CYCLE ADJACENCY OF PLANAR GRAPHS AND 3-COLOURABILITY

Chung-Ying Yang and Xuding Zhu*

Abstract

Suppose G is a planar graph. Let H_{G} be the graph with vertex set $V\left(H_{G}\right)=\{C: C$ is a cycle of G with $|C| \in\{4,6,7\}\}$ and $E\left(H_{G}\right)=$ $\left\{C_{i} C_{j}: C_{i}\right.$ and C_{j} are adjacent in $\left.G\right\}$. We prove that if any 3 -cycles and 5 -cycles are not adjacent to i-cycles for $3 \leq i \leq 7$, and H_{G} is a forest, then G is 3 -colourable.

1. Introduction

As every planar graph is 4-colourable, a natural question is which planar graphs are 3 -colourable. It is known [10] that to decide whether a planar graph is 3 colourable is NP-complete. So attention is concentrated in finding sufficient conditions for planar graphs to be 3 -colourable. By Grotzsch Theorem, triangle-free planar graphs are 3 -colourable. In 1976, Steinberg conjectured that every planar graph without 4 - and 5 -cycles is 3 -colourable (see [11]). This conjecture has received a lot of attention and there are many partial results and related open problems. Erdoss (see [13]) suggested the following relaxation of Steinberg's conjecture: Determine the minimum integer k, if it exists, such that every planar graph without cycles of length l for $4 \leq l \leq k$ is 3 -colourable. Abbott and Zhou [1] proved that such a k exists and $k \leq 11$. This result was improved to $k \leq 10$ in [2], then to $k \leq 9$ in [3,12], and to $k \leq 7$ in [7].

The following theorems were proved by Borodin et al. in [7].
Theorem 1.1. Every planar graph without cycles of length from 4 to 7 is 3colourable.

For the purpose of using induction, instead of proving Theorem 1.1 directly, they proved the following stronger statement.

[^0]Theorem 1.2. Suppose G is a planar graph without cycles of length 4 to 7 and f_{0} is a face of G of length $8 \leq i \leq 11$. Then every proper 3 -colouring of the vertices of f_{0} can be extended to a proper 3 -colouring of G.

The distance between two cycles C, C^{\prime} of a graph G is the shortest distance between vertices of C and C^{\prime}. Two cycles are adjacent if they have at least one edge in common. Havel asked in 1969 the question whether there is a constant C such that every planar graph with minimum distance between triangles at least C is 3 -colourable. This question also remains open. However, it was proved in [9] that if a planar graph G has no 5 -cycles and every two triangles have distance at least 4 , then G is 3 -colourable. This distance requirement between triangles is reduced to 3 in [4, 14] and then to 2 in [5]. These results motivated the following two conjectures:

Conjecture 1.3. ([9]). Every planar graph without 5 -cycles and without adjacent triangles is 3 -colourable.

Conjecture 1.4. ([6]). Every planar graph without triangles adjacent to cycles of length 3 or 5 is 3-colourable.

Conjecture 1.4 is stronger than Conjecture 1.3, and Conjecture 1.3 is stronger than Steinberg's conjecture. These conjectures remain unsettled and stimulate the study of 3-colourability of planar graphs which satisfy specific adjacency relations among short cycles. In [8], it was proved that if G is a planar graph in which no i-cycle is adjacent to a j-cycle whenever $3 \leq i \leq j \leq 7$, then G is 3 -colourable.

In this paper, we consider planar graphs in which cycles of lengths $4,6,7$ may be adjacent to each other, but the adjacency is rather limited. For a planar graph G, let H_{G} be the graph with vertex set $V\left(H_{G}\right)=\{C: C$ is a cycle of G with $|C| \in\{4,6,7\}\}$ and $E\left(H_{G}\right)=\left\{C_{i} C_{j}: C_{i}\right.$ and C_{j} are adjacent in $\left.G\right\}$. We prove the following result:

Theorem 1.5. For a planar graph G, if any 3-cycles and 5 -cycles are not adjacent to i-cycles whenever $3 \leq i \leq 7$, and H_{G} is a forest, then G is 3 -colourable.

2. Proof of Theorem 1.5

For a face f, denote by $b(f)$ the set of edges on the boundary of f. A k-vertex is a vertex of degree k. A k-face is a face f with $|b(f)|=k$. For a vertex v, $N(v)$ denotes the set of neighbors of v. For a cycle C of $G, \operatorname{int}(C)$ and $\operatorname{ext}(C)$ denote the sets of vertices lie in the interior and exterior of C, respectively. A cycle C is called a separating cycle if $\operatorname{int}(C) \neq \emptyset$ and $\operatorname{ext}(C) \neq \emptyset$. Let $c_{i}(G)$ be the number of cycles of length i in G. If u, v are two vertcies on C, we use $C[u, v]$ to denote the path of C clockwisely from u to v, and let $C(u, v)=C[u, v] \backslash\{u, v\}$,
$C[u, v)=C[u, v] \backslash\{v\}, C(u, v]=C[u, v] \backslash\{u\}$. For each path P and cycle C, we denote by $|P|$ and $|C|$ the number of vertices of P and C. Let Ω be the set of connected planar graphs satisfying the assumption of Theorem 1.5.

Theorem 1.5 follows from the following lemma:
Lemma 2.1. Suppose $G \in \Omega$ and f_{0} is an i-face of G with $3 \leq i \leq 11$. Then every proper 3 -colouring of the vertices of f_{0} can be extended to the whole G.

If Lemma 2.1 is true, then for any $G \in \Omega$, either G has no triangles, and hence by Grötzsch theorem, G is 3 -colourable, or G has a triangle C, and it follows from Lemma 2.1 that any proper 3 -colouring of C can be extended to a proper 3 -colouring of the interior as well as of the exterior of C. So it remains to prove Lemma 2.1. Assume the lemma is not true and G is a counterexample with
(1) $c(G)=c_{4}(G)+c_{5}(G)+c_{6}(G)+c_{7}(G)$ is minimum.
(2) subject to (1), $|V(G)|+|E(G)|$ is minimum.

Assume the unbounded face f^{*} is an i-face with $3 \leq i \leq 11$ and ϕ is a proper 3 -colouring of the vertices of f^{*} which cannot be extended to G. Let C^{*} be the boundary cycle of f^{*}.

By the minimality of G, G is 2 -connected, and hence each face is a cycle. Moreover, each vertex $v \in \operatorname{int}\left(C^{*}\right)$ has degree at least 3 , for otherwise, one can first extend the colouring of C^{*} to $G-v$, and then extend it to v. Also G has no separating cycles of length 3 to 11 , because if C is such a cycle, then we can first extend ϕ to $G \backslash \operatorname{int}(C)$. Then extend this colouring to $G \backslash \operatorname{ext}(C)$. Therefore, G has a proper 3 -colouring.

Observe that C^{*} has no chord, because if $e=u v$ is a chord of C^{*}, then $G-e$ is a smaller counterexample. Moreover, any cycle of G of length $4 \leq i \leq 7$ has no chord, for otherwise, we either have a 3 -cycle or a 5 -cycle adjacent to an i-cycle for some $3 \leq i \leq 7$, or we have two 4 -cycles and a 6 -cycle that are pairwise adjacent (so these three cycles form a cycle in H_{G}, contrary to our assumption).

If $4 \leq\left|C^{*}\right| \leq 7$, then let G^{\prime} be the graph obtained from G by adding $11-\left|C^{*}\right|$ vertices on one edge of C^{*}. Then $c\left(G^{\prime}\right)<c(G)$ and $G^{\prime} \in \Omega$. The colouring of C^{*} can be easily extended to the added degree 2 vertices. By the minimality of G, the colouring of the outer cycle of G^{\prime} can be extended to a 3 -colouring of G^{\prime}. Hence, G is 3 -colourable, contrary to our assumption. Thus we may assume that $\left|C^{*}\right| \neq 4,5,6,7$.

Claim 1. For each internal face f, there exists another internal face f ' such that f and f^{\prime} have exactly one edge in common. Moreover, any two internal k-faces with $4 \leq k \leq 7$ have at most one edge in common.

Proof. Let f be an internal face of G and let C be the boundary cycle of f. Certainly there is another internal face adjacent to f. Assume for each internal face
f^{\prime} adjacent to $f, b(f) \cap b\left(f^{\prime}\right)$ contains at least two edges. Then either $b(f) \cap b\left(f^{\prime}\right)$ contains two edges e_{1}, e_{2} that have a vertex in common or $C-b(f) \cap b\left(f^{\prime}\right)$ contains at least two segments. If $b(f) \cap b\left(f^{\prime}\right)$ contains two edges e_{1}, e_{2} and $e_{1} \cap e_{2} \neq \emptyset$, then $e_{1} \cap e_{2}$ is a cut-vertex or an internal 2 -vertex, which is a contradiction. Thus we assume that for each internal face f^{\prime} adjacent to $f, C-b(f) \cap b\left(f^{\prime}\right)$ has at least two segments. Note that at most one the segments of $C-b(f) \cap b\left(f^{\prime}\right)$ intersects C^{*}. Let $\beta\left(f^{\prime}\right)$ be the minimum length of those segments of $C-b(f) \cap b\left(f^{\prime}\right)$ that do not intersect C^{*}. Choose f^{\prime} so that $\beta\left(f^{\prime}\right)$ is minimum. Let P be a segment of $C-b(f) \cap b\left(f^{\prime}\right)$ of length $\beta\left(f^{\prime}\right)$ and $P \cap C^{*}=\emptyset$. Let $f^{\prime \prime} \neq f$ be a face with $b\left(f^{\prime \prime}\right) \cap P \neq \emptyset$. Then $b\left(f^{\prime \prime}\right) \cap b(f)$ is contained in P. This implies that $\beta\left(f^{\prime \prime}\right)<\beta\left(f^{\prime}\right)$, in contrary to the choice of f^{\prime}.

Suppose $4 \leq i, j \leq 7$ and there exist an internal i-face f and an internal j-face f^{\prime} such that $e_{1}, e_{2} \in b(f) \cap b\left(f^{\prime}\right)$. If $e_{1} \cap e_{2} \neq \emptyset$, then $e_{1} \cap e_{2}$ is a cut-vertex or an internal 2 -vertex. If $e_{1} \cap e_{2}=\emptyset$, then there are three cycles of length between 3 to 7 adjacent to each other, again contrary to our assumption.

Claim 2. Suppose f is an internal k-face with $4 \leq k \leq 7$ and $C=b(f)$. If $\left|V(f) \cap C^{*}\right| \geq 2$ and $u, v \in V(f) \cap C^{*}$, then either $C[u, v]$ or $C[v, u]$ is a segment of C^{*}.

Proof. Suppose none of $C[u, v]$ and $C[v, u]$ is a segment of C^{*}. Then $C[u, v] \cup C^{*}[v, u]$ and $C[v, u] \cup C^{*}[u, v]$ are separating cycles. Let $q=|C(u, v)|$, $p=|C(v, u)|$. Since any separating cycle has length at least 12 , it follows that $\left|C^{*}\right| \geq(12-p)+(12-q)-2=22-(p+q)>11$, contrary to our assumption.

Claim 3. G contains no internal k-faces with $4 \leq k \leq 7$.
Proof. Suppose G contains an internal k-face for some $k \in\{4,5,6,7\}$. Since H_{G} is acyclic, there is an internal k_{1}-face f_{1} with $k_{1} \in\{4,5,6,7\}$ such that f_{1} is adjacent to at most one face of length 4 to 7 .

If f_{1} is adjacent to a face of length 4 to 7 , then let f_{2} to be the unique face adjacent to f_{1} of length $k_{2} \in\{4,5,6,7\}$. Otherwise let f_{2} to be a face which has exactly one edge in common with f_{1}. Let C_{1}, C_{2} be the boundary cycles of f_{1}, f_{2}, respectively.

By Claim $1, C_{1} \cap C_{2}$ contains exactly one edge $x y$. For $i=1,2$, let u_{i} be the other neighbour of x in C_{i}, and let v_{i} be the other neighbour of y in C_{i}.

Since C^{*} has no chord, at most one of x, y belong to C^{*}. First we consider the case that one of x, y, say x, lies on C^{*}. If $u_{1} \notin C^{*}$ or $N(y) \cap C^{*}=\{x\}$, then let G^{\prime} be the graph obtained from G by identifying u_{1} and y into a vertex u^{*}. It is easy to see that $G^{\prime} \in \Omega$, and $c\left(G^{\prime}\right) \leq c(G)$ and $\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|<|V(G)|+|E(G)|$. By the minimality of G, the colouring of C^{*} can be extended to a proper 3-colouring ϕ of G^{\prime}. By assigning the colour of u^{*} to u_{1} and y, we obtain a proper 3 -colouring of G that is an extension of the colouring of C^{*}. This is in contrary to our assumption. So we have $u_{1} \in C^{*}$ and $N(y) \cap C^{*}-\{x\} \neq \emptyset$.

If $v_{1} \in C^{*}$, then by Claim $2, C_{1}\left[v_{1}, u_{1}\right]=C^{*}\left[v_{1}, u_{1}\right]$. If $C_{2}(x, y) \not \subset C^{*}$, then $C^{\prime}=C^{*}\left[x, v_{1}\right] \cup v_{1} y x$ is a separating cycle. But $\left|C^{\prime}\right| \leq\left|C^{*}\right| \leq 11$, which is a contradiction. If $C_{2}(x, y) \subset C^{*}$, then $v_{2} \in C^{*}$. Since f_{1} is adjacent to at most one face of length 4 to 7 , so $\left|C^{*}\left(v_{2}, v_{1}\right)\right| \geq 5$. If each of f_{1}, f_{2} has length at least 6 , then $\left|C^{*}\left[v_{1}, v_{2}\right]\right| \geq 9$. If f_{1} has length 4 , then f_{2} has length at least 6 ; If f_{1} has length 5 , then f_{2} has length at least 8 ; If f_{1} has length 6 , then f_{2} has length at least 4 , for otherwise we would have two 4 -cycles and a 6 -cycle that are pairwise adjacent, in contrary to our assumption. This implies that $\left|C^{*}\left[v_{1}, v_{2}\right]\right| \geq 7$. In any case, this is a contradiction as $\left|C^{*}\right| \leq 11$. Thus we assume that $v_{1} \notin C^{*}$.

Let $t \in N(y) \cap C^{*} \backslash\{x\}$. Since $v_{1} \notin C^{*}, C^{*}[t, x] \cup x y t$ is a separating cycle. This implies that $\left|C^{*}[t, x]\right| \geq 11$. Since f_{1} is not adjacent to a 3 -cycle, $\left|C^{*}[x, t]\right| \geq 3$, contrary to the assumption that $\left|C^{*}\right| \leq 11$.

Suppose $C^{*} \cap\{x, y\}=\emptyset$. If $u_{1} \notin C^{*}$, then identify u_{1} and y. If $v_{1} \notin C^{*}$, then identify v_{1} and x. By the minimality of G, the resulting graph G^{\prime} has a proper 3 -colouring which is an extension of the colouring of C^{*}. This induces a proper 3 -colouring of G which is an extension of the colouring of C^{*}. Thus we assume $u_{1}, v_{1} \in C^{*}$.

If there exists $t \in C^{*} \cap N(x) \backslash\left\{u_{1}\right\}$, then $\left|C^{*}\left[u_{1}, t\right]\right| \geq 7$ and $\left|C^{*}\left[t, v_{1}\right]\right| \geq 6$, otherwise f_{1} is adjacent to another cycle of length at most 7. Similarly, if there exists $t \in C^{*} \cap N(y) \backslash\left\{v_{1}\right\}$, then $\left|C^{*}\left[u_{1}, t\right]\right| \geq 6$ and $\left|C^{*}\left[t, v_{1}\right]\right| \geq 7$. In both cases we have $\left|C^{*}\right| \geq 12$, which is a contradiction. So we assume $C^{*} \cap N(x)=\left\{u_{1}\right\}$ and $C^{*} \cap N(y)=\left\{v_{1}\right\}$. In particular, $u_{2} \notin C^{*}$ and $v_{2} \notin C^{*}$. If $\left|f_{1}\right| \geq 6$, then $C^{*}\left[u_{1}, v_{1}\right] \cup v_{1} y x u_{1}$ is a separating cycle. This implies that $\left|C^{*}\left[u_{1}, v_{1}\right]\right| \geq 10$ and $\left|C^{*}\right| \geq 12$, which is a contradiction. If $\left|f_{1}\right|=4$, then we identify u_{1} and y. Hence G has a proper 3 -colouring by minimality. If $\left|f_{1}\right|=5$, let $C_{1} \backslash\left\{u_{1}, v_{1}, x, y\right\}=\{t\}$, then we identify t and x. Hence G has a proper 3 -colouring by minimality, this is a contradiction. This complete the proof of Claim 3.

Since $\left|C^{*}\right| \neq 4,5,6,7$, and G has no separating cycles of length 3 to 11 . Claim 3 implies that G has no cycles of length 4 to 7 . If $8 \leq\left|C^{*}\right| \leq 11$, then by applying Theorem 1.2, we can extend the 3 -colouring of C^{*} to the whole G. If $\left|C^{*}\right|=3$, then by applying Theorem 1.1, G is 3 -colourable, and we can extend the 3 -colouring of C^{*} to the whole G by permuting the colours. Hence this means that there is no counterexample. This complete the proof of Lemma 2.1.

References

1. H. L. Abbott and B. Zhou, On small faces in 4-critical graphs, Ars. Combin., 32 (1991), 203-207.
2. O. V. Borodin, To the paper of H. L. Abbott and B. Zhou on 4-critical planar graphs, Ars. Combin., 43 (1996), 191-192.
3. O. V. Borodin, Structural properties of plane graphs without adjacent triangles and application to 3-colourings, J. Graph Theory, 21 (1996), 183-186.
4. O. V. Borodin and A. N. Glebov, A sufficient condition for planar graph to be 3colorable, Diskret. Analyz i Issled. Pper., 10(3) (2004), 3-11, (in Russian).
5. O. V. Borodin and A. N. Glebov, Planar graphs without 5-cycles and with minimum distance between triangles at least two are 3-colorable, Manuscript, 2008.
6. O. V. Borodin, A. N. Glebov, T. R. Jensen and A. Raspaud, Planar graphs without triangles adjacent to cycles of length from 3 to 9 are 3-colorable, Siberian Electronic Mathematical Reports, 3 (2006), 428-440.
7. O. V. Borodin, A. N. Glebov, A. Raspaud and M. R. Salavatipour, Planar graphs without cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B, 93 (2005), 303-311.
8. O. V. Borodin, M. Montassier and A. Raspaud, Planar graphs without adjacent cycles of length at most seven are 3-colorable, Discrete Math., 310 (2010), 167-173.
9. O. V. Borodin and A. Raspaud, A sufficient condition for planar graph to be 3colorable, J. Combin. Theory Ser. B, 88 (2003), 17-27.
10. M. R. Garey, D. S. Johnson and L. J. Stockmeyer, Some simplified NP-complete graph problems, Theoretical Computer Science, 1 (1976), 237-267.
11. T. R. Jensen and B. Toft, Graph coloring problems, Wiley Interscience, New York, 1995.
12. D. P. Sanders and Y. Zhou, A note of the Three Color Problem, Graphs Combin., $\mathbf{1 1}$ (1995), 91-94.
13. R. Steinberg, The state of the three color problem, Quo Vadis, Graph Theory? Ann. Discrete Math., 55 (1993), 211-248.
14. B. $\mathrm{Xu}, \mathrm{A} 3$-color Theory on plane graph without 5-circuits, Acta Mathematica Sinica, 23(6) (2007), 1059-1062.

Chung-Ying Yang
Department of Applied Mathematics
National Sun Yat-sen University
Kaohsiung 80424, Taiwan
E-mail: yangcy@math.nsysu.edu.tw
Xuding Zhu
Department of Applied Mathematics
National Sun Yat-sen University
Kaohsiung 80424, Taiwan
and
National Center for Theoretical Sciences
Taiwan
E-mail: zhu@math.nsysu.edu.tw

[^0]: Received November 19, 2008, accepted March 23, 2010.
 Communicated by Hung-Lin Fu.
 2000 Mathematics Subject Classification: 05C15.
 Key words and phrases: Planar graph, Number, Cycle adjacency.
 *Partially supported by NSC 95-2115-M-110-013-MY3.

