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CYCLE ADJACENCY OF PLANAR GRAPHS AND 3-COLOURABILITY
Chung-Ying Yang and Xuding Zhu*

Abstract. Suppose G is a planar graph. Let Hg be the graph with vertex
set V(Hg) = {C : Cis a cycle of G with |C| € {4,6,7}} and E(Hg) =
{C;C; : C; and C; are adjacent in G}. We prove that if any 3-cycles and
5-cycles are not adjacent to i-cycles for 3 < ¢ < 7, and Hg is a forest, then
G is 3-colourable.

1. INTRODUCTION

As every planar graph is 4-colourable, a natural question is which planar graphs
are 3-colourable. It is known [10] that to decide whether a planar graph is 3-
colourable is NP-complete. So attention is concentrated in finding sufficient con-
ditions for planar graphs to be 3-colourable. By Grotzsch Theorem, triangle-free
planar graphs are 3-colourable. In 1976, Steinberg conjectured that every planar
graph without 4- and 5-cycles is 3-colourable (see [11]). This conjecture has re-
ceived a lot of attention and there are many partial results and related open problems.
Erdds (see [13]) suggested the following relaxation of Steinberg’s conjecture: De-
termine the minimum integer k, if it exists, such that every planar graph without
cycles of length [ for 4 <[ < k is 3-colourable. Abbott and Zhou [1] proved that
such a k exists and & < 11. This result was improved to £ < 10 in [2], then to
k<9in[3, 12],and to k£ < 7 in [7].

The following theorems were proved by Borodin et al. in [7].

Theorem 1.1. Every planar graph without cycles of length from 4 to 7 is 3-
colourable.

For the purpose of using induction, instead of proving Theorem 1.1 directly,
they proved the following stronger statement.
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Theorem 1.2. Suppose G is a planar graph without cycles of length 4 to 7
and fy is a face of GG of length 8 < ¢ < 11. Then every proper 3-colouring of the
vertices of f; can be extended to a proper 3-colouring of G.

The distance between two cycles C,C’ of a graph G is the shortest distance
between vertices of C' and C’. Two cycles are adjacent if they have at least one
edge in common. Havel asked in 1969 the question whether there is a constant C'
such that every planar graph with minimum distance between triangles at least C' is
3-colourable. This question also remains open. However, it was proved in [9] that
if a planar graph G has no 5-cycles and every two triangles have distance at least
4, then G is 3-colourable. This distance requirement between triangles is reduced
to 3 in [4, 14] and then to 2 in [5]. These results motivated the following two
conjectures:

Conjecture 1.3. ([9]). Every planar graph without 5-cycles and without adja-
cent triangles is 3-colourable.

Conjecture 1.4. ([6]). Every planar graph without triangles adjacent to cycles
of length 3 or 5 is 3-colourable.

Conjecture 1.4 is stronger than Conjecture 1.3, and Conjecture 1.3 is stronger
than Steinberg’s conjecture. These conjectures remain unsettled and stimulate the
study of 3-colourability of planar graphs which satisfy specific adjacency relations
among short cycles. In [8], it was proved that if G is a planar graph in which no
i-cycle is adjacent to a j-cycle whenever 3 <i < j <7, then GG is 3-colourable.

In this paper, we consider planar graphs in which cycles of lengths 4, 6, 7 may
be adjacent to each other, but the adjacency is rather limited. For a planar graph
G, let Hg be the graph with vertex set V(Hg) = {C : C is a cycle of G with
|C| € {4,6,7}} and E(Hg) = {C;C; : C; and C; are adjacent in G}. We prove
the following result:

Theorem 1.5. For a planar graph G, if any 3-cycles and 5-cycles are not
adjacent to i-cycles whenever 3 < i < 7, and H is a forest, then G is 3-colourable.

2. PrRoOF oF THEOREM 1.5

For a face f, denote by b(f) the set of edges on the boundary of f. A k-vertex
is a vertex of degree k. A k-face is a face f with |b(f)| = k. For a vertex v,
N (v) denotes the set of neighbors of v. For a cycle C' of G, int(C) and ext(C)
denote the sets of vertices lie in the interior and exterior of C, respectively. A cycle
C' is called a separating cycle if int(C) # 0 and ext(C) # 0. Let ¢;(G) be the
number of cycles of length i in G. If u, v are two vertcies on C, we use Cu, v] to
denote the path of C' clockwisely from w to v, and let C(u,v) = Clu, v] \ {u, v},
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Clu,v) = Clu,v] \ {v}, C(u,v] = Clu,v] \ {u}. For each path P and cycle C,
we denote by | P| and |C| the number of vertices of P and C. Let 2 be the set of
connected planar graphs satisfying the assumption of Theorem 1.5.

Theorem 1.5 follows from the following lemma:

Lemma 2.1. Suppose G € Q and fy is an i-face of G with 3 < i < 11. Then
every proper 3-colouring of the vertices of fy can be extended to the whole G.

If Lemma 2.1 is true, then for any G € €, either G has no triangles, and hence
by Grotzsch theorem, G is 3-colourable, or G has a triangle C, and it follows from
Lemma 2.1 that any proper 3-colouring of C can be extended to a proper 3-colouring
of the interior as well as of the exterior of C. So it remains to prove Lemma 2.1.
Assume the lemma is not true and G is a counterexample with

(1) ¢(G) = ca(G) + ¢5(G) + c6(G) + c7(G) is minimum.
(2) subjectto (1), |[V(G)|+ |E(G)| is minimum.

Assume the unbounded face f* is an i-face with 3 < i < 11 and ¢ is a proper
3-colouring of the vertices of f* which cannot be extended to GG. Let C* be the
boundary cycle of f*.

By the minimality of GG, G is 2-connected, and hence each face is a cycle.
Moreover, each vertex v € int(C*) has degree at least 3, for otherwise, one can
first extend the colouring of C* to G — v, and then extend it to v. Also G has no
separating cycles of length 3 to 11, because if C is such a cycle, then we can first
extend ¢ to G \ int(C). Then extend this colouring to G \ ext(C'). Therefore, G
has a proper 3-colouring.

Observe that C* has no chord, because if e = uv is a chord of C*, then G — e
is a smaller counterexample. Moreover, any cycle of G of length 4 <+¢ < 7 has no
chord, for otherwise, we either have a 3-cycle or a 5-cycle adjacent to an i-cycle for
some 3 < i < 7, or we have two 4-cycles and a 6-cycle that are pairwise adjacent
(so these three cycles form a cycle in Hg, contrary to our assumption).

If 4 < |C*| <7, then let G’ be the graph obtained from G by adding 11 — |C¥|
vertices on one edge of C*. Then ¢(G’) < ¢(G) and G’ € Q. The colouring of
C* can be easily extended to the added degree 2 vertices. By the minimality of
G, the colouring of the outer cycle of G’ can be extended to a 3-colouring of G'.
Hence, G is 3-colourable, contrary to our assumption. Thus we may assume that
|C*| # 4,5,6, 7.

Claim 1. For each internal face f, there exists another internal face f’ such
that f and f’ have exactly one edge in common. Moreover, any two internal k-faces
with 4 < k < 7 have at most one edge in common.

Proof. Let f be an internal face of GG and let C' be the boundary cycle of f.
Certainly there is another internal face adjacent to f. Assume for each internal face
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/' adjacent to f, b(f)Nb(f’) contains at least two edges. Then either b(f) N b(f’)
contains two edges e, e, that have a vertex in common or C'—b(f)Nb(f’) contains
at least two segments. If b(f) N b(f’) contains two edges e1, ez and e; Nes # 0,
then e; N ey is a cut-vertex or an internal 2-vertex, which is a contradiction. Thus
we assume that for each internal face f’ adjacent to f, C'—b(f) Nb(f’) has at least
two segments. Note that at most one the segments of C' — b(f) N b(f’) intersects
C*. Let 5(f") be the minimum length of those segments of C' — b(f) N b(f’) that
do not intersect C*. Choose f’ so that 3(f’) is minimum. Let P be a segment
of C —b(f)Nb(f) of length 5(f’) and PN C* = (. Let f” # f be a face
with b(f”) N P # 0. Then b(f”) N b(f) is contained in P. This implies that
B(f") < B(f"), in contrary to the choice of f'.

Suppose 4 < i, j < 7 and there exist an internal i-face f and an internal j-face
f’such that eq, es € b(f)Nb(f'). If e Neg # ), then e; Neg is a cut-vertex or an
internal 2-vertex. If e; N ey = (), then there are three cycles of length between 3 to
7 adjacent to each other, again contrary to our assumption. ]

Claim 2. Suppose f is an internal k-face with 4 < k£ < 7 and C = b(f). If
[V(f)NnC*| > 2and u,v € V(f)NC*, then either Clu, v] or C[v, u] is a segment
of C*.

Proof. Suppose none of Cfu,v] and C[v,u] is a segment of C*. Then
Clu,v] U C*[v,u] and C[v, u] U C*[u,v] are separating cycles. Let ¢ = |C(u,v)],
p = |C(v,u)|. Since any separating cycle has length at least 12, it follows that
|C*| > (12—p)+ (12—q) —2 = 22— (p+q) > 11, contrary to our assumption. m

Claim 3. G contains no internal k-faces with 4 < k < 7.

Proof.  Suppose G contains an internal k-face for some k € {4, 5,6, 7}. Since
Hyg is acyclic, there is an internal k,-face f; with &y € {4,5,6,7} such that f; is
adjacent to at most one face of length 4 to 7.

If f1 is adjacent to a face of length 4 to 7, then let f, to be the unique face
adjacent to f; of length ks € {4,5,6,7}. Otherwise let f» to be a face which has
exactly one edge in common with f;. Let Cq, Co be the boundary cycles of fi, fa,
respectively.

By Claim 1, C; n Cs contains exactly one edge xy. For i = 1,2, let ; be the
other neighbour of = in C;, and let v; be the other neighbour of y in C;.

Since C* has no chord, at most one of z, y belong to C*. First we consider the
case that one of z, y, say z, lieson C*. If uy ¢ C* or N(y)NC* = {z}, then let G’
be the graph obtained from G by identifying u; and y into a vertex *. It is easy to
seethat G' € Q, and ¢(G’) < ¢(G) and |V(G")| + |E(G")| < |V(G)| + |E(G)|. By
the minimality of G, the colouring of C* can be extended to a proper 3-colouring ¢
of G’. By assigning the colour of «* to w; and y, we obtain a proper 3-colouring of
G that is an extension of the colouring of C*. This is in contrary to our assumption.
So we have u; € C* and N(y) N C* — {z} # 0.
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If V1 € C*, then by Claim 2, C’l[vl,ul] = C*[vl,ul]. If Cg(x,y) §Z c*, then
C" = C*[z,v1] U yzx is a separating cycle. But |C'| < |C*| < 11, which is a
contradiction. If Cy(x,y) C C*, then vo € C*. Since f; is adjacent to at most one
face of length 4 to 7, so |C*(ve,v1)| > 5. If each of fi, fo has length at least 6,
then |C*[vy, vo]| > 9. If fi has length 4, then f, has length at least 6; If f; has
length 5, then f5 has length at least 8; If f; has length 6, then f, has length at
least 4, for otherwise we would have two 4-cycles and a 6-cycle that are pairwise
adjacent, in contrary to our assumption. This implies that |C*[vy, vo]| > 7. In any
case, this is a contradiction as |C*| < 11. Thus we assume that v; ¢ C*.

Lett € N(y) N C*\ {z}. Since v; ¢ C*, C*[t,z] U xyt is a separating
cycle. This implies that |C*[t, ]| > 11. Since f; is not adjacent to a 3-cycle,
|C*[x, t]| > 3, contrary to the assumption that |C*| < 11.

Suppose C* N {x,y} = 0. If uy ¢ C*, then identify u; and y. If v; & C*,
then identify v; and z. By the minimality of G, the resulting graph G’ has a proper
3-colouring which is an extension of the colouring of C*. This induces a proper
3-colouring of G which is an extension of the colouring of C*. Thus we assume
U1, V1 € c*.

If there exists t € C* N N (z) \ {u1}, then |C*[uq,t]| > 7 and |C*[t, v1]| > 6,
otherwise f1 is adjacent to another cycle of length at most 7. Similarly, if there
existst € C*NN(y)\ {v1}, then |C*[uy,t]| > 6 and |C*[t, v1]| > 7. In both cases
we have |C*| > 12, which is a contradiction. So we assume C* N N(z) = {u1}
and C* N N(y) = {v1}. In particular, uy ¢ C* and vo & C*. If |f1| > 6, then
C*[uy,v1) Uviyzu, is a separating cycle. This implies that |C*[uq, v1]| > 10 and
|C*| > 12, which is a contradiction. If |f;| = 4, then we identify «; and y. Hence
G has a proper 3-colouring by minimality. If |fi| = 5, let Cy \ {u1,v1, z,y} = {t},
then we identify ¢ and z. Hence G has a proper 3-colouring by minimality, this is
a contradiction. This complete the proof of Claim 3. ]

Since |C*| # 4,5,6,7,and G has no separating cycles of length 3 to 11. Claim
3 implies that G has no cycles of length 4 to 7. If 8 < |C*| < 11, then by applying
Theorem 1.2, we can extend the 3-colouring of C* to the whole G. If |C*| = 3,
then by applying Theorem 1.1, G is 3-colourable, and we can extend the 3-colouring
of C* to the whole G by permuting the colours. Hence this means that there is no
counterexample. This complete the proof of Lemma 2.1.

REFERENCES

1. H. L. Abbott and B. Zhou, On small faces in 4-critical graphs, Ars. Combin., 32
(1991), 203-207.

2. O. V. Borodin, To the paper of H. L. Abbott and B. Zhou on 4-critical planar graphs,
Ars. Combin., 43 (1996), 191-192.

3. O. V. Borodin, Structural properties of plane graphs without adjacent triangles and
application to 3-colourings, J. Graph Theory, 21 (1996), 183-186.



1580

10.

11.

12.

13.

14.

Chung-Ying Yang and Xuding Zhu

O. V. Boradin and A. N. Glebov, A sufficient condition for planar graph to be 3-
colorable, Diskret. Analyz i Issled. Pper., 10(3) (2004), 3-11, (in Russian).

O. V. Borodin and A. N. Glebov, Planar graphs without 5-cycles and with minimum
distance between triangles at least two are 3-colorable, Manuscript, 2008.

O. V. Borodin, A. N. Glebov, T. R. Jensen and A. Raspaud, Planar graphs without
triangles adjacent to cycles of length from 3 to 9 are 3-colorable, Siberian Electronic
Mathematical Reports, 3 (2006), 428-440.

O. V. Borodin, A. N. Glebov, A. Raspaud and M. R. Salavatipour, Planar graphs
without cycles of length from 4 to 7 are 3-colorable, J. Combin. Theory Ser. B, 93
(2005), 303-311.

0. V. Borodin, M. Montassier and A. Raspaud, Planar graphs without adjacent cycles
of length at most seven are 3-colorable, Discrete Math., 310 (2010), 167-173.

O. V. Borodin and A. Raspaud, A sufficient condition for planar graph to be 3-
colorable, J. Combin. Theory Ser. B, 88 (2003), 17-27.

M. R. Garey, D. S. Johnson and L. J. Stockmeyer, Some simplified NP-complete
graph problems, Theoretical Computer Science, 1 (1976), 237-267.

T. R. Jensen and B. Toft, Graph coloring problems, Wiley Interscience, New York,
1995.

D. P. Sanders and Y. Zhou, A note of the Three Color Problem, Graphs Combin., 11
(1995), 91-94.

R. Steinberg, The state of the three color problem, Quo Vadis, Graph Theory? Ann.
Discrete Math., 55 (1993), 211-248.

B. Xu, A 3-color Theory on plane graph without 5-circuits, Acta Mathematica Sinica,
23(6) (2007), 1059-1062.

Chung-Ying Yang

Department of Applied Mathematics
National Sun Yat-sen University
Kaohsiung 80424, Taiwan

E-mail: yangcy@math.nsysu.edu.tw

Xuding Zhu

Department of Applied Mathematics
National Sun Yat-sen University
Kaohsiung 80424, Taiwan

and

National Center for Theoretical Sciences
Taiwan
E-mail: zhu@math.nsysu.edu.tw



