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CUBIC FORMAL POWER SERIES IN CHARACTERISTIC 2 WITH
UNBOUNDED PARTIAL QUOTIENTS

K. Ayadi, M. Hbaib and F. Mahjoub*

Abstract. There is a theory of continued fractions for formal power series
in x−1 with coefficients in a field Fq . This theory bears a close analogy
with classical continued fractions for real numbers with formal power series
playing the role of real numbers and the sum of the terms of non-negative
degree in x playing the role of the integral part. We give a family of cubic
power series over F2 with unbounded partial quotients. To be more precise, let
f ∈ F2((x−1)) such that f is not polynomial but f3 is polynomial with degree
d ∈ 3N, we prove that the continued fraction expansion of f is unbounded.

1. INTRODUCTION

In [2], Khintchine conjectured that if x is a real algebraic number of degree > 2
then x has a continued fraction expansion whose the sequence of partial quotients
is unbounded. Note that the answer to this conjecture is far from being tractable.
However, more things are known in the case of algebraic formal series over a finite
field Fk of characteristic p.

In 1976, Baum and Sweet gave, in [1], the first example of an algebraic formal
series of degree 3 on F2((x−1)) whose partial quotients have only a finite number of
values as well as examples whose partial quotients have infinite values. In [4], Mills
and Robbins continued the work of Baum and Sweet and they gave an example of
formal series algebraic over F3((x−1)) whose the sequence of partial quotients is
unbounded and given explicitly. Moreover, Robbins gave a family of cubic formal
power series with bounded partial quotients [5].

In this paper, we give a family of cubic formal power series with unbounded
partial quotients. Namely, we prove that, if f3 is polynomial with degree d ∈ 3N,
then the continued fraction expansion of f is unbounded.
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2. FIELD OF FORMAL SERIES

Let Fk be a finite field with k elements. We denote by Fk[x] the ring of
polynomials with coefficients in Fk and Fk(x) its fractions field. Let Fk((x−1)) be
the field of formal power series:

Fk((x−1)) =
{
f =

∑
i≥n0

fix
−i : n0 ∈ Z and fi ∈ Fk

}
.

Let f =
∑

fix
−i be any formal power series, we define its polynomial part, denoted

[f ], by [f ] :=
∑

i≤0 fix
−i. If f �= 0, then the degree of f is γ(f) = inf{i : fi �= 0}

and γ(0) = +∞. Thus, we define |f | = k−γ(f). Note that |.| is a non archimedean
absolute value over Fk((x−1)).

Now, similarly to the classical continued fractions for real numbers, we define
the continued fractions for power series. Let us consider the set Mk = {f ∈
Fk((x−1)) : |f | < 1} and consider the transformation

T : Mk → Mk, f �→ 1
f
−

[
1
f

]
.

For any f ∈ Fk((x−1)) we define a polynomial sequence (an)n≥0 by

a0 = [f ] and, for n ≥ 1, an =
[

1
T n−1(f − [f ])

]
.

We easily check that
f = a0 +

1

a1 +
1

a2 +
1
. . .

.

This expression is called the continued fraction expansion of f and it will be simply
denoted by f = [a0, a1, a2, . . .]. The sequence (ai)i≥0 is called the sequence of
partial quotients of f . If it is bounded, we say that f admits bounded continued
fraction expansion.

Besides, we define two sequences of polynomials (pn) and (qn) by

p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1

and for any n ≥ 2,pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

By a straightforward computation, we can see that

pnqn−1 − pn−1qn = (−1)n−1 and
pn

qn
= [a0, a1, a2, . . . , an].

The sequence
(

pn

qn

)
is called the sequence of convergent of f .

We will need the following two lemmas given by Baum and Sweet in [1]:
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Lemma 2.1. Consider p, q ∈ F2[x] with gcd(p, q) = 1.

a. If |qf − p| = 2−(γ(q)+d), d > 0, then, there exists n ∈ N such that

q = qn, p = pn and γ(an+1) = d.

b. If |qf − p| =
1
|q| , then, there exists n ∈ N such that

p = pn + pn−1 and q = qn + qn−1.

Lemma 2.2. Let g1, g2, h1, h2 ∈ F2[x] with g1h2 + g2h1 �= 0. Then, any

f ∈ F2((x−1)) has bounded partial quotients if and only if
g1f + h1

g2f + h2
has bounded

partial quotients.

In 1976, Baum and Sweet gave in [1] some examples of formal series whose
the sequence of partial quotients is unbounded. They have proved that the formal

series
(

P

P +1

) 1
2n−1

admits unbounded partial quotients which are given explicitly .

3. RESULTS

Before giving the mains theorems, we introduce the following two lemmas.

Lemma 3.1. Let P ∈ F2[x] such that the degree of P is a multiple of 3, then
there is a unique f ∈ F2((x−1)) such that f 3 = P .

Proof. The uniqueness of f is obvious. Let P = xn + an−1x
n−1 + · · ·+ a0

in which n is a multiple of 3. We seek f =
∑

i≥n0
fix

−i in F2((x−1)) such that
f3 = P and fn0 �= 0. It is sufficient to determine the fi step by step. The equality
f3 = P yields first n = −3n0. Moreover, by identification, we get

fn0 =1, fn0+1 =an−1, fn0+2 =an−2−a2
n−1 , fn0+3 =an−3−a3

n−1, . . .

Lemma 3.2. Let P ∈ F2[x] such that γ(P ) ∈ 3N. Then the polynomial P is
uniquely expressible as P = S 3 + T , where S, T ∈ F2[x] with γ(T ) < 2γ(S).

Proof. Write P = x3m+a3m−1x
3m−1+· · ·+a2mx2m+a2m−1x

2m−1+· · ·+a0.
From the equality P = S3 + T , together with the condition γ(T ) < 2γ(S), we
deduce that γ(S) = m. Moreover, S3 = x3m + a3m−1x

3m−1 + · · ·+ a2mx2m + H
where γ(H) < 2k. Thus, we write S =

∑m
i=0 bix

i ∈ F2[x], then, as in the
previous lemma, we compute recursively the coefficients bm, bm−1,. . . and then we
get P = S3 + T with γ(T ) < 2γ(S).
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Theorem 3.3. Let P = S3+T with S, T ∈ F2[x], such that T divides P and
γ(T )<2γ(S). Then the formal power series g such that g 3 = P admits unbounded
partial quotients.

Proof. We follows [1] fairly closely. Consider f =
∏
i≥0

(
1 + R−1

)4i

where

R = T−1P . It is clear that R ∈ F2[x] and |R| > 1. We have

f3 =
∏
i≥0

(
1+R−1

)3×4i

= lim
m→+∞

(
1+R−1

)3×
m−1∑
i=0

4i

= lim
m→+∞

(
1 + R−1

)4m−1

= (1 + R−1)−1 lim
m→+∞

(
1 + R−1

)4m

.

Since F2((x−1)) is of characteristic 2, we have then f3 = (1 + R−1)−1(
1 + lim

m→+∞ R−4m

)
. So, f3 = (1 + R−1)−1 =

1
1 + R−1

=
P

P + T
, then f =

(
P

P + T

) 1
3

∈ F2((x−1)).

Let dm =
(4m − 1)

3
=

m−1∑
i=0

4i. Then

(1 + R)dm = (1 + R)

m−1∑
i=0

4i

=
m−1∏
i=0

(1 + R)4
i

=
m−1∏
i=0

R4i (
1 + R−1

)4i

= Rdm

m−1∏
i=0

(
1 + R−1

)4i

.

Thus, we get

Rdmf = Rdm
∏
i≥0

(
1+R−1

)4i

= Rdm
∏

0≤i<m

(
1+R−1

)4i ∏
i≥m

(
1+R−1

)4i

= (1 + R)dm
∏
i≥m

(
1 + R−1

)4i

= (1 + R)dm + (1 + R)dm(R−1)4
m

+ K.

Therefore,
Rdmf − (1 + R)dm = (1 + R)dm(R−1)4

m
+ K.

Moreover, we have |K| < |(1 + R)dm(R−1)4
m| = |Rdm(R−1)4

m| since |(1 +
R)dm| = |Rdm|. So, we get

(3.1) |Rdmf − (1 + R)dm| = |R−(4m−dm)|
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and then we have∣∣∣Rdmf − (1 + R)dm

∣∣∣ = 2−(γ(R)dm+γ(R)4m−2γ(R)dm).

We have gcd(Rdm, (1 + R)dm) = 1, moreover, 4mγ(R)− 2γ(R)dm > 0, then ac-
cording to Lemma 2.1, there exists i such that γ(ai+1) = 4mγ(R) − 2γ(R)dm.
Obviously γ(ai+1) is unbounded, so, we conclude that the formal series f =(

P

P + T

) 1
3

=
1
S

(S3 + T )
1
3 admits unbounded partial quotients, but S ∈ F2[x],

then, by Lemma 2.2, (S3 + T )
1
3 admits unbounded partial quotients.

Theorem 3.4. Let S, T ∈ F2[x] such that γ(T ) < γ(S). Then the formal series
g such that g3 = S3 + T admits unbounded partial quotients.

Proof. Let P = S3 + T . We begin the proof as in Theorem 3.3 until equality
(3.1). Besides, multiplying (3.1) by Tdm , we obtain∣∣∣P dmf − (T + P )dm

∣∣∣ =
∣∣∣T dm(T−1P )−(4m−dm)

∣∣∣ = 2−(βdm+(β4m−2βdm−α4m)).

where β = γ(P ) and α = γ(T ). We have to distinguish two cases:
(i) gcd(P, T ) = 1: since deg γ(T ) < 1

3γ(P ) then β4m − 2βdm − α4m > 0.
Moreover, gcd(Pdm, (T +P )dm) = 1, then by Lemma 2.1, there exists i such
that γ(ai+1) = β4m − 2βdm − α4m. It is clear that γ(ai+1) is unbounded.

(ii) gcd(P, T ) = h �= 1: there exists P ′ and T ′ ∈ F2[x] such that P = hP ′ and
T = hT ′ with gcd(P ′, T ′) = 1. It is easy to verify that γ(T′) < 1

3γ(P ′), and
then the result is obvious by the first case.

So, in these two cases,
(

P

P + T

) 1
3

admits unbounded partial quotients, then, as

before, (S3 + T )
1
3 admits unbounded partial quotients .

Example 1. Let f 3 = S3 + 1 with γ(S) > 0, then, by Theorem 3.3, the partial
quotients of f are unbounded.

Example 2. Let f 3 = S3 + x with γ(S) > 1, then the partial quotients of f

are unbounded, by Theorem 3.3 if S(0) = 0 and by Theorem 3.4 if S(0) �= 0.
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Faculté des Sciences de Sfax
BP 802, 3038 Sfax
Tunisie
E-mail: ayedikhalil@yahoo.fr

mmmhbaib@gmail.com
faiza.mahjoub@yahoo.fr


