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COEFFICIENT ESTIMATES FOR CERTAIN SUBCLASSES OF
ANALYTIC FUNCTIONS OF COMPLEX ORDER

Qing-Hua Xu, Ying-Chun Gui and H. M. Srivastava*

Abstract. In this paper, we introduce and investigate each of the following
subclasses:

Sg(λ, γ) and Kg(λ, γ, m; u)
(
0�λ�1; u∈R\ (−∞,−1]; m ∈ N \ {1}

)
of analytic functions of complex order γ ∈ C \ {0}, g : U → C being some
suitably constrained convex function in the open unit disk U. We obtain
coefficient bounds and coefficient estimates involving the Taylor-Maclaurin
coefficients of the function f(z) when f(z) is in the class Sg(λ, γ) or in the
class Kg(λ, γ, m; u). The various results, which are presented in this paper,
would generalize and improve those in related works of several earlier authors.

1. INTRODUCTION, DEFINITIONS AND PRELIMINARIES

Let C be the set of complex numbers and

N = {1, 2, 3, · · ·} = N0 \ {0}
be the set of positive integers. We also let A denote the class of functions of the
form:

f(z) = z +
∞∑

n=2

anzn,(1)

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1}.
A function f(z) ∈ A is said to belong to the class S ∗(γ) of starlike functions

of complex order γ if it satisfies the following inequality:
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(2) �
(

1 +
1
γ

[
zf ′(z)
f(z)

− 1
])

> 0 (z ∈ U; γ ∈ C
∗ := C \ {0}).

Furthermore, a function f(z) ∈ A is said to be in the class C(γ) of convex functions
of complex order γ if it satisfies the following inequality:

(3) �
(

1 +
1
γ

[
zf ′′(z)
f ′(z)

])
> 0 (z ∈ U; γ ∈ C

∗).

The function classes S∗(γ) and C(γ) were investigated earlier by Nasr and Aouf [14]
(see also [15]) and Wiatrowski [20], respectively, and (more recently) by Altintaş et
al. ([1] to [10]), Deng [11], Murugusundaramoorthy and Srivastava [13], Srivastava
et al. [19], and others (see, for example, [12] and [18]).

For two functions f and g, analytic in U, we say that f(z) is subordinate to
g(z) in U and we write f ≺ g or, more precisely,

f(z) ≺ g(z) (z ∈ U)

if there exists a Schwarz function w(z), analytic in U with

w(0) = 0 and |w(z)| < 1 (z ∈ U),

such that

f(z) = g(w(z)) (z ∈ U).

In particular, if the function g is univalent in U, the above subordination is equivalent
to the following relationships:

f(0) = g(0) and f(U) ⊂ g(U).

Recently, Srivastava et al. [17] introduced the subclasses S(λ, γ, A,B) and
K(λ, γ,A,B, m;u) of analytic functions of complex order γ ∈ C∗ by using the
above subordination principle between analytic functions, and obtained the
coefficient bounds for the Taylor-Maclaurin coefficients for functions in each of
these new sublassesS(λ, γ, A,B) and K(λ, γ,A, B, m;u) of complex order γ ∈ C

∗,
which are given by Definitions 1 and 2 below.

Definition 1. (see [17]). Let S(λ, γ,A, B) denote the class of functions given
by

(4)

S(λ, γ, A,B) =

{
f : f ∈ A and 1 +

1
γ

(
zf ′(z) + λz2f ′′(z)

λzf ′(z) + (1− λ)f(z)
− 1

)

≺ 1 + Az

1 + Bz
(z ∈ U)

}

(0 � λ � 1; γ ∈ C
∗;−1 � B < A � 1).
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Definition 2. (see [17]). A function f(z) ∈ A is said to be in the class
K(λ, γ,A,B, m;u) if it satisfies the following nonhomegenous Cauchy-Euler type
differential equation of order m:

(5)

zm dmw

dzm
+

(
m

1

)
(u+m− 1)zm−1dm−1w

dzm−1
+· · ·+

(
m

m

)
w

m−1∏
j=0

(u + j)

= g(z)
m−1∏
j=0

(u + j + 1)

(
w = f(z) ∈ A; g(z) ∈ S(λ, γ,A, B);

u ∈ R \ (−∞,−1]; m ∈ N
∗ := N \ {1} = {2, 3, 4, · · ·}).

Making use of Definitions 1 and 2, Srivastava et al. [17] proved the following
coefficient bounds for the Taylor-Maclaurin coefficients for functions in the
sublasses S(λ, γ, A,B) and K(λ, γ,A,B, m;u) of analytic functions of complex
order γ ∈ C

∗.
Theorem 1. (see [17]). Let the function f(z) be defined by (1). If f ∈

S(λ, γ, A,B), then

|an| �

n−2∏
k=0

(
k +

2|γ|(A− B)
1 − B

)
(n − 1)![1 + λ(n − 1)]

(n ∈ N
∗).(6)

Theorem 2. (see [17]). Let the function f(z) be defined by (1). If f ∈
K(λ, γ,A,B, m;u), then

|an| �

n−2∏
k=0

(
k +

2|γ|(A− B)
1 − B

)
m−2∏
j=0

(u + j + 1)

(n − 1)![1 + λ(n− 1)]
m−1∏
j=0

(u + j + n)
(m, n ∈ N

∗).(7)

Here, in our present sequel to some of the aforecited works (especially [17]),
we first introduce the following subclasses of analytic functions of complex order
γ ∈ C∗.

Definition 3. Let g : U → C be a convex function such that
g(0) = 1 and �[g(z)] > 0 (z ∈ U).

We denote by Sg(λ, γ) the class of functions given by

(8)

Sg(λ, γ)

=
{

f :f∈A and 1+
1
γ

(
zf ′(z)+λz2f ′′(z)

λzf ′(z)+(1− λ)f(z)
−1

)
∈ g(U) (z∈U)

}

(0 � λ � 1; γ∈C
∗).
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Definition 4. A function f ∈ A is said to be in the class K g(λ, γ, m;u) if it
satisfies the following nonhomogenous Cauchy-Euler differential equation:

zm dmw

dzm
+

(
m

1

)
(u + m − 1)zm−1 dm−1w

dzm−1
+ · · ·+

(
m

m

)
w

m−1∏
j=0

(u + j)

= h(z)
m−1∏
j=0

(u + j + 1)(9)

(
w = f(z) ∈ A; h(z) ∈ Sg(λ, γ); u ∈ R \ (−∞,−1]; m ∈ N

∗).
Remark 1. There are many choices of the function g(z) which would provide

interesting subclasses of analytic functions of complex order γ ∈ C
∗. In particular,

if we let

(10) g(z) =
1 + Az

1 + Bz
(−1 � B < A � 1; z ∈ U),

it is fairly easy to verify that g(z) is a convex function in U and satisfies the
hypotheses of Definition 3. Clearly, therefore, the function class Sg(λ, γ), with the
function g(z) given by (10), coincides with the function class S(λ, γ,A, B) given
by Definition 1.

Remark 2. In view of Remark 1, if the function g(z) is given by (10), it is
easily observed that the function classes

Sg(λ, γ) and Kg(λ, γ, m;u)

reduce to the aforementioned function classes

S(λ, γ, A,B) and K(λ, γ,A,B, m;u),

respectively (see Definitions 1 and 2).
In this paper, by using the subordination principle between analytic functions,

we obtain coefficient bounds for the Taylor-Maclaurin coefficients for functions in
the substantially more general function classes

Sg(λ, γ) and Kg(λ, γ, m;u)

of analytic functions of complex order γ ∈ C∗. The various results presented here
would generalize and improve the corresponding results obtained by (for example)
Srivastava et al. [17].

2. MAIN RESULTS AND THEIR DERIVATIONS

In order to prove our main results, we will need the following lemma due to
Rogosinski [16].
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Lemma (see [16]). Let the function g(z) given by

g(z) =
∞∑

k=1

bkzk (z ∈ U)

be convex in U. Also let the function f(z) given by

f(z) =
∞∑

k=1

akz
k (z ∈ U)

be holomorphic in U. If

f(z) ≺ g(z) (z ∈ U),

then

(11) |ak| � |b1| (k ∈ N).

Our first main result is now stated as Theorem 3 below.

Theorem 3. Let the function f(z) be defined by (1). If f ∈ Sg(λ, γ), then

(12) |an| �

n−2∏
k=0

(k + |g′(0)| · |γ|)
(n − 1)![1 + λ(n − 1)]

(n ∈ N
∗).

Proof. Let the function F (z) be defined by

F (z) = λzf ′(z) + (1− λ)f(z) (z ∈ U).

Then, clearly, F (z) is an analytic function in U, F (0) = 1, and a simple computation
shows that the function F (z) has the following Taylor-Maclaurin series expansion:

F (z) = z +
∞∑

j=2

Ajz
j (z ∈ U),(13)

where, for convenience,

Aj = (1 − λ + jλ)aj (j ∈ N
∗).(14)

Now, from Definition 3, we have

1 +
1
λ

(
zF ′(z)
F (z)

− 1
)
∈ g(U).

Also, by setting
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p(z) = 1 +
1
λ

(
zF ′(z)
F (z)

− 1
)

,(15)

we deduce that

p(0) = g(0) = 1 and p(z) ∈ g(U) (z ∈ U).

Therefore, we have
p(z) ≺ g(z) (z ∈ U).

Thus, according to the above Lemma based upon the principle of subordination
between analytic functions, we obtain∣∣∣∣∣p

(m)(0)
m!

∣∣∣∣∣ � |g′(0)| (m ∈ N).(16)

On the other hand, we find from (15) that

zF ′(z) =
(
1 + λ[p(z)− 1]

)F (z) (z ∈ U).(17)

Further, we let

p(z) = 1 + p1z + p2z
2 + · · · (z ∈ U).(18)

Since A1 = 1, in view of (13), (17) and (18), we deduce that

(j − 1)Aj = (p1Aj−1 + p2Aj−2 + · · ·+ pj−1) (j ∈ N
∗).(19)

By combining (16) and (19), for j = 2, 3, 4, we obtain

|A2| � |g′(0)||λ|,

|A3| � |g′(0)| · |λ|(1 + |g′(0)| · |λ|)
2!

and
|A4| � |g′(0)| · |λ|(1 + |g′(0)| · |λ|)(2 + |g′(0)| · |λ|)

3!
,

respectively. By appealing to the principle of mathematical induction, we thus obtain

|An| �

n−2∏
k=0

(k + |g′(0)| · |λ|)
(n − 1)!

(n ∈ N
∗).

We now easily find from (14) that

|an| �

n−2∏
k=0

(k + |g′(0)| · |λ|)
(n − 1)![1 + λ(n − 1)]

(n ∈ N
∗),
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as asserted by Theorem 3. This evidently completes the proof of Theorem 3.

Theorem 4. Let the function f(z) ∈ A be defined by (1). If f ∈ Kg(λ, γ, m;u),
then

|an| �

n−2∏
k=0

(k + |g′(0)| · |λ|)
m−2∏
j=0

(u + j + 1)

(n − 1)![1 + λ(n − 1)]
m−1∏
j=0

(u + j + n)

(
m, n ∈ N

∗)(20)

(
0 � λ � 1; γ ∈ C

∗; u ∈ R \ (−∞,−1]
)
.

Proof. Let the function f(z) ∈ A be given by (1). Also let

h(z) = z +
∞∑

k=2

hkzk ∈ Sg(λ, γ).(21)

Hence, from (9), we deduce that

an =




m−1∏
j=0

(u + j + 1)

m−1∏
j=0

(u + j + n)


 hn

(
n ∈ N

∗; u ∈ R \ (−∞,−1]
)
.(22)

Using Theorem 3 in conjunction with (22), we arrive at the assertion (20) of Theorem
4. The proof of Theorem 4 is thus completed.

3. COROLLARIES AND CONSEQUENCES

In view of Remarks 1 and 2, if we let the function g(z) in Theorems 3 and 4 be
given by (10), we can readily deduce the following Corollaries 1 and 2, respectively,
which we choose to merely state here without proofs.

Corollary 1. Let the function f ∈ A be defined by (1). If f ∈ S(λ, γ, A,B),
then

(23) |an| �

n−2∏
k=0

(k + |γ|(A− B))

(n − 1)![1 + λ(n − 1)]
(n ∈ N

∗).

Corollary 2. Let the function f ∈ A be defined by (1). If f ∈ K(λ, γ,A,B, m;u),
then
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|an| �

n−2∏
k=0

(k + |λ|(A− B))
m−2∏
j=0

(u + j + 1)

(n − 1)![1 + λ(n − 1)]
m−1∏
j=0

(u + j + n)
(m, n ∈ N

∗)(24)

(
0 � λ � 1; γ ∈ C

∗; u ∈ R \ (−∞,−1]
)
.

Remark 3. It is easy to see that
(
k + |γ|(A− B)

)
�

(
k +

2|γ|(A− B)
1 − B

)
(
k ∈ N0; −1 � B < A � 1; γ ∈ C

∗
)
,

which, in conjunction with Corollaries 1 and 2, would obviously yield significant
improvements over Theorems 1 and 2 (see also the earlier work by Srivastava et al.
[17] for several further corollaries and consequences Theorems 1 and 2).
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