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CYCLE ADJACENCY OF PLANAR GRAPHS AND 3-COLOURABILITY

Chung-Ying Yang and Xuding Zhu*

Abstract. Suppose G is a planar graph. Let HG be the graph with vertex
set V (HG) = {C : C is a cycle of G with |C| ∈ {4, 6, 7}} and E(HG) =
{CiCj : Ci and Cj are adjacent in G}. We prove that if any 3-cycles and
5-cycles are not adjacent to i-cycles for 3 ≤ i ≤ 7, and HG is a forest, then
G is 3-colourable.

1. INTRODUCTION

As every planar graph is 4-colourable, a natural question is which planar graphs
are 3-colourable. It is known [10] that to decide whether a planar graph is 3-
colourable is NP-complete. So attention is concentrated in finding sufficient con-
ditions for planar graphs to be 3-colourable. By Grötzsch Theorem, triangle-free
planar graphs are 3-colourable. In 1976, Steinberg conjectured that every planar
graph without 4- and 5-cycles is 3-colourable (see [11]). This conjecture has re-
ceived a lot of attention and there are many partial results and related open problems.
Erd"os (see [13]) suggested the following relaxation of Steinberg’s conjecture: De-
termine the minimum integer k, if it exists, such that every planar graph without
cycles of length l for 4 ≤ l ≤ k is 3-colourable. Abbott and Zhou [1] proved that
such a k exists and k ≤ 11. This result was improved to k ≤ 10 in [2], then to
k ≤ 9 in [3, 12], and to k ≤ 7 in [7].

The following theorems were proved by Borodin et al. in [7].

Theorem 1.1. Every planar graph without cycles of length from 4 to 7 is 3-
colourable.

For the purpose of using induction, instead of proving Theorem 1.1 directly,
they proved the following stronger statement.
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Theorem 1.2. Suppose G is a planar graph without cycles of length 4 to 7
and f0 is a face of G of length 8 ≤ i ≤ 11. Then every proper 3-colouring of the
vertices of f0 can be extended to a proper 3-colouring of G.

The distance between two cycles C, C′ of a graph G is the shortest distance
between vertices of C and C′. Two cycles are adjacent if they have at least one
edge in common. Havel asked in 1969 the question whether there is a constant C

such that every planar graph with minimum distance between triangles at least C is
3-colourable. This question also remains open. However, it was proved in [9] that
if a planar graph G has no 5-cycles and every two triangles have distance at least
4, then G is 3-colourable. This distance requirement between triangles is reduced
to 3 in [4, 14] and then to 2 in [5]. These results motivated the following two
conjectures:

Conjecture 1.3. ([9]). Every planar graph without 5-cycles and without adja-
cent triangles is 3-colourable.

Conjecture 1.4. ([6]). Every planar graph without triangles adjacent to cycles
of length 3 or 5 is 3-colourable.

Conjecture 1.4 is stronger than Conjecture 1.3, and Conjecture 1.3 is stronger
than Steinberg’s conjecture. These conjectures remain unsettled and stimulate the
study of 3-colourability of planar graphs which satisfy specific adjacency relations
among short cycles. In [8], it was proved that if G is a planar graph in which no
i-cycle is adjacent to a j-cycle whenever 3 ≤ i ≤ j ≤ 7, then G is 3-colourable.

In this paper, we consider planar graphs in which cycles of lengths 4, 6, 7 may
be adjacent to each other, but the adjacency is rather limited. For a planar graph
G, let HG be the graph with vertex set V (HG) = {C : C is a cycle of G with
|C| ∈ {4, 6, 7}} and E(HG) = {CiCj : Ci and Cj are adjacent in G}. We prove
the following result:

Theorem 1.5. For a planar graph G, if any 3-cycles and 5-cycles are not
adjacent to i-cycles whenever 3 ≤ i ≤ 7, and HG is a forest, then G is 3-colourable.

2. PROOF OF THEOREM 1.5

For a face f , denote by b(f) the set of edges on the boundary of f . A k-vertex
is a vertex of degree k. A k-face is a face f with |b(f)| = k. For a vertex v,
N (v) denotes the set of neighbors of v. For a cycle C of G, int(C) and ext(C)
denote the sets of vertices lie in the interior and exterior of C, respectively. A cycle
C is called a separating cycle if int(C) �= ∅ and ext(C) �= ∅. Let ci(G) be the
number of cycles of length i in G. If u, v are two vertcies on C, we use C[u, v] to
denote the path of C clockwisely from u to v, and let C(u, v) = C[u, v] \ {u, v},
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C[u, v) = C[u, v] \ {v}, C(u, v] = C[u, v] \ {u}. For each path P and cycle C,
we denote by |P | and |C| the number of vertices of P and C. Let Ω be the set of
connected planar graphs satisfying the assumption of Theorem 1.5.

Theorem 1.5 follows from the following lemma:

Lemma 2.1. Suppose G ∈ Ω and f0 is an i-face of G with 3 ≤ i ≤ 11. Then
every proper 3-colouring of the vertices of f0 can be extended to the whole G.

If Lemma 2.1 is true, then for any G ∈ Ω, either G has no triangles, and hence
by Grötzsch theorem, G is 3-colourable, or G has a triangle C, and it follows from
Lemma 2.1 that any proper 3-colouring of C can be extended to a proper 3-colouring
of the interior as well as of the exterior of C. So it remains to prove Lemma 2.1.
Assume the lemma is not true and G is a counterexample with

(1) c(G) = c4(G) + c5(G) + c6(G) + c7(G) is minimum.
(2) subject to (1), |V (G)|+ |E(G)| is minimum.

Assume the unbounded face f ∗ is an i-face with 3 ≤ i ≤ 11 and φ is a proper
3-colouring of the vertices of f∗ which cannot be extended to G. Let C∗ be the
boundary cycle of f∗.

By the minimality of G, G is 2-connected, and hence each face is a cycle.
Moreover, each vertex v ∈ int(C∗) has degree at least 3, for otherwise, one can
first extend the colouring of C∗ to G − v, and then extend it to v. Also G has no
separating cycles of length 3 to 11, because if C is such a cycle, then we can first
extend φ to G \ int(C). Then extend this colouring to G \ ext(C). Therefore, G

has a proper 3-colouring.
Observe that C∗ has no chord, because if e = uv is a chord of C∗, then G− e

is a smaller counterexample. Moreover, any cycle of G of length 4 ≤ i ≤ 7 has no
chord, for otherwise, we either have a 3-cycle or a 5-cycle adjacent to an i-cycle for
some 3 ≤ i ≤ 7, or we have two 4-cycles and a 6-cycle that are pairwise adjacent
(so these three cycles form a cycle in HG, contrary to our assumption).

If 4 ≤ |C∗| ≤ 7, then let G′ be the graph obtained from G by adding 11− |C∗|
vertices on one edge of C∗. Then c(G′) < c(G) and G′ ∈ Ω. The colouring of
C∗ can be easily extended to the added degree 2 vertices. By the minimality of
G, the colouring of the outer cycle of G′ can be extended to a 3-colouring of G′.
Hence, G is 3-colourable, contrary to our assumption. Thus we may assume that
|C∗| �= 4, 5, 6, 7.

Claim 1. For each internal face f , there exists another internal face f ′ such
that f and f ′ have exactly one edge in common. Moreover, any two internal k-faces
with 4 ≤ k ≤ 7 have at most one edge in common.

Proof. Let f be an internal face of G and let C be the boundary cycle of f .
Certainly there is another internal face adjacent to f . Assume for each internal face
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f ′ adjacent to f , b(f)∩ b(f ′) contains at least two edges. Then either b(f)∩ b(f ′)
contains two edges e1, e2 that have a vertex in common or C−b(f)∩b(f′) contains
at least two segments. If b(f) ∩ b(f ′) contains two edges e1, e2 and e1 ∩ e2 �= ∅,
then e1 ∩ e2 is a cut-vertex or an internal 2-vertex, which is a contradiction. Thus
we assume that for each internal face f ′ adjacent to f , C − b(f)∩ b(f ′) has at least
two segments. Note that at most one the segments of C − b(f) ∩ b(f ′) intersects
C∗. Let β(f ′) be the minimum length of those segments of C − b(f) ∩ b(f ′) that
do not intersect C∗. Choose f ′ so that β(f ′) is minimum. Let P be a segment
of C − b(f) ∩ b(f ′) of length β(f ′) and P ∩ C∗ = ∅. Let f ′′ �= f be a face
with b(f ′′) ∩ P �= ∅. Then b(f ′′) ∩ b(f) is contained in P . This implies that
β(f ′′) < β(f ′), in contrary to the choice of f′.

Suppose 4 ≤ i, j ≤ 7 and there exist an internal i-face f and an internal j-face
f ′ such that e1, e2 ∈ b(f)∩ b(f ′). If e1 ∩ e2 �= ∅, then e1 ∩ e2 is a cut-vertex or an
internal 2-vertex. If e1 ∩ e2 = ∅, then there are three cycles of length between 3 to
7 adjacent to each other, again contrary to our assumption.

Claim 2. Suppose f is an internal k-face with 4 ≤ k ≤ 7 and C = b(f). If
|V (f)∩C∗| ≥ 2 and u, v ∈ V (f)∩C∗, then either C[u, v] or C[v, u] is a segment
of C∗.

Proof. Suppose none of C[u, v] and C[v, u] is a segment of C∗. Then
C[u, v] ∪ C∗[v, u] and C[v, u] ∪ C∗[u, v] are separating cycles. Let q = |C(u, v)|,
p = |C(v, u)|. Since any separating cycle has length at least 12, it follows that
|C∗| ≥ (12−p)+ (12− q)−2 = 22− (p+ q) > 11, contrary to our assumption.

Claim 3. G contains no internal k-faces with 4 ≤ k ≤ 7.
Proof. Suppose G contains an internal k-face for some k ∈ {4, 5, 6, 7}. Since

HG is acyclic, there is an internal k1-face f1 with k1 ∈ {4, 5, 6, 7} such that f1 is
adjacent to at most one face of length 4 to 7.

If f1 is adjacent to a face of length 4 to 7, then let f2 to be the unique face
adjacent to f1 of length k2 ∈ {4, 5, 6, 7}. Otherwise let f2 to be a face which has
exactly one edge in common with f1. Let C1, C2 be the boundary cycles of f1, f2,
respectively.

By Claim 1, C1 ∩ C2 contains exactly one edge xy. For i = 1, 2, let ui be the
other neighbour of x in Ci, and let vi be the other neighbour of y in Ci.

Since C∗ has no chord, at most one of x, y belong to C∗. First we consider the
case that one of x, y, say x, lies on C∗. If u1 �∈ C∗ or N (y)∩C∗ = {x}, then let G′

be the graph obtained from G by identifying u1 and y into a vertex u∗. It is easy to
see that G′ ∈ Ω, and c(G′) ≤ c(G) and |V (G′)|+ |E(G′)| < |V (G)|+ |E(G)|. By
the minimality of G, the colouring of C∗ can be extended to a proper 3-colouring φ
of G′. By assigning the colour of u∗ to u1 and y, we obtain a proper 3-colouring of
G that is an extension of the colouring of C∗. This is in contrary to our assumption.
So we have u1 ∈ C∗ and N (y) ∩ C∗ − {x} �= ∅.
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If v1 ∈ C∗, then by Claim 2, C1[v1, u1] = C∗[v1, u1]. If C2(x, y) �⊂ C∗, then
C′ = C∗[x, v1] ∪ v1yx is a separating cycle. But |C′| ≤ |C∗| ≤ 11, which is a
contradiction. If C2(x, y) ⊂ C∗, then v2 ∈ C∗. Since f1 is adjacent to at most one
face of length 4 to 7, so |C∗(v2, v1)| ≥ 5. If each of f1, f2 has length at least 6,
then |C∗[v1, v2]| ≥ 9. If f1 has length 4, then f2 has length at least 6; If f1 has
length 5, then f2 has length at least 8; If f1 has length 6, then f2 has length at
least 4, for otherwise we would have two 4-cycles and a 6-cycle that are pairwise
adjacent, in contrary to our assumption. This implies that |C∗[v1, v2]| ≥ 7. In any
case, this is a contradiction as |C∗| ≤ 11. Thus we assume that v1 �∈ C∗.

Let t ∈ N (y) ∩ C∗ \ {x}. Since v1 /∈ C∗, C∗[t, x] ∪ xyt is a separating
cycle. This implies that |C∗[t, x]| ≥ 11. Since f1 is not adjacent to a 3-cycle,
|C∗[x, t]| ≥ 3, contrary to the assumption that |C∗| ≤ 11.

Suppose C∗ ∩ {x, y} = ∅. If u1 �∈ C∗, then identify u1 and y. If v1 �∈ C∗,
then identify v1 and x. By the minimality of G, the resulting graph G′ has a proper
3-colouring which is an extension of the colouring of C∗. This induces a proper
3-colouring of G which is an extension of the colouring of C∗. Thus we assume
u1, v1 ∈ C∗.

If there exists t ∈ C∗ ∩ N (x) \ {u1}, then |C∗[u1, t]| ≥ 7 and |C∗[t, v1]| ≥ 6,
otherwise f1 is adjacent to another cycle of length at most 7. Similarly, if there
exists t ∈ C∗ ∩N (y) \ {v1}, then |C∗[u1, t]| ≥ 6 and |C∗[t, v1]| ≥ 7. In both cases
we have |C∗| ≥ 12, which is a contradiction. So we assume C∗ ∩ N (x) = {u1}
and C∗ ∩ N (y) = {v1}. In particular, u2 �∈ C∗ and v2 �∈ C∗. If |f1| ≥ 6, then
C∗[u1, v1] ∪ v1yxu1 is a separating cycle. This implies that |C∗[u1, v1]| ≥ 10 and
|C∗| ≥ 12, which is a contradiction. If |f1| = 4, then we identify u1 and y. Hence
G has a proper 3-colouring by minimality. If |f1| = 5, let C1 \ {u1, v1, x, y} = {t},
then we identify t and x. Hence G has a proper 3-colouring by minimality, this is
a contradiction. This complete the proof of Claim 3.

Since |C∗| �= 4, 5, 6, 7, and G has no separating cycles of length 3 to 11. Claim
3 implies that G has no cycles of length 4 to 7. If 8 ≤ |C∗| ≤ 11, then by applying
Theorem 1.2, we can extend the 3-colouring of C∗ to the whole G. If |C∗| = 3,
then by applying Theorem 1.1, G is 3-colourable, and we can extend the 3-colouring
of C∗ to the whole G by permuting the colours. Hence this means that there is no
counterexample. This complete the proof of Lemma 2.1.
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