VALUE DISTRIBUTION OF PRODUCTS OF MEROMORPHIC FUNCTIONS AND THEIR DIFFERENCES

Zong-Xuan Chen

Abstract

In this paper, we study zeros of difference product $f(z)^{n} \Delta f(z)$ ($n \geq 2$), and the value distribution of difference product $f(z) \Delta f(z)$, where $f(z)$ is a transcendental entire function of finite order, $\Delta f(z)=f(z+c)-$ $f(z)$, where $c(\neq 0)$ is a constant such that $f(z+c) \not \equiv f(z)$.

1. Introduction and Results

In this paper, we use the basic notions of Nevanlinna's theory (see [10, 17]). In addition, we use the notation $\sigma(f)$ to denote the order of growth of the meromorphic function $f(z), \lambda(f)$ to denote the exponent of convergence of zeros of $f(z)$.

Hayman proved the following theorem in [11].
Theorem A. If $f(z)$ is a transcendental integral function and $n \geq 2$ is an integer, then $f(z)^{n} f^{\prime}(z)$ assumes all values except possibly zero infinitely often.

Clunie [7] proved that if $n=1$, then Theorem A remains valid.
Recently, many papers (see [1-6, 8, 9, 12-16]) focus on complex difference. They obtain many new results on difference utilizing the value distribution theory of meromorphic functions.

Laine and Yang [15] proved the following theorem.
Theorem B. Let $f(z)$ be a transcendental entire function of finite order, and c be a non-zero complex constant. Then for $n \geq 2, f(z)^{n} f(z+c)$ assumes every non-zero value $a \in \mathbf{C}$ infinitely often.

Liu and Yang [16] proved the following theorems.
Theorem C. Let $f(z)$ be a transcendental entire function of finite order, and c be a non-zero complex constant. Then for $n \geq 2, f(z)^{n} f(z+c)-p(z)$ has infinitely many zeros, where $p(z) \not \equiv 0$ is a polynomial in z.

Received December 12, 2009, accepted January 29, 2010.
Communicated by Alexander Vasiliev.
2000 Mathematics Subject Classification: 30D35, 39A10.
Key words and phrases: Difference, Zero, Entire function.
This project was supported by the National Natural Science Foundation of China (No. 10871076).

Theorem D. Let $f(z)$ be a transcendental entire function of finite order, and c be a non-zero complex constant, $\Delta f(z)=f(z+c)-f(z) \not \equiv 0$. Then for $n \geq 2, f(z)^{n} \Delta f(z)-p(z)$ has infinitely many zeros, where $p(z) \not \equiv 0$ is a polynomial in z.

In Theorems B, C, D, authors proved that when $n \geq 2, f(z)^{n} f(z+c)$ (or $\left.f(z)^{n} \Delta f(z)\right)$ assume every value $a \in \mathbf{C} \backslash\{0\}$ infinitely often.

The following Example 1 shows that $f(z)^{n} \Delta f(z)$ may have only finitely many zeros, may also have infinitely many zeros.

Example 1. Suppose that $c=1$ and

$$
f_{1}(z)=e^{z}, f_{2}(z)=e^{z^{2}}, f_{3}(z)=\sin z
$$

Thus,

$$
\begin{gathered}
H_{2}^{(1)}=f_{1}(z)^{2} \Delta f(z)=e^{3 z}(e-1) ; \\
H_{2}^{(2)}=f_{2}(z)^{2} \Delta f(z)=e^{3 z^{2}}\left(e^{2 z+1}-1\right) ; \\
H_{2}^{(3)}=f_{3}(z)^{2} \Delta f(z)=\sin ^{2} z(\sin (z+1)-\sin z) .
\end{gathered}
$$

From $H_{2}^{(j)}(j=1,2,3)$, we see that $H_{2}^{(2)}$ and $H_{2}^{(3)}$ have infinitely many zeros, but $H_{2}^{(1)}$ has only finitely many zeros.

Thus, it is natural to ask what condition will guarantee $f(z)^{n} \Delta f(z)(n \geq 2)$ has infinitely many zeros?

In this paper, we answer this problem, and prove the following Theorem 1.
Theorem 1. Let f be a transcendental entire function of finite order and let $c \in \mathbf{C} \backslash\{0\}$ be a constant satisfying $f(z+c) \not \equiv f(z)$. Set $H_{n}(z)=f(z)^{n} \Delta f(z)$ where $\Delta f(z)=f(z+c)-f(z), n \geq 2$ is an integer. Then the following statements hold.
(i) If $f(z)$ satisfies $\sigma(f) \neq 1$, or has infinitely many zeros, then $H_{n}(z)$ has infinitely many zeros.
(ii) If $f(z)$ has only finitely many zeros and $\sigma(f)=1$, then $H_{n}(z)$ has only finitely many zeros.

Remark 1. From Theorem 1(i), we see that $f(z)^{n} \Delta f(z)$ is differ from $f(z)^{n}$ $f(z+c)(n \geq 2)$. For example, the function $f(z)=e^{z^{2}}$ has no zero, and $f(z)^{2}$ $f(z+c)=e^{3 z^{2}+2 c z+c^{2}}$ (where $c \in \mathbf{C} \backslash\{0\}$ is a constant satisfying $f(z+c) \not \equiv f(z)$) has no zero either. But $f(z)^{2} \Delta f(z)=e^{3 z^{2}}\left(e^{2 c z+c^{2}}-1\right)$ has infinitely many zeros.

By Theorem 1 and Theorem D, we easily obtain the following corollary.
Corollary 1. Let f be a transcendental entire function of finite order and let $c \in \mathbf{C} \backslash\{0\}$ be a constant satisfying $f(z+c) \not \equiv f(z)$. Set $H_{n}(z)=f(z)^{n} \Delta f(z)$ where $\Delta f(z)=f(z+c)-f(z), n \geq 2$ is an integer.

If $\sigma(f) \neq 1$, or has infinitely many zeros, then $H_{n}(z)$ takes every value $a \in \mathbf{C}$ (including $a=0$) infinitely often.

The other aim of this paper is to study the value distribution of difference product $f(z) \Delta f(z)$, i.e. the case $n=1$. We prove the following Theorems 2-5.

Theorem 2. Let f be a finite order transcendental entire function with a finite Borel exceptional value d, and let $c \in \mathbf{C} \backslash\{0\}$ be a constant satisfying $f(z+c) \not \equiv$ $f(z)$. Set $H(z)=f(z) \Delta f(z)$ where $\Delta f(z)=f(z+c)-f(z)$. Then the following statements hold.
(i) $H(z)$ takes every non-zero value $a \in \mathbf{C}$ infinitely often and satisfies $\lambda(H-$ $a)=\sigma(f)$.
(ii) If $d \neq 0$, then $H(z)$ has no any finite Borel exceptional value.
(iii) If $d=0$, then 0 is also the Borel exceptional value of $H(z)$. So that $H(z)$ has no non-zero finite Borel exceptional value.

Remark 2. From Theorem 2, we see that $f(z) \Delta f(z)$ is differ from $f(z) f(z+c)$. For example, the function $f(z)=e^{z}+1$ has the Borel exceptional value 1 , and

$$
f(z) f(z+\pi i)=1-e^{2 z}
$$

has the Borel exceptional value 1 either. But by Theorem 2, we see that $f(z) \Delta f(z)$ (with $c=\pi i$) has no finite Borel exceptional value.

Theorem 3. Let f be a transcendental entire function of finite order and let $c \in \mathbf{C} \backslash\{0\}$ be a constant satisfying $f(z+c) \not \equiv f(z)$. Set $H(z)=f(z) \Delta f(z)$ where $\Delta f(z)=f(z+c)-f(z)$.

If $f(z)$ has infinitely many multi-order zeros, then $H(z)$ takes every value $a \in \mathbf{C}$ (including $a=0$) infinitely often.

Theorem 4. Let f be a transcendental entire function of finite order and let $c \in \mathbf{C} \backslash\{0\}$ be a constant satisfying $f(z+c) \not \equiv f(z)$. Set $H(z)=f(z) \Delta f(z)$ where $\Delta f(z)=f(z+c)-f(z)$.

If there exists an infinite sequence $\left\{z_{n}\right\}$ satisfying $f\left(z_{n}\right)=f\left(z_{n}+c\right)=0$, then $H(z)$ takes every value $a \in \mathbf{C}$ (including $a=0$) infinitely often.

Theorem 5. Let f be a transcendental entire function of finite order and let $c \in \mathbf{C} \backslash\{0\}$ be a constant satisfying $f(z+c) \not \equiv f(z)$. Set $H(z)=f(z) \Delta f(z)$ where $\Delta f(z)=f(z+c)-f(z)$.
(i) If $f(z)$ has only finitely many zeros and $\sigma(f) \neq 1$, or has infinitely many zeros, then $H(z)$ has infinitely many zeros.
(ii) If $f(z)$ has only finitely many zeros and $\sigma(f)=1$, then $H(z)$ has only finitely many zeros.

Example 2. An entire function $f(z)=e^{z^{2}}$ satisfies Theorem 2(iii), it has the Borel exceptional value 0 , and

$$
H(z)=e^{2 z^{2}}\left[e^{2 c z+c^{2}}-1\right]
$$

has also the Borel exceptional value 0 since $\lambda(H)=1<\sigma(H)=2$.
Simultaneity, $f(z)=e^{z^{2}}$ also satisfies Theorem 5(i), although $f(z)$ has no zero, $H(z)$ has infinitely many zeros since $\sigma(f) \neq 1$.

Example 3. An entire function $f(z)=e^{z}+1$ satisfies Theorem 2(ii), although it has the Borel exceptional value $1(\neq 0)$,

$$
H(z)=e^{z}\left(e^{z}+1\right)\left(e^{c}-1\right)(c \neq 2 k \pi i(k \text { is an integer }))
$$

has no finite Borel exceptional value.

2. The Proofs of Theorems 1

We need the following lemmas for the proof of Theorem 1.
Lemma 2.1. ([18, p.79-80]). Let $f_{j}(z)(j=1, \cdots, n)(n \geq 2)$ be meromorphic functions, $g_{j}(z)(j=1, \cdots, n)$ be entire functions, and satisfy
(i) $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)} \equiv 0$;
(ii) when $1 \leq j<k \leq n, g_{j}(z)-g_{k}(z)$ is not a constant;
(iii) when $1 \leq j \leq n, 1 \leq h<k \leq n$,

$$
T\left(r, f_{j}\right)=o\left\{T\left(r, e^{g_{h}-g_{k}}\right)\right\}(r \rightarrow \infty, r \notin E)
$$

where $E \subset(1, \infty)$ is of finite linear measure or finite logarithmic measure.
Then $f_{j}(z) \equiv 0(j=1, \cdots, n)$.
Lemma 2.2. (see [8]). Let f be a non-constant finite-order meromorphic solution of

$$
f^{n} P(z, f)=Q(z, f)
$$

where $P(z, f), Q(z, f)$ are difference polynomials in f, and let $\delta<1$. If the degree of $Q(r, f)$ as a polynomial in f and its shifts is at most n, then

$$
m(r, P(z, f))=o\left(\frac{T(r+|c|, f)}{r^{\delta}}+o(T(r, f))\right.
$$

for all r outside of a possible exceptional set with finite logarithmic measure.

Lemma 2.3. Let f be a transcendental entire function of finite order and let $c \in \mathbf{C} \backslash\{0\}$ be a constant satisfying $f(z+c) \not \equiv f(z)$. Then $H_{n}(z)=f(z)^{n} \Delta f(z)$ ($n \geq 1$) is transcendental.

Proof. If $H_{n}(z) \equiv 0$, then $\Delta f(z) \equiv 0$ which contradicts our condition $f(z+c) \not \equiv$ $f(z)$.

Now we suppose that

$$
\begin{equation*}
H_{n}(z)=f(z)^{n} \Delta f(z)=P(z) \tag{2.1}
\end{equation*}
$$

where $P(z)(\not \equiv 0)$ is a polynomial. Applying Lemma 2.2 to (2.1), we obtain that

$$
T(r, \Delta f)=m(r, \Delta f)=S(r, f)
$$

for all r outside of a possible exceptional set with finite logarithmic measure. Thus,

$$
\begin{equation*}
T\left(r, \frac{1}{\Delta f}\right)=S(r, f) \tag{2.2}
\end{equation*}
$$

for all r outside of a possible exceptional set with finite logarithmic measure. By (2.1) and (2.2), we obtain that

$$
T\left(r, f^{n}\right)=T\left(r, \frac{P(z)}{\Delta f(z)}\right) \leq T(r, P)+T\left(r, \frac{1}{\Delta f(z)}\right)=S(r, f) .
$$

This is a contradiction. Hence $H_{n}(z)$ is a transcendental entire function.
The Proof of Theorem 1.
(i) If $f(z)$ has infinitely many zeros, then $H_{n}(z)$ has infinitely many zeros since $\Delta f(z)$ is an entire function and $\Delta f(z) \not \equiv 0$.

Now we suppose that $f(z)$ has only finitely many zeros and $\sigma(f) \neq 1$. Thus since f is transcendental, $f(z)$ can be written as the form

$$
f(z)=g(z) e^{h(z)}
$$

where $g(z)(\not \equiv 0), h(z)$ are polynomials, $\operatorname{deg} h(z) \geq 2$. Thus

$$
f(z+c)=g(z+c) e^{h(z+c)} .
$$

Now we suppose that $H_{n}(z)$ has only finitely many zeros. By Lemma 2.3, we see that $H_{n}(z)$ is transcendental. So, $H_{n}(z)$ can be written as
(2.3) $H_{n}(z)=g(z)^{n} g(z+c) e^{n h(z)+h(z+c)}-g(z)^{n+1} e^{(n+1) h(z)}=g_{1}(z) e^{h_{1}(z)}$, where $g_{1}(z)(\not \equiv 0), h_{1}(z)$ are polynomials, $\operatorname{deg} h_{1}(z) \geq 1$. Set

$$
h(z)=a_{m} z^{m}+a_{m-1} z^{m-1}+\cdots+a_{0}, a_{m} \neq 0,
$$

where a_{m}, \cdots, a_{0} are constants. By $\sigma(f) \neq 1$, we see that $m \geq 2$. Thus,

$$
h(z+c)=a_{m} z^{m}+\left(a_{m} m c+a_{m-1}\right) z^{m-1}+a_{m-2}^{\prime} z^{m-2} \cdots+a_{0}^{\prime}
$$

where $a_{m-2}^{\prime}, \cdots, a_{0}^{\prime}$ are constants. Since $m \geq 2$ and

$$
(n+1) a_{m-1} \neq a_{m} m c+(n+1) a_{m-1}
$$

we see that $(n+1) h(z)-(n h(z)+h(z+c))$ is not a constant.
If $n h(z)+h(z+c)-h_{1}(z)$ and $(n+1) h(z)-h_{1}(z)$ are not constants, then by (2.3) and Lemma 2.1, we see that

$$
g(z)^{n} g(z+c) \equiv 0, g(z)^{n+1} \equiv 0, g_{1}(z) \equiv 0
$$

which is a contradiction.
If $n h(z)+h(z+c)-h_{1}(z)=\delta$ where δ is a constant, then by (2.3), we have

$$
\begin{equation*}
\left[g(z)^{n} g(z+c)-e^{-\delta} g_{1}(z)\right] e^{n h(z)+h(z+c)}-g(z)^{n+1} e^{(n+1) h(z)}=0 \tag{2.4}
\end{equation*}
$$

By (2.4) and Lemma 2.1, we obtain that

$$
g(z)^{n} g(z+c)-e^{-\delta} g_{1}(z) \equiv 0, g(z)^{n+1} \equiv 0
$$

which is also a contradiction.
If $(n+1) h(z)-h_{1}(z)$ is a constant, then using the same method, we also obtain a contradiction.

Hence, $H_{n}(z)$ has infinitely many zeros.
(ii) Suppose that $f(z)$ has only finitely many zeros and $\sigma(f)=1$. Then $f(z)$ can be written as the form

$$
f(z)=p^{*}(z) e^{b z+d}
$$

where $p^{*}(z)(\not \equiv 0)$ is a polynomial, $b(\neq 0)$ and d are constants. Thus

$$
f(z+c)=p^{*}(z+c) e^{b c} e^{b z+d}
$$

and

$$
H_{n}(z)=\left\{\left(p^{*}(z)\right)^{n}\left(p^{*}(z+c) e^{b c}-p^{*}(z)\right)\right\} e^{(n+1)(b z+d)}
$$

By the condition $f(z+c) \not \equiv f(z)$ of the theorem, we see that $p^{*}(z+c) e^{b c}-p^{*}(z) \not \equiv 0$. Hence $H_{n}(z)$ has only finitely many zeros.

3. The Proofs of Theorems 2

First, we prove (ii) and (iii)
(ii) Suppose that $d(\neq 0)$ is the Borel exceptional value of $f(z)$. Then $f(z)$ can be written as the form

$$
f(z)=d+p(z) e^{\alpha z^{k}}
$$

where k is a positive integer, $\alpha(\neq 0)$ ia a constant, $p(z)(\not \equiv 0)$ is an entire function satisfying

$$
\sigma(p)<\sigma(f)=k
$$

Thus

$$
f(z+c)=d+p(z+c) p_{1}(z) e^{\alpha z^{k}}
$$

$p_{1}(z)(\not \equiv 0)$ is an entire function satisfying $\sigma\left(p_{1}\right)=k-1$. So that,
(3.1) $H(z)=p(z)\left[p(z+c) p_{1}(z)-p(z)\right] e^{2 \alpha z^{k}}+d\left[p(z+c) p_{1}(z)-p(z)\right] e^{\alpha z^{k}}$.

Since $f(z) \not \equiv f(z+c)$, we see that

$$
\begin{equation*}
p(z+c) p_{1}(z)-p(z) \not \equiv 0 \tag{3.2}
\end{equation*}
$$

By (3.1) and (3.2), we see that

$$
\begin{equation*}
\sigma(H)=\sigma(f)=k \tag{3.3}
\end{equation*}
$$

If $H(z)$ has the Borel exceptional value d^{*}, then

$$
\begin{equation*}
H(z)=d^{*}+p^{*}(z) e^{\beta z^{k}} \tag{3.4}
\end{equation*}
$$

where $\beta(\neq 0)$ ia a constant, $p^{*}(z)(\not \equiv 0)$ is an entire function satisfying

$$
\sigma\left(p^{*}\right)<\sigma(H)=k
$$

By (3.1) and (3.4), we have

$$
\begin{gather*}
p(z)\left[p(z+c) p_{1}(z)-p(z)\right] e^{2 \alpha z^{k}} \\
+d\left[p(z+c) p_{1}(z)-p(z)\right] e^{\alpha z^{k}}-p^{*}(z) e^{\beta z^{k}}-d^{*}=0 \tag{3.5}
\end{gather*}
$$

If $\beta \neq \alpha$ and $\beta \neq 2 \alpha$, then by Lemma 2.1 and (3.5), we can obtain that

$$
p(z+c) p_{1}(z)-p(z) \equiv 0
$$

This contradicts (3.2).
If $\beta=2 \alpha$ or $\beta=\alpha$, then using the same method as above, we also obtain a contradiction.

Hence $H(z)$ has no the Borel exceptional value.
(iii) Now suppose that $d=0$ is the Borel exceptional value of $f(z)$. Using the same method as above, we obtain (3.1) with $d=0$, i.e.

$$
\begin{equation*}
H(z)=p(z)\left[p(z+c) p_{1}(z)-p(z)\right] e^{2 \alpha z^{k}} \tag{3.6}
\end{equation*}
$$

Since $p(z)\left[p(z+c) p_{1}(z)-p(z)\right] \not \equiv 0$ and

$$
\begin{equation*}
\sigma\left(p(z)\left[p(z+c) p_{1}(z)-p(z)\right]\right)<k \tag{3.7}
\end{equation*}
$$

by (3.6) and (3.7), we see that $H(z)$ has the finite Borel exceptional value 0 . So that $H(z)$ has no non-zero finite Borel exceptional value.

Finally, we prove (i).
By assert of (ii) and (iii), we see that if $f(z)$ has the finite Borel exceptional value, then any non-zero finite value a must not be the Borel exceptional value of $H(z)$. Hence $H(z)$ takes the value a infinitely often. By (3.3), we obtain $\lambda(H-a)=\sigma(H)=\sigma(f)$.

4. The Proofs of Theorems 3 and 4

The Proof of Theorem 3. Clearly, if $a=0$, then $H(z)$ has infinitely many zeros since $\Delta f(z)$ is an entire function and $f(z)$ has infinitely many zeros.

Now we suppose that $a \neq 0$. Suppose that $H(z)-a$ has only finitely many zeros. Then $H(z)-a$ can be written as the form

$$
\begin{equation*}
H(z)=f(z) f(z+c)-f(z)^{2}-a=p(z) e^{q(z)} \tag{4.1}
\end{equation*}
$$

where $p(z), q(z)$ are polynomials. By Lemma 2.3 , we see that $p(z) \not \equiv 0, \operatorname{deg} q(z) \geq$ 1. Differentiating (4.1) and eliminating $e^{q(z)}$, we obtain that

$$
\begin{gather*}
\frac{[f(z) f(z+c)]^{\prime}}{f(z) f(z+c)}-\frac{[2 f(z)]^{\prime}}{f(z+c)} \\
=\frac{p^{\prime}(z)+p(z) q^{\prime}(z)}{p}\left\{1-\frac{f(z)}{f(z+c)}-\frac{a}{f(z) f(z+c)}\right\} \tag{4.2}
\end{gather*}
$$

Since $p(z) \not \equiv 0, q(z)$ are polynomials and $\operatorname{deg} q(z) \geq 1$, we can see that $p^{\prime}(z)+$ $\left.p(z) q^{\prime}(z)\right) \not \equiv 0$. Since $f(z)$ has infinitely many multi-order zeros, we see that there is a sufficiently large point z_{0} such that $f(z)$ has zero at the point z_{0} of multiplicity $k \geq 2$, and $p^{\prime}\left(z_{0}\right)+p\left(z_{0}\right) q^{\prime}\left(z_{0}\right) \neq 0, p\left(z_{0}\right) \neq 0$ at the same time.

If $f(z+c)$ has zero at z_{0} of multiplicity $k_{c} \geq 1$, then $\frac{[f(z) f(z+c)]^{\prime}}{f(z) f(z+c)}$ has a simple pole at $z_{0} ;-\frac{[2 f(z)]^{\prime}}{f(z+c)}$ has pole at z_{0} of multiplicity $k_{c}-k+1 ; \frac{f(z)}{f(z+c)}$ has pole at
z_{0} of multiplicity $k_{c}-k$; but $\frac{a}{f(z) f(z+c)}$ has pole at z_{0} of multiplicity $k_{c}+k$. This shows (4.2) is a contradiction.

If $f\left(z_{0}+c\right) \neq 0$, then $\frac{[f(z) f(z+c)]^{\prime}}{f(z) f(z+c)}$ has a simple pole at $z_{0} ;-\frac{\left[2 f\left(z_{0}\right)\right]^{\prime}}{f(z+c)}=0$; $\frac{f\left(z_{0}\right)}{f\left(z_{0}+c\right)}=0$. But $\frac{a}{f(z) f(z+c)}$ has pole at z_{0} of multiplicity $k \geq 2$. This shows (4.2) is also a contradiction.

Hence $H(z)$ takes every value a infinitely often.
The Proof of Theorem 4. Using the same method as in the proof of Theorem 3, we can prove Theorem 4.

5. The Proof OF Theorem 5

(i) If $f(z)$ has infinitely many zeros, then $H(z)$ has infinitely many zeros since $\Delta f(z)$ is an entire function and $\Delta f(z) \not \equiv 0$.

Now we suppose that $f(z)$ has only finitely many zeros and $\sigma(f) \neq 1$. Thus $f(z)$ can be written as the form

$$
\begin{equation*}
f(z)=p(z) e^{h(z)} \tag{5.1}
\end{equation*}
$$

where $p(z)(\not \equiv 0), h(z)$ are polynomials, $\operatorname{deg} h(z) \geq 2$. Thus

$$
f(z+c)=p(z+c) e^{h(z+c)}
$$

By Lemma 2.3, we see that $H(z)$ is transcendental. If $H(z)$ has only finitely many zeros, then $H(z)$ can be written as the form

$$
\begin{equation*}
H(z)=p(z) p(z+c) e^{h(z)+h(z+c)}-p(z)^{2} e^{2 h(z)}=p^{*} e^{h^{*}(z)} \tag{5.2}
\end{equation*}
$$

where $p^{*}(z)(\not \equiv 0), h^{*}(z)$ are polynomials and $\operatorname{deg} h^{*}(z) \geq 1$. Since $\operatorname{deg} h(z) \geq 2$, we see that $[h(z)+h(z+c)]-2 h(z)$ is not constant.

If $h^{*}(z)-[h(z)+h(z+c)]$ and $h^{*}(z)-2 h(z)$ are not constants, then by Lemma 2.1 and (5.2), we obtain that

$$
p(z)^{2} \equiv 0, p(z) p(z+c) \equiv 0
$$

which is a contradiction.
If either $h^{*}(z)-[h(z)+h(z+c)]$ or $h^{*}(z)-2 h(z)$ is constant, then using the same method, we get that

$$
p(z)^{2} \equiv 0 \text { or } p(z) p(z+c) \equiv 0 .
$$

Both are contradictions. Hence $H(z)$ has infinitely many zeros.
(ii) Suppose that $f(z)$ has only finitely many zeros and $\sigma(f)=1$. Using the same method as in the proof of Theorem 1(ii), we can finish the proof of Theorem 5.

Acknowledgments

The authors are grateful to the referee for a number of helpful suggestions to improve the paper, now the proof of Lemma 2.3 is given by referee, which is better than one of original manuscript.

References

1. M. Ablowitz, R. G. Halburd and B. Herbst, On the extension of Painlevé property to difference equations, Nonlinearty, 13 (2000), 889-905.
2. W. Bergweiler and J. K. Langley, Zeros of differences of meromorphic functions, Math. Proc. Camb. Phil. Soc., 142 (2007), 133-147.
3. Z. X. Chen and K. H. Shon, On zeros and fixed points of differencers of meromorphic functions, J. Math. Anal. Appl., 344 (2008), 373-383.
4. Z. X. Chen and K. H. Shon, Estimates for zeros of differences of meromorphic functions, Science in China Series A, 52(11) (2009), 2447-2458.
5. Z. X. Chen and K. H. Shon, Value distribution of meromorphic solutions of certain difference Painlevé equations, J. Math. Anal. Appl., 364 (2010), 556-566.
6. Y. M. Chiang and S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J., 16 (2008), 105-129.
7. J. Clunie, On a result of Hayman, J. London Math. Soc., 42 (1967), 389-392.
8. R. G. Halburd and R. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 314 (2006), 477-487.
9. R. G. Halburd and R. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31 (2006), 463-478.
10. W. K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.
11. W. K. Hayman, Picard value of meromorphic functions and and their derivaties, Annals of Math., 70 (1959), 9-42.
12. J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and K. Tohge, Complex difference equations of Malmquist type, Comput. Methods Funct. Theory, 1 (2001), 27-39.
13. J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo and J. Zhang, Value sharing results for shifts of meromorphic functions, and sufficient conditions for periodicity, J. Math. Anal. Appl., 355 (2009), 352-363.
14. K. Ishizaki and N. Yanagihara, Wiman-Valiron method for difference equations, Nagoya Math. J., 175 (2004), 75-102.
15. I. Laine and Chung-Chun Yang, Value distribution of difference polynomials, Proc. Japan Acad., 83A (2007), 148-151.
16. K. Liu and L. Z. Yang, Value distribution of the difference operator, Arch. Math., 92 (2009), 270-278.
17. L. Yang, Value Distribution Theory, Science Press, Beijing, 1993.
18. C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers Group, Dordrecht, 2003.

Zong-Xuan Chen
School of Mathematical Sciences
South China Normal University
Guangzhou, 510631
P. R. China
E-mail: chzx@vip.sina.com

