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SUBADDITIVITY OF SOME FUNCTIONALS ASSOCIATED TO
JENSEN’S INEQUALITY WITH APPLICATIONS

S. S. Dragomir, Y. J. Cho* and J. K. Kim

Abstract. Some new results related to Jensen’s celebrated inequality for con-
vex functions defined on convex sets in linear spaces are given. Applications
for the arithmetic mean-geometric mean inequality are provided as well.

1. INTRODUCTION

Let C be a convex subset of the linear space X and f a convex function on
C. If I denotes a finite subset of the set N of natural numbers, xi ∈ C, pi ≥ 0 for
i ∈ I and PI :=

∑
i∈I pi > 0, then we have

(1.1) f

(
1
PI

∑
i∈I

pixi

)
≤ 1

PI

∑
i∈I

pif (xi) ,

which is well known in the literature as Jensen’s inequality.
The Jensen inequality for convex functions plays a crucial role in the Theory of

Inequalities due to the fact that other inequalities such as the generalised triangle
inequality, the arithmetic mean-geometric mean inequality, Hölder and Minkowski
inequalities, Ky Fan’s inequality etc. can be obtained as particular cases of it. For
more details on Jensen’s inequality, see[1, 4-16].

In order to simplify the presentation, we introduce the following notations (see
also [14]):

F (C, R) := the linear space of all real functions on C,

F+ (C, R) := {f ∈ F (C, R) : f (x) > 0 for all x ∈ C} ,

Pf (N) := {I ⊂ N: I is finite} ,

J (R) :=
{
p = {pi}i∈N

, pi ∈ R are such that PI �= 0 for all I ∈ Pf (N)
}

,
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and

J+ (R) := {p ∈ J (R) : pi ≥ 0 for all i ∈ N} ,

J∗ (C) :=
{
x = {xi}i∈N

: xi ∈ C for all i ∈ N
}

and
Conv (C, R) := the cone of all convex functions defined on C,

respectively.
In [14] the authors considered the following functional associated with the Jensen

inequality:

(1.2) J (f, I, p, x) :=
∑
i∈I

pif (xi)− PIf

(
1
PI

∑
i∈I

pixi

)
,

where f ∈ F (C, R) , I ∈ Pf (N) , p ∈ J+ (R) , x ∈ J∗ (C). They established
some quasi-linearity and monotonicity properties and applied the obtained results
for norm and means inequalities.

The following result concerning the properties of the functional J (f, I, ·, x) as
a function of weights holds (see [14, Theorem 2.4]):

Theorem 1. Let f ∈ Conv (C, R) , I ∈ Pf (N) and x ∈ J∗ (C) .

(i) If p, q ∈ J+ (R) then

(1.3) J (f, I, p + q, x) ≥ J (f, I, p, x) + J (f, I, q, x) (≥ 0)

i.e., J (f, I, ·, x) is superadditive on J+ (R);

(ii) If p, q ∈ J+ (R) with p ≥ q, meaning that pi ≥ qi for each i ∈ N, then

(1.4) J (f, I, p, x) ≥ J (f, I, q, x) (≥ 0)

i.e., J (f, I, ·, x) is monotonic nondecreasing on J + (R).

The behavior of this functional as an index set function is incorporated in the
following (see [14, Theorem 2.1]):

Theorem 2. Let f ∈ Conv (C, R) , p ∈ J+ (R) and x ∈ J∗ (C) .

(i) If I, H ∈ Pf (N) with I ∩ H = ∅, then

(1.5) J (f, I ∪ H, p, x) ≥ J (f, I, p, x)+ J (f, H, p, x) (≥ 0) ,

i.e., J (f, ·, p, x) is superadditive as an index set function on P f (N);
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(ii) If I, H ∈ Pf (N) with H ⊂ I, then

(1.6) J (f, I, p, x) ≥ J (f, H, p, x) (≥ 0) ,

i.e., J (f, ·, p, x) is monotonic nondecreasing as an index set function on
Pf (N) .

As pointed out in [14], the above Theorem 2 is a generalisation of the Vasić-
Mijalković result for convex functions of a real variable obtained in [16] and there-
fore creates the possibility to obtain vectorial inequalities as well.

For applications of the above results to logarithmic convex functions, to norm
inequalities, in relation with the arithmetic mean-geometric mean inequality and
with other classical results, see [14].

Motivated by the above results, we introduce in the present paper another func-
tional associated to Jensen’s discrete inequality, establish its subadditivity properties
as both a function of weights and an index set function and use it for some particu-
lar cases that provide inequalities of interest. Applications related to the arithmetic
mean - geometric mean celebrated inequality are provided as well.

2 . SOME SUBADDITIVITY PROPERTIES FOR THE WEIGHTS

We consider the more general functional

(2.1) D (f, I, p, x; Ψ) := PIΨ

[
1
PI

∑
i∈I

pif (xi)− f

(
1
PI

∑
i∈I

pixi

)]
,

where f ∈ Conv (C, R) , I ∈ Pf (N) , p ∈ J+ (R) , x ∈ J∗ (C) and Ψ : [0,∞) →
R is a function whose properties will determine the behavior of the functional D as
follows. Obviously, for Ψ (t) = t we recapture from D the functional J considered
in [14].

First of all we observe that, by Jensen’s inequality, the functional D is well
defined and positive homogeneous in the third variable, i.e.,

D (f, I, αp, x; Ψ) = αD (f, I, p, x; Ψ) ,

for any α > 0 and p ∈ J+ (R) .

The following result concerning the subadditivity of the functional D as a func-
tion of weights holds:

Theorem 3. Let f ∈ Conv (C, R) , I ∈ Pf (N) and x ∈ J∗ (C) . Assume that
Ψ : [0,∞) → R is monotonic nonincreasing and convex where it is defined. If
p, q ∈ J+ (R) then

(2.2) D (f, I, p + q, x; Ψ) ≤ D (f, I, p, x; Ψ)+ D (f, I, q, x; Ψ) ,

i.e., D is subadditive as a function of weights.
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Proof. Let p, q ∈ J+ (R) . It is easy to see that, by the convexity of the
function f on C, we have

(2.3)

1
PI + QI

∑
i∈I

(pi + qi) f (xi) − f

(
1

PI + QI

∑
i∈I

(pi + qi)xi

)

=
PI

(
1
PI

∑
i∈I pif (xi)

)
+ QI

(
1

QI

∑
i∈I qif (xi)

)
PI + QI

−f


PI

(
1
PI

∑
i∈I pixi

)
+ QI

(
1

QI

∑
i∈I qixi

)
PI + QI




≥
PI

(
1
PI

∑
i∈I pif (xi)

)
+ QI

(
1

QI

∑
i∈I qif (xi)

)
PI + QI

−
PIf

(
1
PI

∑
i∈I pixi

)
+ QIf

(
1

QI

∑
i∈I qixi

)
PI + QI

=
PI

[
1
PI

∑
i∈I pif (xi) − f

(
1

PI

∑
i∈I pixi

)]
PI + QI

+
QI

[
1

QI

∑
i∈I qif (xi) − f

(
1

QI

∑
i∈I qixi

)]
PI + QI

.

Since Ψ is monotonic nonincreasing, then by (2.3) we have

(2.4)

Ψ

[
1

PI + QI

∑
i∈I

(pi + qi) f (xi)− f

(
1

PI + QI

∑
i∈I

(pi + qi) xi

)]

≤ Ψ




PI

[
1
PI

∑
i∈I pif (xi)− f

(
1
PI

∑
i∈I pixi

)]
PI + QI

+
QI

[
1

QI

∑
i∈I qif (xi) − f

(
1

QI

∑
i∈I qixi

)]
PI + QI


 .

Now, on utilising the convexity property of Ψ we also have

(2.5)

Ψ




PI

[
1

PI

∑
i∈I pif (xi) − f

(
1
PI

∑
i∈I pixi

)]
PI + QI

+
QI

[
1

QI

∑
i∈I qif (xi) − f

(
1

QI

∑
i∈I qixi

)]
PI + QI



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≤
PIΨ

[
1
PI

∑
i∈I pif (xi) − f

(
1
PI

∑
i∈I pixi

)]
PI + QI

+
QIΨ

[
1

QI

∑
i∈I qif (xi) − f

(
1

QI

∑
i∈I qixi

)]
PI + QI

.

Finally, on making use of (2.4) and (2.5), we deduce the desired inequality (2.2).
Obviously, there are many examples of functions Ψ : [0,∞) → R that are

monotonically decreasing and convex on the interval [0,∞). In what follows we
give some examples that are of interest.

Example 1. Consider the function Ψ : [0,∞) → (0,∞) defined by Ψ (t) =
exp (−t) . Obviously this function is strictly decreasing and strictly convex on the
interval [0,∞) and we can consider the functional

(2.6) E (f, I, p, x) := D (f, I, p, x; exp(−·)) =
PI exp

[
f
(

1
PI

∑
i∈I pixi

)]
{∏

i∈I exp [pif (xi)]
} 1

PI

.

Since the functional E (f, I, ·, x) is subadditive, then we can state the following
interesting inequality for convex functions

(2.7)

(PI + QI) exp
[
f
(

1
PI+QI

∑
i∈I (pi + qi) xi

)]
{∏

i∈I exp [(pi + qi) f (xi)]
} 1

PI+QI

≤
PI exp

[
f
(

1
PI

∑
i∈I pixi

)]
{∏

i∈I exp [pif (xi)]
} 1

PI

+
QI exp

[
f
(

1
QI

∑
i∈I qixi

)]
{∏

i∈I exp [qif (xi)]
} 1

QI

for any p, q ∈ J+ (R) .

Example 2. Now assume that f ∈ Conv (C, R) and x ∈ J∗ (C) are selected
such that

1
PI

∑
i∈I

pif (xi) > f

(
1
PI

∑
i∈I

pixi

)

for any I ∈ Pf (N) with card (I) ≥ 2 and p ∈ J+ (R) (notice that is enough to
assume that f is strictly convex and x is not constant). If we consider the function
Ψ : (0,∞) → (0,∞) defined by Ψ (t) = t−α with α > 0, then obviously this
function is strictly decreasing and strictly convex on the interval (0,∞) and we can
consider the functional

(2.8)

W (f, I, p, x) := D
(
f, I, p, x; (·)−α)

=
PI[

1
PI

∑
i∈I

pif (xi) − f

(
1
PI

∑
i∈I

pixi

)]α .
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Since the functional E (f, I, ·, x) is subadditive, we can state the following inter-
esting inequality for convex functions

(2.9)

PI + QI[
1

PI + QI

∑
i∈I

(pi + qi) f (xi)− f

(
1

PI + QI

∑
i∈I

(pi + qi)xi

)]α

≤ PI[
1
PI

∑
i∈I

pif (xi) − f

(
1
PI

∑
i∈I

pixi

)]α

+
QI[

1
QI

∑
i∈I

qif (xi) − f

(
1

QI

∑
i∈I

qixi

)]α

for any p, q ∈ J+ (R) such that the involved denominators are not zero.

Corollary 1. Let f ∈ Conv (C, R) , I ∈ Pf (N) and x ∈ J∗ (C) . Assume that
Ξ : [0,∞) → (0,∞). We define the new functional

(2.10) M (f, I, p, x; Ξ) :=

{
Ξ

[
1
PI

∑
i∈I

pif (xi) − f

(
1
PI

∑
i∈I

pixi

)]}PI

.

If Ξ : [0,∞) → (0,∞) is monotonic nonincreasing and logarithmic convex, i.e.
ln (Ξ) is a convex function, then for any p, q ∈ J + (R) we have

(2.11) M (f, I, p + q, x; Ξ) ≤ M (f, I, p, x; Ξ) · M (f, I, q, x; Ξ) ,

i.e., the functional is submultiplicative as a function of weights.

Proof. Consider the function Ψ = ln (Ξ) which is convex and, obviously

D (f, I, p, x; Ψ) = lnM (f, I, p, x; Ξ) .

The inequality (2.11) follows now by (2.2) and the details are omitted.

Example 3. We consider the Dirichlet series generated by a nonnegative se-
quence an, n ≥ 1 namely δ : (0,∞) → (0,∞) given by

(2.12) δ (s) :=
∞∑

n=1

an

ns+1
.

An important example of such series is the Zeta function defined by
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ζ (s) :=
∞∑

n=1

1
ns

for all s > 1.

It is known that the function δ is monotonic nondecreasing and logarithmic
convex on (0,∞) (see for instance [3]). Therefore, for any Dirichlet series of the
form (2.12) we have the inequalities

(2.13)

{
δ

[
1

PI+QI

∑
i∈I

(pi+qi) f(xi)−f

(
1

PI +QI

∑
i∈I

(pi+qi)xi

)]}PI+QI

≤
{
δ

[
1
PI

∑
i∈I

pif (xi) − f

(
1
PI

∑
i∈I

pixi

)]}PI

×
{
δ

[
1

QI

∑
i∈I

qif (xi) − f

(
1

QI

∑
i∈I

qixi

)]}QI

for any p, q ∈ J+ (R) .

3 . SOME SUBADDITIVITY PROPERTIES FOR THE INDEX

The following result concerning the superadditivity and monotonicity of the
functional D as an index set function holds:

Theorem 4. Let f ∈ Conv (C, R) , p ∈ J+ (R) and x ∈ J∗ (C) . Assume that
Ψ : [0,∞) → R is monotonic nonincreasing and convex where it is defined. If
I, H ∈ Pf (N) with I ∩ H = ∅, then

(3.1) D (f, I ∪ H, p, x; Ψ) ≤ D (f, I, p, x; Ψ)+ D (f, H, p, x; Ψ) ,

i.e., D (f, ·, p, x; Ψ) is subadditive as an index set function on P f (N).

Proof. Let I, H ∈ Pf (N) with I ∩ H = ∅. By the convexity of the function
f on C, we have successively

(3.2)

1
PI∪H

∑
k∈I∪H

pkf (xk)− f

(
1

PI∪H

∑
k∈I∪H

pkxk

)

=
PI

(
1
PI

∑
i∈I pif (xi)

)
+ PH

(
1

PH

∑
j∈H pjf (xj)

)
PI + PH

−f


PI

(
1
PI

∑
i∈I pixi

)
+ PH

(
1

PH

∑
j∈H pjxj

)
PI + PH




≥
PI

(
1
PI

∑
i∈I pif (xi)

)
+ PH

(
1

PH

∑
j∈H pjf (xj)

)
PI + PH
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−
PIf

(
1
PI

∑
i∈I pixi

)
+ PHf

(
1

PH

∑
j∈H pjxj

)
PI + PH

=
PI

[
1
PI

∑
i∈I pif (xi) − f

(
1

PI

∑
i∈I pixi

)]
PI + PH

+
PH

[
1

PH

∑
j∈H pjf (xj) − f

(
1

PH

∑
j∈H pjxj

)]
PI + PH

.

Since Ψ is monotonic nonincreasing, then by (3.2) we have

(3.3)

Ψ

[
1

PI∪H

∑
k∈I∪H

pkf (xk) − f

(
1

PI∪H

∑
k∈I∪H

pkxk

)]

≤ Ψ




PI

[
1
PI

∑
i∈I pif (xi) − f

(
1
PI

∑
i∈I pixi

)]
PI + PH

+
PH

[
1

PH

∑
j∈H pjf (xj) − f

(
1

PH

∑
j∈H pjxj

)]
PI + PH


 .

Utilising the convexity of the function Ψ we also have that

(3.4)

Ψ




PI

[
1
PI

∑
i∈I pif (xi) − f

(
1
PI

∑
i∈I pixi

)]
PI + PH

+
PH

[
1

PH

∑
j∈H pjf (xj) − f

(
1

PH

∑
j∈H pjxj

)]
PI + PH




≤
PIΨ

[
1
PI

∑
i∈I pif (xi) − f

(
1
PI

∑
i∈I pixi

)]
PI + PH

+
PHΨ

[
1

PH

∑
j∈H pjf (xj)− f

(
1

PH

∑
j∈H pjxj

)]
PI + PH

,

which together with (3.3) produces the desired result (3.1)

Example 4. With the assumptions in Example 1 and utilising (3.1), we have
the inequality
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(3.5)

PI∪H exp
[
f
(

1
PI∪H

∑
i∈I∪H pixi

)]
{∏

i∈I∪H exp [pif (xi)]
} 1

PI∪H

≤
PI exp

[
f
(

1
PI

∑
i∈I pixi

)]
{∏

i∈I exp [pif (xi)]
} 1

PI

+
PH exp

[
f
(

1
PH

∑
i∈H pixi

)]
{∏

i∈H exp [pif (xi)]
} 1

PH

,

for any I, H ∈ Pf (N) with I ∩ H = ∅.

Example 5. With the assumptions in Example 1 and making use of (3.1), we
also have the inequality

(3.6)

PI∪H[
1

PI∪H

∑
i∈I∪H pif (xi) − f

(
1

PI∪H

∑
i∈I∪H pixi

)]α

≤ PI[
1
PI

∑
i∈I pif (xi) − f

(
1
PI

∑
i∈I pixi

)]α

+
PH[

1
PH

∑
i∈H pif (xi)− f

(
1

PH

∑
i∈H pixi

)]α

for any I, H ∈ Pf (N) with I ∩ H = ∅ and such that the involved denominators
are not zero.

If we use the superadditivity property, then we can state the following result as
well:

Corollary 2. Let f ∈ Conv (C, R) , p ∈ J+ (R) and x ∈ J∗ (C) . Assume that
Ψ : [0,∞) → R is monotonic nonincreasing and convex where it is defined. Then

(3.7)

P2nΨ

[
1

P2n

2n∑
i=1

pif (xi) − f

(
1

P2n

2n∑
i=1

pixi

)]

≥
n∑

i=1

p2iΨ

[
1∑n

i=1 p2i

n∑
i=1

p2if (x2i) − f

(
1∑n

i=1 p2i

n∑
i=1

p2ix2i

)]

+
n∑

i=1

p2i−1Ψ

[
1∑n

i=1 p2i−1

n∑
i=1

p2i−1f (x2i−1)

−f

(
1∑n

i=1 p2i−1

n∑
i=1

p2i−1x2i−1

)]

and
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(3.8)

P2n+1Ψ

[
1

P2n+1

2n+1∑
i=1

pif (xi) − f

(
1

P2n+1

2n+1∑
i=1

pixi

)]

≥
n∑

i=1

p2iΨ

[
1∑n

i=1 p2i

n∑
i=1

p2if (x2i) − f

(
1∑n

i=1 p2i

n∑
i=1

p2ix2i

)]

+
n∑

i=1

p2i+1Ψ

[
1∑n

i=1 p2i+1

n∑
i=1

p2i+1f (x2i+1)

−f

(
1∑n

i=1 p2i+1

n∑
i=1

p2i+1x2i+1

)]
,

where P2n :=
∑2n

i=1 pi and P2n+1 :=
∑2n+1

i=1 pi.

The following submultiplicity result also holds:

Corollary 3. Let f ∈ Conv (C, R) , I ∈ Pf (N) and x ∈ J∗ (C) . Assume
that Ξ : [0,∞) → (0,∞) is monotonic nonincreasing and logarithmic convex. If
I, H ∈ Pf (N) with I ∩ H = ∅, then

(3.9) M (f, I ∪ H, p, x; Ξ) ≤ M (f, I, p, x; Ξ) ·M (f, H, p, x; Ξ) ,

i.e., M (f, ·, p, x; Ξ) is submultiplicative as an index set function on P f (N);

4 . APPLICATIONS FOR THE ARITHMETIC MEAN-GEOMETRIC MEAN INEQUALITY

For two sequences of positive numbers p and x, we use the notations

A (p, x, I) :=
1
PI

∑
i∈I

pixi and G (p, x, I) :=

(∏
i∈I

xpi
i

) 1
PI

,

where I is a finite set of indices and A (p, x, I) is the arithmetic mean while
G (p, x, I) is the geometric mean of the numbers xi with the weights pi, i ∈ I.

It is well known that

(4.1) A (p, x, I) ≥ G (p, x, I) ,

which is known in the literature as the arithmetic mean-geometric mean inequality.
For various results related to this inequality we recommend the monograph [2] and
the references therein.

For the convex function f : (0,∞) → R, f (t) := − ln (t) , consider the
functional
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(4.2) L (I, p, x; Ψ) := D (− ln (·) , I, p, x; Ψ) := PIΨ
[
ln
(

A (p, x, I)
G (p, x, I)

)]
.

We can state the following.

Proposition 1. Let f ∈ Conv (C, R) , I ∈ Pf (N) and x ∈ J∗ (C) . Assume
that Ψ : [0,∞) → R is monotonic nonincreasing and convex where it is defined.

(i) If p, q ∈ J+ (R) , then

(4.3) L (I, p + q, x; Ψ) ≤ L (I, p, x; Ψ)+ L (I, q, x; Ψ)

i.e., L is subadditive as a function of weights.

(ii) If I, H ∈ Pf (N) with I ∩ H = ∅, then

(4.4) L (I ∪ H, p, x; Ψ) ≤ L (I, p, x; Ψ)+ L (H, p, x; Ψ) ,

i.e., L is subadditive as an index set function on P f (N) .

Utilising these inequalities, we can state the following results concerning the
arithmetic and geometric means:

Example 6. Consider the function Ψ : [0,∞) → (0,∞) defined by Ψ (t) =
exp (−t) . Obviously this function is strictly decreasing and strictly convex on the
interval [0,∞) and we can consider the functional

(4.5) Le (I, p, x) := L (I, p, x; exp(−·)) =
PIG (p, x, I)
A (p, x, I)

.

By Proposition 1 above, we have that Le is both additive as a weights and index
set functional].

We can give the following example as well:

Example 7. If we consider the function Ψ : (0,∞) → (0,∞) defined by
Ψ (t) = t−α with α > 0, then obviously this function is strictly decreasing and
strictly convex on the interval (0,∞) and we can consider the functional

(4.6) Wln,α (I, p, x) := L
(
I, p, x; (·)−α) = PI

[
ln
(

A (p, x, I)
G (p, x, I)

)]−α

.

By the above Proposition 1 we have that Wln,α is both additive as a weights and
index set functional.
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Now, for positive sequences x we introduce the notation

(4.7) G (p, xx, I) :=

(∏
i∈I

xpixi
i

) 1
PI

,

which is the geometric mean of the sequence having the terms xxi
i , i ∈ I.

For the convex function f : (0,∞) → R, f (t) := t ln (t) , consider the func-
tional

(4.8) S (I, p, x; Ψ) := D (· ln (·) , I, p, x; Ψ) := PIΨ

[
ln

(
G (p, xx, I)

A (p, x, I)A(p,x,I)

)]
.

We can state the following.

Proposition 2. Let f ∈ Conv (C, R) , I ∈ Pf (N) and x ∈ J∗ (C) . Assume
that Ψ : [0,∞) → R is monotonic nonincreasing and convex where it is defined.

(i) If p, q ∈ J+ (R) , then

(4.9) S (I, p + q, x; Ψ) ≤ S (I, p, x; Ψ)+ S (I, q, x; Ψ) ,

i.e., S is subadditive as a function of weights.

(ii) If I, H ∈ Pf (N) with I ∩ H = ∅, then

(4.10) S (I ∪ H, p, x; Ψ) ≤ S (I, p, x; Ψ)+ S (H, p, x; Ψ) ,

i.e., S is subadditive as an index set function on P f (N) .

Remark 1. For the function Ψ : [0,∞) → (0,∞) defined by Ψ (t) = exp (−t)
we can consider the functional

(4.11) Se (I, p, x) := S (I, p, x; exp(−·)) =
PIA (p, x, I)A(p,x,I)

G (p, xx, I)
.

By the above Proposition 2 we have that Se is both additive as a weights and index
set functional.

For the function Ψ : (0,∞) → (0,∞) defined by Ψ (t) = t−α with α > 0, we
can also consider the functional

(4.12) Zln,α (I, p, x) := S
(
I, p, x; (·)−α) = PI

[
ln

(
G (p, xx, I)

A (p, x, I)A(p,x,I)

)]−α

.

By the above Proposition 2 we have that Zln,α is both additive as a weights and
index set functional.
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The interested reader can consider other examples of functions f and Ψ and
derive functionals that are associated with the Ky Fan, triangle or other inequalities
that can be obtained from the Jensen result. However, the details are not presented
here.
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