@) = (21, Xy, Z3,0,0,---) = (0,07 ot 00---)
5 ( 1, AW 2, &3,Y, Y, ) ) W1+WQ ) W1+WQ s Uy Uy )

f(n) = (ZL t 'Zn—17 X\I/,nv ZTL+17 07 o )

1 1 1
-1 -1 -1
= 07"'707\P n 7\IJ n 7"'7\IJ n 70707 )
> wi > Wi > wi
i=1 i=1 i=1
i i Nkg—1 ng
find a sequence {n;} C N satisfying > w;/ > w; < ¢, and some v,, € V located
i=1 i=1
i 1 1 : k) _ 1
on the interval T T . Then define n*) = g(u+1),

2 21 wj 2i§1wi
For any pair of k,1 (k > 1), we have

Py <(ﬁ\1/(0) — ) (n(’“) - n”)))

n;+1

DR A (CIORR S P |
i=1 S w;

=1
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n;+ng+2 1
> o (o) 0) v "
+ nk+1 ¢
i=n;+2 Z w;
i=1
nl—f—l _1
v 1
< Z g 7’”) N\ Wi
2vnl) nl+1w~
)
i=1
n;+ng+2 1
(Un,) 1 1
— ) - A
+ Z 2’0” ) nk—f—l Wi
i=n;+2 k Z Wi
i=1
n;+1 ’U ) ni+ng+2 v )
<3 [ m) g1, ]wz—i— 3 [ 2;%) v (20,)]
i=n;+2 Mk
n;+1 ni+ng+2
-1
= Z vnl w; + Z U (U (vp,)) wi
i=n;+2
n;+ng n;+1 ny+ng+2 1
IR S e e gD D
i=n;+1 i=1 22% i=n;+2 22&)2
i=1
1 n;+1 ni+ng+2
- 5 n Z wi + N Z Wi
sz =1 sz‘ i=n;+2
i=1 i=1
ng+1 ni+ng+2 n;+1
. Z w; + Z w; — Z Wi )
= 12 ot
< 1+ i i=nyg i < '
2(1—¢) A1 1—¢
> wi
i=1

It follows that
pu (1= ) (Bu(0)=8) (1 =n") ) < (1=)pw ((Bu(0)=0) (19— ) ) <1.

Now we select a subsequence Z = {z(®)}2° | C I such that z(¥) = ¢+
where {n} is defined as the above succession. From the definition of the Orlicz
norm, we have for [ < k that

" = sup {i (Z(k) —Z(l)>:'C* pw(Q) < 1}

sz) 0
=1
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> i (Z(k) _ zU)): . ((1 — ) (By(0) — ) (n(k) _ nU))): s
i=1

—(1-¢ oS 20 L O) () _ ),
(1 - £)(Bu(0) 5)i_zl< ). (0™ =)

n;+1 ny+ng+2 1

— (- (B0) ) | Y it Y

=3 =23 gy
i=1 i=1

1 n;+1 ny+ng+2

— (- (Be0) —0) | Yt Y w,

3w 0=l 3w =t
L i=1 i=1
ng+1 ni+ng+2 n;+1
Z w; + Z Wi — Z Wi
1 B i=1 i=ng+2 i=1
= (1-¢)(Bu(0) = 0) |1+ e
wi
L i=1
> (1 —¢)(Bu(0) —90) (2 —¢).
By the arbitrariness of § and ¢ we obtain
(3.4) K( %w) > sup inf Hz(k) — z(Z)HO > 20¢(0).
' Z.5 k#l

where Z. ; denotes the sequence {z(”)}fo depending on &,4. In view of the first
author’s equality (1.4) we obtain

1

(35) K(\w) 2 ooy

Finally, for any £ > 1, define

x(n) = (Zk‘vzk‘v 7Z/€7Y\I/,k‘72k‘7 Zk‘v) (nZ 1)

where Z;, and Yy are defined in (3.3), Yy, being at the nth position. Then
Hx(”)HO =1(n>1) and for n #m ,
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ser ¥ (s8m)
S0 et ()

It follows that

\I/_l 1
o 2 I NIGIAY 1
K(ha) 2 sup it [} 2" = sup S <S(fk)> -
and we finishes the proof. |

To discuss the upper bound, we revise Wang’s work (see [14]) to the space Ag, ..
For any fixed = € A  with ||z[|° = 1 and any given k£ > 1, the function of d,
pa (E2), is continuous and strictly decreasing on [1, co) if pe(kx) < oco. The fact
that pg(kz) > ||kz||° —1 =k — 1 and dlim po (E2) = 0 implies that there exists

— 00

unique d,x > 1 such that pg <d’“—”fk> = k=1, Denote d, = /inf1 dy k. Since there
@, >
exists &’ > 1 such that 1 = [|z(|° = H(1 + pa(K'z)), i.e., po(Kz) = k' — 1 and
hence po <’“;—J*’) < ¥=1 we have d, » < 2 which implies d,, < 2. If pg(kz) = oo
and d, i exists, then d, , > 1 since pg(kx) > ||kz||°—1 = k—1 always holds. For
the final case that pg(kx) = oo and d, ;, does not exist, we leave d, ;. a vacancy.
Define

kx k—1
(3.6) dy = sup d, = sup inf {dm,k D po < ) = _}
’ fl=[lo=1 [[]jo=1+>1 dz 2

Obviously 1 < d{ < 2. It should be observed that the definition of dS appears
the same as Wang’s [14], however, here it is independent of the A,-condition.

Theorem 3.8. If & € Ay(0), we have
(3.7) K (Aopw) < dS.

Proof. Let Xo = {2}, c S <)\%,w> be arbitrary. For every £ > 0,
infd oy, =d @ <d$(n=1,2,---),thereisk, 1suchthatd .
inf dyony g, = dyo < d3 (n ) (@m) > 2k, <
d{+e(n=12,---).

We first assume that the set {k(mm))} ) is unbounded. Select a subsequence

{y(”)}zo:1 such that k;, := k(, ), — 00 (n — oc). We show dS +& > 2. Suppose
the contrary, i.e., d§ +¢ < 2, then

fn—1 Feny ™ N feny ™ L2 keny™
2 P\ Q) T\ BT ) T T2

m||°
> 2 kny 4 = 2 k—n—l '
d§ +e¢ d§ +¢e \ 2

2
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It follows that
2 k,—2 2

> o o
d +ek, —1 d§ +¢
a contradiction. Thus,

1 > 1(n — o0),

(3.8) inf {Hx(n) _ p(m)

n#Em

O}§2§d§+g.

o0
We then assume that {k(mm))} ) is bounded. There exists a subsequence, still
n—

denoted by {k(m(m)}:;l, such that A, := {k(m(m)}:;l — hg > 1 (n — o0). For

every ¢ > 0, By Lemma 1.4, there is a subsequence Z := {z("} ” C X, and a
sequence of natural numbers ig < i1 < ig < - < i < --- < i < --- satisfying
the conditions (1.15)-(1.17) in the Orlicz norm. Note that for a pair of sufficiently
large number &, (k> 1), one has

(3.9) ‘hk—ho‘ <eg, ‘hl—ho‘ <eE.

O(z;)w1 < pa(z) < |z]|° = 1 implies that z; < &~ (5) = ug (i > 1) for any
resS (A%,w) Considering ® € A,(0), there exists K > 1 such that

(3.10) ®(2hou) < K®(u)

for u € (0, up]. Let us observe the inequality

LB L0 1 ho (2 — 20)
——— < [1+0re
d§ +¢ ho d§ +e¢
[ (k) O]
1 > ho z7r(z) o z7r(z)
=—<1+su d wj
hO { weg Zzl ( dg\ + (3
1 [ o ho z(k) — z(l)
=—<c1+4+sup Z o —— 1 Wr(3) .
ho ﬂ—eH i— dg\ + &
where
00 hg sz) — zfl)
su | ——— | wais
WEE ZZ; df\ +e @

) _ 0 ) _ 0

o ho i i “ Z i
= su S| —— | wey) + d | hg——— (i
WEE ZZ; d§\+€ (1) Z 0 d§\+€ Wr (i)

i=ip+1
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0 ho zz(k) — zz(l)
20 S +¢ i |

1=il+1

By (3.10) and (1.15) we have

i zz(k) . zz(l)

io ho
J1:=su | ——— | wais
! weg ZZ; d§\+5 @

< E o (L® 0N, | <k
_frlelg _ZZ; (‘zz z; D Wr@) | < '

o
< 2Ke.

(z’(k) B zfl)) [1,0]

Secondly, by (1.16) and (3.9) we have

i ho Zz(k) i
o { 2 ( dgﬂ‘) w] <] 3 s (49]) o)

i=ig+1 i=ig+1
<K |8 < 2k

(G0,i1]

) 0 )

i ((hl ~ ho)z! i

! O]

sup O —F—— | wr)| <sup ed ( |z wrei | < €.
mell |:i%1 ( d>\ +e€ (4) rell z‘z‘zo;i—l ( ) (@)

It follows that (by means of Lemma 1.2 twice),

0 zz(k) . zz(l)

1] h
J2 .= Sup d 0 - Wr(i
Wenizzo;kl ( d>\ +e€ ) ()

i hy zfl) + ‘(hz — ho)zfl) + hg zz(k)‘
< sup s Wr(i
mell Z d?\ +e @

i=ig+1
hyz® hy—1
< 261 = 2
_Pq><d?\+€ + 2 5 + 2e1
ho—l hl—ho ho—l 9
p— 2 - 2 .
5 + 5 +2e1 < 5 +2—|— €1

o
< Ke.

00 ho | 2O
sup E P 0% wonl <K Hz(l)
well iy +1 dg\ +e (i) | = (ip+1,00)
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It follows also from Lemma 1.2 that

oo ho sz) — zfl) hoz(@
J3 1= sup E | ———— | wrs) = Po (i00) _
mell , = d§ +¢ d§ +¢

Consequently, we have

L(8) _ L)

o

1
< — [+ 1+ J2+ Js)

g +e¢ ho
1 ho —1 ho—1
< 142Ke+ 1o + 2 p gy
ho 2
=1+ez
where e — 0 as e — 0. Thus, we deduce that
(3.11) Hz(k) - z(”HO < (S +¢) (14 en).

By the arbitrariness of A, and ¢ we conclude that
(3.12) K (\$,) < d3.
The proof is finished.

Corollary 3.9. Let ® € Ay(0). Then

1
(3.13) K(l3,) < —
g
where
O 1(u) 1
. f—infd—— . < (b —
(3.14) ap = inf { 5 (2u) 0<u< S (by 1)} ,
with
* Sw(s) —1 1
. = — <v — .
(3.15) by SUP{\I;(S) 0<s< <w1>}
Proof. Define Qo = sup {k;>1:k, € K(z)} and
[[=[lo=1
_ dL(u) 1
. * =] _ < - - .
(3.16) agp = inf { 51 (2u) O<u< o (Qa 1)}
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We first assume that Q¢ < oo.
Let u; = $®(ky|z;|) for all z; # 0. Then @ (ky|xs|)wr < po(kex) = ky — 1 <
Qa — 1. It follows from Lemma 1.3 that

po (Cpkyx —supsz gk |Ti]) Wriy
WEHZ 1

< supzcb o (o0 mo) kol | o

7r€H

1
= sup 5 Z‘I’ (ka|zi]) wr(sy = = po(kez) = (km—l).
S

Therefore, we deduce from Theorem 3.2 that

kyx ky —1 1
317)  K(13,) <dS < sup infddyg, : ot ) e <.
(3.17) (g ) <di < |\a;|\<£1 n { ke 1 PD (dmc) 5 } T

The estimation (3.17) is not practical for usage unless we estimate the upper
bound of Q3. We now show

(3.18) Qo < b

so that (3.13) holds.
For a sufficiently small £ > 0, by the definition in Lemma 1.1.3,

U (o((ky" - Jwr < Z‘If (B =e)lz(@) wi <1 (i 2 1).

So (k3 — &)[(i)] < v (W(2

)
(3.19) a = inf {M <t < [qf—l (i” } ,

then (see [17])

forany x = {z;};2, € S (A% w) Define

(3.20) — 4+ —=1

Moreover, by the definition of ag,

ag® (k" — &)|z()]] < (k" — )|z (D)@ (k" —&)|z(D)]], (@ =1).

It follows that
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1> pu (¢ [(k;" — = frlelg Z UA{ (k" — )|z ()]} wra)
= Sugz{ (k2" — &)l ()|e (k" = o)z(D)]] — @ [(k;" = &) |z()[]} wr(s)
mell, 1
> (ag — ) sup Y @ [(k}" = &)[a(i)|]waii
mell ;7

> (ap — 1) [H(kZZ’:— e)zl|” = 1] = (ap — 1) [(k" —¢) =1,

*

k;*s +€—b\p+€

ap — 1
which proves (3.18) since ¢ is arbitrary.
If Qe = oo, then & & <72(0) (see Theorem 1.35(2) in [2]), which implies

0 _1 X gt =0 = lgj _ 2w 1
ag = 3 and by, = oc. Therefore, af, = ag = ag = 3 since Ga(u) = F=rr5y = 2-

It follows that

1 1
K3 ,)<2= = —.
(5052= ==
The proof is completed. ]
Corollary 3.10. Let ® € Ay(0), up = (b* 1), then
(1) If Go(t) is increasing on (0, ug], then
1
3.21 K()\,) =
(3:21) () Yo (0)

where v4(0) := lin% Go(u).

(2) If Go(u) is decreasing on (0, ug], then

-l (- -1

1 w1 + we <w1+w2> d (2’LLO)

3.22 , <K(\,) < ——2.

(3.22) max {,yq)(o) w1 y-1 <L> } (\5.) o1 (ug)
Proof. It directly results from (3.1)(3.2) and (3.13). |

Example 3.11. For the pair of complementary N —functions
M(u) = e —|u| — 1 and N(v) = (1 + |v]) In(1 + |v]) — |v]

as described in Example 2.6, we have shown that F)/(¢) is increasing on (0, +00)
while Fy(t) is decreasing on (0, +00), and that v (0) = ynv(0) = 272, Further-
more, for the weight sequence w = {1, 1 -}, it is not difficult to count out
that

72737"
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—1 1
w1 -l—ng <w1+w2> 3M_1(

w1 M-1 <L> - 2M—1(

w1

~ 1.26840 < V2 = ,
) Y~ (0)

— |
~—

and ug ~ 0.64619 ( see Corollary 3.4). Therefore, we obtain:

1
3.23 K ()¢ - _ - \/5;
(3.23) (Niro) v1(0)
1 N~1(2 x 0.64619)
3.24 1.41421 ~ < K ()% < ~ 1.49434.
( ) v (0) — ( N’W) - N—1(0.64619)
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