# COEFFICIENT ESTIMATES FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS OF COMPLEX ORDER 

Qing-Hua Xu, Ying-Chun Gui and H. M. Srivastava*

Abstract. In this paper, we introduce and investigate each of the following subclasses:
$\mathcal{S}_{g}(\lambda, \gamma)$ and $\mathcal{K}_{g}(\lambda, \gamma, m ; u) \quad(0 \leqq \lambda \leqq 1 ; u \in \mathbb{R} \backslash(-\infty,-1] ; m \in \mathbb{N} \backslash\{1\})$
of analytic functions of complex order $\gamma \in \mathbb{C} \backslash\{0\}, g: \mathbb{U} \rightarrow \mathbb{C}$ being some suitably constrained convex function in the open unit disk $\mathbb{U}$. We obtain coefficient bounds and coefficient estimates involving the Taylor-Maclaurin coefficients of the function $f(z)$ when $f(z)$ is in the class $\mathcal{S}_{g}(\lambda, \gamma)$ or in the class $\mathcal{K}_{g}(\lambda, \gamma, m ; u)$. The various results, which are presented in this paper, would generalize and improve those in related works of several earlier authors.

## 1. Introduction, Definitions and Preliminaries

Let $\mathbb{C}$ be the set of complex numbers and

$$
\mathbb{N}=\{1,2,3, \cdots\}=\mathbb{N}_{0} \backslash\{0\}
$$

be the set of positive integers. We also let $\mathcal{A}$ denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

A function $f(z) \in \mathcal{A}$ is said to belong to the class $\mathcal{S}^{*}(\gamma)$ of starlike functions of complex order $\gamma$ if it satisfies the following inequality:

[^0]\[

$$
\begin{equation*}
\Re\left(1+\frac{1}{\gamma}\left[\frac{z f^{\prime}(z)}{f(z)}-1\right]\right)>0 \quad\left(z \in \mathbb{U} ; \gamma \in \mathbb{C}^{*}:=\mathbb{C} \backslash\{0\}\right) \tag{2}
\end{equation*}
$$

\]

Furthermore, a function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{C}(\gamma)$ of convex functions of complex order $\gamma$ if it satisfies the following inequality:

$$
\begin{equation*}
\Re\left(1+\frac{1}{\gamma}\left[\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]\right)>0 \quad\left(z \in \mathbb{U} ; \gamma \in \mathbb{C}^{*}\right) \tag{3}
\end{equation*}
$$

The function classes $\mathcal{S}^{*}(\gamma)$ and $\mathcal{C}(\gamma)$ were investigated earlier by Nasr and Aouf [14] (see also [15]) and Wiatrowski [20], respectively, and (more recently) by Altintaş et al. ([1] to [10]), Deng [11], Murugusundaramoorthy and Srivastava [13], Srivastava et al. [19], and others (see, for example, [12] and [18]).

For two functions $f$ and $g$, analytic in $\mathbb{U}$, we say that $f(z)$ is subordinate to $g(z)$ in $\mathbb{U}$ and we write $f \prec g$ or, more precisely,

$$
f(z) \prec g(z) \quad(z \in \mathbb{U})
$$

if there exists a Schwarz function $\mathfrak{w}(z)$, analytic in $\mathbb{U}$ with

$$
\mathfrak{w}(0)=0 \quad \text { and } \quad|\mathfrak{w}(z)|<1 \quad(z \in \mathbb{U})
$$

such that

$$
f(z)=g(\mathfrak{w}(z)) \quad(z \in \mathbb{U}) .
$$

In particular, if the function $g$ is univalent in $\mathbb{U}$, the above subordination is equivalent to the following relationships:

$$
f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

Recently, Srivastava et al. [17] introduced the subclasses $\mathcal{S}(\lambda, \gamma, A, B)$ and $\mathcal{K}(\lambda, \gamma, A, B, m ; u)$ of analytic functions of complex order $\gamma \in \mathbb{C}^{*}$ by using the above subordination principle between analytic functions, and obtained the coefficient bounds for the Taylor-Maclaurin coefficients for functions in each of these new sublasses $\mathcal{S}(\lambda, \gamma, A, B)$ and $\mathcal{K}(\lambda, \gamma, A, B, m ; u)$ of complex order $\gamma \in \mathbb{C}^{*}$, which are given by Definitions 1 and 2 below.

Definition 1. (see [17]). Let $\mathcal{S}(\lambda, \gamma, A, B)$ denote the class of functions given by

$$
\mathcal{S}(\lambda, \gamma, A, B)=\left\{f: f \in \mathcal{A} \text { and } 1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}-1\right)\right.
$$

$$
\left.\begin{array}{rl} 
& \prec \frac{1+A z}{1+B z}(z \in \mathbb{U}) \tag{4}
\end{array}\right\}
$$

Definition 2. (see [17]). A function $f(z) \in \mathcal{A}$ is said to be in the class $\mathcal{K}(\lambda, \gamma, A, B, m ; u)$ if it satisfies the following nonhomegenous Cauchy-Euler type differential equation of order $m$ :

$$
\begin{align*}
& z^{m} \frac{d^{m} w}{d z^{m}}+\binom{m}{1}(u+m-1) z^{m-1} \frac{d^{m-1} w}{d z^{m-1}}+\cdots+\binom{m}{m} w \prod_{j=0}^{m-1}(u+j) \\
& =g(z) \prod_{j=0}^{m-1}(u+j+1)  \tag{5}\\
& (w=f(z) \in \mathcal{A} ; g(z) \in \mathcal{S}(\lambda, \gamma, A, B) ; \\
& \left.u \in \mathbb{R} \backslash(-\infty,-1] ; m \in \mathbb{N}^{*}:=\mathbb{N} \backslash\{1\}=\{2,3,4, \cdots\}\right) .
\end{align*}
$$

Making use of Definitions 1 and 2, Srivastava et al. [17] proved the following coefficient bounds for the Taylor-Maclaurin coefficients for functions in the sublasses $\mathcal{S}(\lambda, \gamma, A, B)$ and $\mathcal{K}(\lambda, \gamma, A, B, m ; u)$ of analytic functions of complex order $\gamma \in \mathbb{C}^{*}$.

Theorem 1. (see [17]). Let the function $f(z)$ be defined by (1). If $f \in$ $\mathcal{S}(\lambda, \gamma, A, B)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leqq \frac{\prod_{k=0}^{n-2}\left(k+\frac{2|\gamma|(A-B)}{1-B}\right)}{(n-1)![1+\lambda(n-1)]} \quad\left(n \in \mathbb{N}^{*}\right) \tag{6}
\end{equation*}
$$

Theorem 2. (see [17]). Let the function $f(z)$ be defined by (1). If $f \in$ $\mathcal{K}(\lambda, \gamma, A, B, m ; u)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leqq \frac{\prod_{k=0}^{n-2}\left(k+\frac{2|\gamma|(A-B)}{1-B}\right) \prod_{j=0}^{m-2}(u+j+1)}{(n-1)![1+\lambda(n-1)] \prod_{j=0}^{m-1}(u+j+n)} \quad\left(m, n \in \mathbb{N}^{*}\right) \tag{7}
\end{equation*}
$$

Here, in our present sequel to some of the aforecited works (especially [17]), we first introduce the following subclasses of analytic functions of complex order $\gamma \in \mathbb{C}^{*}$.

Definition 3. Let $g: \mathbb{U} \rightarrow \mathbb{C}$ be a convex function such that

$$
g(0)=1 \quad \text { and } \quad \Re[g(z)]>0 \quad(z \in \mathbb{U}) .
$$

We denote by $\mathcal{S}_{g}(\lambda, \gamma)$ the class of functions given by

$$
\begin{align*}
& \mathcal{S}_{g}(\lambda, \gamma) \\
& =\left\{f: f \in \mathcal{A} \text { and } 1+\frac{1}{\gamma}\left(\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}-1\right) \in g(\mathbb{U})(z \in \mathbb{U})\right\}  \tag{8}\\
& \left(0 \leqq \lambda \leqq 1 ; \gamma \in \mathbb{C}^{*}\right) .
\end{align*}
$$

Definition 4. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{K}_{g}(\lambda, \gamma, m ; u)$ if it satisfies the following nonhomogenous Cauchy-Euler differential equation:

$$
\begin{gather*}
z^{m} \frac{d^{m} w}{d z^{m}}+\binom{m}{1}(u+m-1) z^{m-1} \frac{d^{m-1} w}{d z^{m-1}}+\cdots+\binom{m}{m} w \prod_{j=0}^{m-1}(u+j) \\
=h(z) \prod_{j=0}^{m-1}(u+j+1)  \tag{9}\\
\left(w=f(z) \in \mathcal{A} ; h(z) \in \mathcal{S}_{g}(\lambda, \gamma) ; u \in \mathbb{R} \backslash(-\infty,-1] ; m \in \mathbb{N}^{*}\right)
\end{gather*}
$$

Remark 1. There are many choices of the function $g(z)$ which would provide interesting subclasses of analytic functions of complex order $\gamma \in \mathbb{C}^{*}$. In particular, if we let

$$
\begin{equation*}
g(z)=\frac{1+A z}{1+B z} \quad(-1 \leqq B<A \leqq 1 ; z \in \mathbb{U}) \tag{10}
\end{equation*}
$$

it is fairly easy to verify that $g(z)$ is a convex function in $\mathbb{U}$ and satisfies the hypotheses of Definition 3. Clearly, therefore, the function class $\mathcal{S}_{g}(\lambda, \gamma)$, with the function $g(z)$ given by (10), coincides with the function class $\mathcal{S}(\lambda, \gamma, A, B)$ given by Definition 1.

Remark 2. In view of Remark 1, if the function $g(z)$ is given by (10), it is easily observed that the function classes

$$
\mathcal{S}_{g}(\lambda, \gamma) \quad \text { and } \quad \mathcal{K}_{g}(\lambda, \gamma, m ; u)
$$

reduce to the aforementioned function classes

$$
\mathcal{S}(\lambda, \gamma, A, B) \quad \text { and } \quad \mathcal{K}(\lambda, \gamma, A, B, m ; u)
$$

respectively (see Definitions 1 and 2).
In this paper, by using the subordination principle between analytic functions, we obtain coefficient bounds for the Taylor-Maclaurin coefficients for functions in the substantially more general function classes

$$
\mathcal{S}_{g}(\lambda, \gamma) \quad \text { and } \quad \mathcal{K}_{g}(\lambda, \gamma, m ; u)
$$

of analytic functions of complex order $\gamma \in \mathbb{C}^{*}$. The various results presented here would generalize and improve the corresponding results obtained by (for example) Srivastava et al. [17].

## 2. Main Results and Their Derivations

In order to prove our main results, we will need the following lemma due to Rogosinski [16].

Lemma (see [16]). Let the function $\mathfrak{g}(z)$ given by

$$
\mathfrak{g}(z)=\sum_{k=1}^{\infty} \mathfrak{b}_{k} z^{k} \quad(z \in \mathbb{U})
$$

be convex in $\mathbb{U}$. Also let the function $\mathfrak{f}(z)$ given by

$$
\mathfrak{f}(z)=\sum_{k=1}^{\infty} \mathfrak{a}_{k} z^{k} \quad(z \in \mathbb{U})
$$

be holomorphic in $\mathbb{U}$. If

$$
\mathfrak{f}(z) \prec \mathfrak{g}(z) \quad(z \in \mathbb{U}),
$$

then

$$
\begin{equation*}
\left|\mathfrak{a}_{k}\right| \leqq\left|\mathfrak{b}_{1}\right| \quad(k \in \mathbb{N}) . \tag{11}
\end{equation*}
$$

Our first main result is now stated as Theorem 3 below.
Theorem 3. Let the function $f(z)$ be defined by (1). If $f \in \mathcal{S}_{g}(\lambda, \gamma)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leqq \frac{\prod_{k=0}^{n-2}\left(k+\left|g^{\prime}(0)\right| \cdot|\gamma|\right)}{(n-1)![1+\lambda(n-1)]} \quad\left(n \in \mathbb{N}^{*}\right) \tag{12}
\end{equation*}
$$

Proof. Let the function $\mathcal{F}(z)$ be defined by

$$
\mathcal{F}(z)=\lambda z f^{\prime}(z)+(1-\lambda) f(z) \quad(z \in \mathbb{U})
$$

Then, clearly, $\mathcal{F}(z)$ is an analytic function in $\mathbb{U}, \mathcal{F}(0)=1$, and a simple computation shows that the function $\mathcal{F}(z)$ has the following Taylor-Maclaurin series expansion:

$$
\begin{equation*}
\mathcal{F}(z)=z+\sum_{j=2}^{\infty} A_{j} z^{j} \quad(z \in \mathbb{U}), \tag{13}
\end{equation*}
$$

where, for convenience,

$$
\begin{equation*}
A_{j}=(1-\lambda+j \lambda) a_{j} \quad\left(j \in \mathbb{N}^{*}\right) \tag{14}
\end{equation*}
$$

Now, from Definition 3, we have

$$
1+\frac{1}{\lambda}\left(\frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)}-1\right) \in g(\mathbb{U}) .
$$

Also, by setting

$$
\begin{equation*}
p(z)=1+\frac{1}{\lambda}\left(\frac{z \mathcal{F}^{\prime}(z)}{\mathcal{F}(z)}-1\right), \tag{15}
\end{equation*}
$$

we deduce that

$$
p(0)=g(0)=1 \quad \text { and } \quad p(z) \in g(\mathbb{U}) \quad(z \in \mathbb{U})
$$

Therefore, we have

$$
p(z) \prec g(z) \quad(z \in \mathbb{U})
$$

Thus, according to the above Lemma based upon the principle of subordination between analytic functions, we obtain

$$
\begin{equation*}
\left|\frac{p^{(m)}(0)}{m!}\right| \leqq\left|g^{\prime}(0)\right| \quad(m \in \mathbb{N}) . \tag{16}
\end{equation*}
$$

On the other hand, we find from (15) that

$$
\begin{equation*}
z \mathcal{F}^{\prime}(z)=(1+\lambda[p(z)-1]) \mathcal{F}(z) \quad(z \in \mathbb{U}) \tag{17}
\end{equation*}
$$

Further, we let

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots \quad(z \in \mathbb{U}) \tag{18}
\end{equation*}
$$

Since $A_{1}=1$, in view of (13), (17) and (18), we deduce that

$$
\begin{equation*}
(j-1) A_{j}=\left(p_{1} A_{j-1}+p_{2} A_{j-2}+\cdots+p_{j-1}\right) \quad\left(j \in \mathbb{N}^{*}\right) \tag{19}
\end{equation*}
$$

By combining (16) and (19), for $j=2,3,4$, we obtain

$$
\begin{gathered}
\left|A_{2}\right| \leqq\left|g^{\prime}(0)\right||\lambda| \\
\left|A_{3}\right| \leqq \frac{\left|g^{\prime}(0)\right| \cdot|\lambda|\left(1+\left|g^{\prime}(0)\right| \cdot|\lambda|\right)}{2!}
\end{gathered}
$$

and

$$
\left|A_{4}\right| \leqq \frac{\left|g^{\prime}(0)\right| \cdot|\lambda|\left(1+\left|g^{\prime}(0)\right| \cdot|\lambda|\right)\left(2+\left|g^{\prime}(0)\right| \cdot|\lambda|\right)}{3!}
$$

respectively. By appealing to the principle of mathematical induction, we thus obtain

$$
\left|A_{n}\right| \leqq \frac{\prod_{k=0}^{n-2}\left(k+\left|g^{\prime}(0)\right| \cdot|\lambda|\right)}{(n-1)!} \quad\left(n \in \mathbb{N}^{*}\right)
$$

We now easily find from (14) that

$$
\left|a_{n}\right| \leqq \frac{\prod_{k=0}^{n-2}\left(k+\left|g^{\prime}(0)\right| \cdot|\lambda|\right)}{(n-1)![1+\lambda(n-1)]} \quad\left(n \in \mathbb{N}^{*}\right)
$$

as asserted by Theorem 3. This evidently completes the proof of Theorem 3.
Theorem 4. Let the function $f(z) \in \mathcal{A}$ be defined by (1). If $f \in \mathcal{K}_{g}(\lambda, \gamma, m ; u)$, then

$$
\begin{gather*}
\left|a_{n}\right| \leqq \frac{\prod_{k=0}^{n-2}\left(k+\left|g^{\prime}(0)\right| \cdot|\lambda|\right) \prod_{j=0}^{m-2}(u+j+1)}{(n-1)![1+\lambda(n-1)] \prod_{j=0}^{m-1}(u+j+n)} \quad\left(m, n \in \mathbb{N}^{*}\right)  \tag{20}\\
\left(0 \leqq \lambda \leqq 1 ; \gamma \in \mathbb{C}^{*} ; u \in \mathbb{R} \backslash(-\infty,-1]\right) .
\end{gather*}
$$

Proof. Let the function $f(z) \in \mathcal{A}$ be given by (1). Also let

$$
\begin{equation*}
h(z)=z+\sum_{k=2}^{\infty} h_{k} z^{k} \in \mathcal{S}_{g}(\lambda, \gamma) \tag{21}
\end{equation*}
$$

Hence, from (9), we deduce that
(22) $a_{n}=\left(\frac{\prod_{j=0}^{m-1}(u+j+1)}{\prod_{j=0}^{m-1}(u+j+n)}\right) h_{n} \quad\left(n \in \mathbb{N}^{*} ; u \in \mathbb{R} \backslash(-\infty,-1]\right)$.

Using Theorem 3 in conjunction with (22), we arrive at the assertion (20) of Theorem 4. The proof of Theorem 4 is thus completed.

## 3. Corollaries and Consequences

In view of Remarks 1 and 2, if we let the function $g(z)$ in Theorems 3 and 4 be given by (10), we can readily deduce the following Corollaries 1 and 2 , respectively, which we choose to merely state here without proofs.

Corollary 1. Let the function $f \in \mathcal{A}$ be defined by (1). If $f \in \mathcal{S}(\lambda, \gamma, A, B)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leqq \frac{\prod_{k=0}^{n-2}(k+|\gamma|(A-B))}{(n-1)![1+\lambda(n-1)]} \quad\left(n \in \mathbb{N}^{*}\right) \tag{23}
\end{equation*}
$$

Corollary 2. Let the function $f \in \mathcal{A}$ be defined by (1). If $f \in \mathcal{K}(\lambda, \gamma, A, B, m ; u)$, then

$$
\begin{gather*}
\left|a_{n}\right| \leqq \frac{\prod_{k=0}^{n-2}(k+|\lambda|(A-B)) \prod_{j=0}^{m-2}(u+j+1)}{(n-1)![1+\lambda(n-1)] \prod_{j=0}^{m-1}(u+j+n)} \quad\left(m, n \in \mathbb{N}^{*}\right)  \tag{24}\\
\quad\left(0 \leqq \lambda \leqq 1 ; \gamma \in \mathbb{C}^{*} ; u \in \mathbb{R} \backslash(-\infty,-1]\right) .
\end{gather*}
$$

Remark 3. It is easy to see that

$$
\begin{aligned}
& (k+|\gamma|(A-B)) \leqq\left(k+\frac{2|\gamma|(A-B)}{1-B}\right) \\
& \left(k \in \mathbb{N}_{0} ;-1 \leqq B<A \leqq 1 ; \gamma \in \mathbb{C}^{*}\right)
\end{aligned}
$$

which, in conjunction with Corollaries 1 and 2, would obviously yield significant improvements over Theorems 1 and 2 (see also the earlier work by Srivastava et al. [17] for several further corollaries and consequences Theorems 1 and 2).

## Acknowledgments

This work was supported by the National Natural Science Foundation of the People's Republic of China (Grant No. 11061015), the Jiangxi Provincial Natural Science Foundation of the People's Republic of China (Grant No. 2010GZS0096), and the Natural Science Foundation of the Department of Education of Jiangxi Province of the People's Republic of China (Grant No. GJJ 09149).

## References

1. O. Altıntaş, Neighborhoods of certain $p$-valently analytic functions with negative coefficients, Appl. Math. Comput., 187 (2007), 47-53.
2. O. Altntaş, Certain applications of subordination associated with neighborhoods, Hacettepe J. Math. Statist., 39 (2010), 527-534.
3. O. Altntaş, H. Irmak, S. Owa and H. M. Srivastava, Coefficients bounds for some families of starlike and convex functions with complex order, Appl. Math. Lett., 20 (2007), 1218-1222.
4. O. Altntaş, H. Irmak and H. M. Srivastava, Fractional calculus and certain starlike functions with negative coefficients, Comput. Math. Appl., 30(2) (1995), 9-15.
5. O. Altntaş and Ö. Özkan, Starlike, convex and close-to-convex functions of complex order, Hacettepe Bull. Natur. Sci. Engrg. Ser. B, 28 (1991), 37-46.
6. O. Altntaş and Ö. Özkan, On the classes of starlike and convex functions of complex order, Hacettepe Bull. Natur. Sci. Engrg. Ser. B, 30 (2001), 63-68.
7. O. Altntaş, Ö. Özkan and H. M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett., 13(3) (1995), 63-67.
8. O. Altntaş, Ö. Özkan and H. M. Srivastava, Majorization by starlike functions of complex order, Complex Variables Theory Appl., 46 (2001), 207-218.
9. O. Altntaş, Ö. Özkan and H. M. Srivastava, Neighborhoods of a certain family of multivalent functions with negative coefficient, Comput. Math. Appl., 47 (2004), 1667-1672.
10. O. Altntaş and H. M. Srivastava, Some majorization problems associated with $p$-valently starlike and convex functions of complex order, East Asian Math. J., 17 (2001), 175-218.
11. Q. Deng, Certain subclass of analytic functions with complex order, Appl. Math. Comput., 208 (2009), 359-362.
12. P. L. Duren, Univalent Functions, A Series of Comprehensive Studies in Mathematics, Vol. 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
13. G. Murugusundaramoorthy and H. M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, J. Inequal. Pure Appl. Math., 5(2) (2004), Article 24, 1-8 (electronic).
14. M. A. Nasr and M. K. Aouf, Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. Sect. A, 12 (1983), 153-159.
15. M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math., 25 (1985), 1-12.
16. W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. (Ser. 2), 48 (1943), 48-82.
17. H. M. Srivastava, O. Altntaş and S. Krc Serenbay, Coefficient bounds for certain subclasses of starlike functions of complex order, Appl. Math. Lett., 24 (2011), 1359-1363.
18. H. M. Srivastava and S. Owa (Eds), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
19. H. M. Srivastava, Q.-H. Xu and G.-P. Wu, Coefficient estimates for certain subclasses of spiral-like functions of complex order, Appl. Math. Lett., 23 (2010), 763-768.
20. P. Wiatrowski, On the coefficients of some family of holomorphic functions, Zeszyty Nauk. Uniw. Lodz Nauk. Mat.-Przyrod. (Ser. 2), 39 (1970), 75-85.

Qing-Hua Xu and Ying-Chun Gui
College of Mathematics and Information Science
Jiangxi Normal University
Nanchang 330022
People's Republic of China
E-mail: xuqh@mail.ustc.edu.cn guiycsd@yahoo.com.cn

## H. M. Srivastava

Department of Mathematics and Statistics
University of Victoria
Victoria, British Columbia V8W 3R4
Canada
E-mail: harimsri@math.uvic.ca


[^0]:    Received April 9, 2011, accepted May 10, 2011.
    Communicated by Jen-Chih Yao.
    2010 Mathematics Subject Classification: Primary 30C45; Secondary 34-99.
    Key words and phrases: Coefficient bounds, Analytic functions of complex order, Starlike and convex functions of complex order, Cauchy-Euler differential equations, Non-homogenous differential equations, Principle of subordination between analytic functions.
    *Corresponding Author.

