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VALUE DISTRIBUTION OF PRODUCTS OF MEROMORPHIC
FUNCTIONS AND THEIR DIFFERENCES

Zong-Xuan Chen

Abstract. In this paper, we study zeros of difference product f(z)*Af(z)
(n > 2), and the value distribution of difference product f(z)Af(z), where
f(z) is a transcendental entire function of finite order, Af(z) = f(z +¢) —
f(z), where ¢ (£ 0) is a constant such that f(z + ¢) Z f(2).

1. INTRODUCTION AND RESULTS

In this paper, we use the basic notions of Nevanlinna’s theory (see [10, 17]). In
addition, we use the notation o (f) to denote the order of growth of the meromorphic
function f(z), A(f) to denote the exponent of convergence of zeros of f(z).

Hayman proved the following theorem in [11].

Theorem A. If f(z) is a transcendental integral function and » > 2 is an integer,
then f(z)"f'(z) assumes all values except possibly zero infinitely often.

Clunie [7] proved that if n = 1, then Theorem A remains valid.

Recently, many papers (see [1-6, 8, 9, 12-16]) focus on complex difference.
They obtain many new results on difference utilizing the value distribution theory
of meromorphic functions.

Laine and Yang [15] proved the following theorem.

Theorem B. Let f(z) be a transcendental entire function of finite order, and
¢ be a non-zero complex constant. Then for n > 2, f(2)"f(z + ¢) assumes every
non-zero value a € C infinitely often.

Liu and Yang [16] proved the following theorems.

Theorem C. Let f(z) be a transcendental entire function of finite order, and ¢
be a non-zero complex constant. Then for n > 2, f(2)" f(z+¢) —p(z) has infinitely
many zeros, where p(z) # 0 is a polynomial in z.
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Theorem D. Let f(z) be a transcendental entire function of finite order, and
¢ be a non-zero complex constant, Af(z) = f(z 4+ ¢) — f(z) # 0. Then for
n > 2, f(z2)"Af(z)—p(z) has infinitely many zeros, where p(z) # 0 is a polynomial
in z.

In Theorems B, C, D, authors proved that when n > 2, f(z)"f(z + ¢) (or
f(2)"Af(z)) assume every value a € C\{0} infinitely often.

The following Example 1 shows that f(z)"A f(z) may have only finitely many
zeros, may also have infinitely many zeros.

Example 1. Suppose that ¢ = 1 and
fi(z) = €%, fo(2) = 622, f3(z) =sinz.

Thus,
HSY = f1(2)°Af(2) = €% (e — 1);

HY = fo(2)°Af(2) = & (7! — 1);
Hég) = f3(2)2Af(2) = sin? z(sin(z + 1) — sin 2).

From Héj) (j =1,2,3), we see that H§2) and Hég) have infinitely many zeros, but
Hél) has only finitely many zeros.

Thus, it is natural to ask what condition will guarantee f(z)"Af(z) (n > 2)
has infinitely many zeros?

In this paper, we answer this problem, and prove the following Theorem 1.

Theorem 1. Let f be a transcendental entire function of finite order and let
c € C\{0} be a constant satisfying f(z + c¢) # f(z). Set H,(z) = f(2)"Af(2)
where Af(z) = f(z+c¢)— f(2), n > 2 is an integer. Then the following statements
hold.

(i) If f(z) satisfies o(f) # 1, or has infinitely many zeros, then H,(z) has
infinitely many zeros.

(ii) If f(z) has only finitely many zeros and o(f) = 1, then H,(z) has only
finitely many zeros.

Remark 1. From Theorem 1(i), we see that f(z)"Af(z) is differ from f(z)"
f(z+¢) (n > 2). For example, the function f(z) = ¢ has no zero, and f(z)?
f(z+c) = 3°T2e2+¢® (where ¢ € C\{0} is a constant satisfying f(z+c) # f(z))
has no zero either. But f(2)2Af(z) = 3% (e2¢=+<* — 1) has infinitely many zeros.

By Theorem 1 and Theorem D, we easily obtain the following corollary.

Corollary 1. Let f be a transcendental entire function of finite order and let
c € C\{0} be a constant satisfying f(z + c¢) # f(z). Set H,(z) = f(2)"Af(2)
where Af(z) = f(z+¢) — f(z), n > 2 is an integer.
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If o(f) # 1, or has infinitely many zeros, then H, (z) takes every value a € C
(including a = 0) infinitely often.

The other aim of this paper is to study the value distribution of difference product
f(2)Af(z), i.e. the case n = 1. We prove the following Theorems 2-5.

Theorem 2. Let f be a finite order transcendental entire function with a finite
Borel exceptional value d, and let ¢ € C\{0} be a constant satisfying f(z + ¢) #
f(2). Set H(z) = f(2)Af(z) where Af(z) = f(z+c¢)— f(z). Then the following
statements hold.

(i) H(z) takes every non-zero value a € C infinitely often and satisfies \(H —
a) = o(f).
(if) If d # 0, then H(z) has no any finite Borel exceptional value.

(iii) If d = 0, then 0 is also the Borel exceptional value of H(z). So that H(z)
has no non-zero finite Borel exceptional value.

Remark 2. From Theorem 2, we see that f(z)A f(z) is differ from f(z) f(z+c).
For example, the function f(z) = ¢* + 1 has the Borel exceptional value 1, and

f)f(z4+mi)=1—¢e*

has the Borel exceptional value 1 either. But by Theorem 2, we see that f(2)Af(z)
(with ¢ = 7i) has no finite Borel exceptional value.

Theorem 3. Let f be a transcendental entire function of finite order and let
c € C\{0} be a constant satisfying f(z +¢) # f(z). Set H(z) = f(2)Af(z)
where Af(z) = f(z+¢) — f(2).

If f(z) has infinitely many multi-order zeros, then H (z) takes every value a € C
(including a = 0) infinitely often.

Theorem 4. Let f be a transcendental entire function of finite order and let
c € C\{0} be a constant satisfying f(z +¢) # f(z). Set H(z) = f(2)Af(z)
where Af(z) = f(z+¢) — f(2).

If there exists an infinite sequence {z,,} satisfying f(z,) = f(z,+¢) = 0, then
H(z) takes every value a € C (including a = 0) infinitely often.

Theorem 5. Let f be a transcendental entire function of finite order and let
c € C\{0} be a constant satisfying f(z +¢) # f(z). Set H(z) = f(2)Af(z)
where Af(z) = f(z+¢) — f(z).
(i) If f(2) has only finitely many zeros and o(f) # 1, or has infinitely many
zeros, then H(z) has infinitely many zeros.

(ii) If f(2) has only finitely many zeros and o( ) = 1, then H(z) has only finitely
many zeros.
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Example 2. An entire function f(z) = e satisfies Theorem 2(iii), it has the
Borel exceptional value 0, and

H(z) = ¢ [e2s+e — 1]

has also the Borel exceptional value 0 since A(H) =1 < o(H) = 2.

Simultaneity, f(z) = e=” also satisfies Theorem 5(i), although f(2) has no zero,
H(z) has infinitely many zeros since o(f) # 1.

Example 3. An entire function f(z) = e*+ 1 satisfies Theorem 2(ii), although
it has the Borel exceptional value 1 (# 0),

H(z) =e*(e* +1)(e° —1) (c # 2kmi (k is an integer))

has no finite Borel exceptional value.

2. THE PrRoOOFSs oF THEOREMS 1

We need the following lemmas for the proof of Theorem 1.

Lemma 2.1. ([18, p.79-80]). Let f;(z) (j =1,---,n) (n > 2) be meromorphic
functions, g;(z) (j = 1,---,n) be entire functions, and satisfy
(i) S0y fi(2)en® = 0;
(if) when 1 < j <k <mn, gj(2) — gr(z) is not a constant;
(iii) when 1 < j<n, 1 <h<k<n,

T(r, fj) = o{T(r,e? %)} (r — oo, r ¢ E),
where E C (1, c0) is of finite linear measure or finite logarithmic measure.

Then fi(z) =0 (j=1,---,n).
Lemma 2.2. (see [8]). Let f be a non-constant finite-order meromorphic solu-
tion of
f"P(z, f) = Q(z f),
where P(z, f), Q(z, f) are difference polynomialsin f, and let 6 < 1. If the degree
of Q(r, f) as a polynomial in f and its shifts is at most n, then

T(r+1el, f)
rd

m(r, P(z, f)) = o0 ( +o(T(r, f)) .

for all r outside of a possible exceptional set with finite logarithmic measure.
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Lemma 2.3. Let f be a transcendental entire function of finite order and let
c € C\{0} be a constant satisfying f(z + ¢) # f(z). Then H,(z) = f(2)"Af(2)
(n > 1) is transcendental.

Proof. If H,,(z) = 0, then A f(z) = 0 which contradicts our condition f(z+c) #

f(2).

Now we suppose that
(2.1) Hn(2) = f(2)"Af(2) = P(z)
where P(z) (2 0) is a polynomial. Applying Lemma 2.2 to (2.1), we obtain that
T(r,Af)=m(r,Af)=S(r, [)

for all r outside of a possible exceptional set with finite logarithmic measure. Thus,

(2.2) T (r, Aif) — S(r, f)

for all  outside of a possible exceptional set with finite logarithmic measure. By
(2.1) and (2.2), we obtain that

T(r, f") =T <r, %) <T(rP)+T <r, ﬁ@) — S(r, f).

This is a contradiction. Hence H,,(z) is a transcendental entire function.

The Proof of Theorem 1.

() If f(2) has infinitely many zeros, then H,,(z) has infinitely many zeros since
Af(z) is an entire function and Af(z) #Z 0.

Now we suppose that f(z) has only finitely many zeros and o(f) # 1. Thus
since f is transcendental, f(z) can be written as the form

f(2) = g(z)e"®
where g(z) (£ 0), h(z) are polynomials, deg h(z) > 2. Thus
Fz+¢) = gz + ).

Now we suppose that H,,(z) has only finitely many zeros. By Lemma 2.3, we see
that H,,(z) is transcendental. So, H,(z) can be written as

(2.3) Hy(2) = g(2)"g(z + )" HET) — g()ntle(mHDIE) — g, (z)eM (),
where g1(z) (£ 0), hi(z) are polynomials, deg hi(z) > 1. Set

h(z) = am2" + am—lzm_1 + -+ ag, am # 0,
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where a,,, ---,ag are constants. By o(f) # 1, we see that m > 2. Thus,

/

Wz +¢) = amz™ + (amme+ am_1)2" 4 a, 52" 2 4 ay,
where a,_,, --- ,ay are constants. Since m > 2 and
(n+ Dam-1 # amme+ (n+ 1)ay,—1,

we see that (n + 1)h(z) — (nh(z) + h(z + ¢)) is not a constant.
If nh(z) + h(z+ ¢) — hi(2) and (n 4+ 1)h(z) — h1(z) are not constants, then
by (2.3) and Lemma 2.1, we see that

9(2)"g(z+¢) =0, g(2)"™ =0, g1(z) =0

which is a contradiction.
If nh(z) + h(z + ¢) — hi(z) = 6 where ¢ is a constant, then by (2.3), we have

(24)  [9(2)"g(z+ ) — e Dga(2)]em TN g (o)L (mEDRE) — g
By (2.4) and Lemma 2.1, we obtain that
9(2)"g(z+¢) — e °g1(2) =0, g(z)"" =0

which is also a contradiction.

If (n+1)h(z)—h1(z) is a constant, then using the same method, we also obtain
a contradiction.

Hence, H,,(z) has infinitely many zeros.

(i) Suppose that f(z) has only finitely many zeros and o(f) = 1. Then f(z)
can be written as the form

f(z) = p*(2)e"*
where p*(z) (# 0) is a polynomial, b (s 0) and d are constants. Thus
f(z + C) _ p*(Z + C)ebcebz—i—d

and
Hy(2) = {(p"(2))" (0" (2 + ¢)e” = p*(2)) et DE=H),

By the condition f(z+c) # f(z) of the theorem, we see that p*(z+c)e?*—p*(z) # 0.
Hence H,,(z) has only finitely many zeros.

3. THE PROOFS OF THEOREMS 2
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First, we prove (ii) and (iii)
(if) Suppose that d (# 0) is the Borel exceptional value of f(z). Then f(z) can
be written as the form

J(2) = d+p(z)e*”
where k is a positive integer, o (# 0) ia a constant, p(z) (# 0) is an entire function
satisfying
o(p) <o(f) =k

Thus
flz4+co)=d+p(z+ c)pl(z)eo‘zk

p1(z) (£ 0) is an entire function satisfying o(p;) = k — 1. So that,

k

(31) H(2)=p(2)[p(z + Opr(2) = p(2)]e*™ +d[p(z + e)p1(2) — p(2)]e*™".
Since f(z) # f(z+ ¢), we see that
(3.2) p(z + e)pr(z) — p(z) # 0.
By (3.1) and (3.2), we see that
(3.3) o(H)=0(f) =k
If H(z) has the Borel exceptional value d*, then
(3.4) H(z) = d* + p*(2)e””,
where 3 (# 0) ia a constant, p*(z) (£ 0) is an entire function satisfying
o(p*) <o(H) = k.
By (3.1) and (3.4), we have

p(2)[p(z + ¢)p1(z) — p(z)]emzk

(3.5) +dlp(z + O)pi(2) — p(2)]e® — p*(2)e®” — d* =0.
If 8 # « and 8 # 2a, then by Lemma 2.1 and (3.5), we can obtain that
p(z +c)pi(z) —p(2) =0

This contradicts (3.2).
If 8 =2« or 8 = a, then using the same method as above, we also obtain a
contradiction.
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Hence H (z) has no the Borel exceptional value.
(iii) Now suppose that d = 0 is the Borel exceptional value of f(z). Using the
same method as above, we obtain (3.1) with d = 0, i.e.

(3.6) H(z) = p(2)[p(z + )pi(2) — p(2)]e?".
since p(2)[p(z + ¢)p1(2) — p(=)] £ 0 and
(3.7) o(p(2)[p(z + O)pr(2) — p(2)]) < k,

by (3.6) and (3.7), we see that H(z) has the finite Borel exceptional value 0. So
that H(z) has no non-zero finite Borel exceptional value.

Finally, we prove (i).

By assert of (ii) and (iii), we see that if f(z) has the finite Borel exceptional
value, then any non-zero finite value a must not be the Borel exceptional value
of H(z). Hence H(z) takes the value a infinitely often. By (3.3), we obtain
MH—a)=0(H)=0(f).

4. THE PrROOFS OF THEOREMS 3 AND 4

The Proof of Theorem 3. Clearly, if a = 0, then H(z) has infinitely many zeros
since Af(z) is an entire function and f(z) has infinitely many zeros.

Now we suppose that a # 0. Suppose that H(z) — a has only finitely many
zeros. Then H(z) — a can be written as the form

(4.1) H(z) = f(2)f(z+¢) = [(2) = a=p(2)e!®
where p(z), q(z) are polynomials. By Lemma 2.3, we see that p(z) # 0, deg ¢(z) >
1. Differentiating (4.1) and eliminating ¢?(*), we obtain that

f)fz+0]  [2fR)

[ f(z+¢)  flz+0)

flz+¢c)  f(2)f(z+¢)

Since p(z) # 0, ¢(z) are polynomials and deg ¢(z) > 1, we can see that p (z) +
p(2)q (2)) # 0. Since f(z) has infinitely many multi-order zeros, we see that there
is a sufficiently large point z, such that f(z) has zero at the point zo of multiplicity
k> 2, and p'(z0) + p(20)q (20) # 0, p(z) # 0 at the same time.

If f(z+ c) has zero at z, of multiplicity k. > 1, then % has a simple

pole at z; —% has pole at zy of multiplicity k. — k& + 1; f{z(i)c) has pole at

p

wy  _PEEEG) fi- L .
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zo of multiplicity k. — k; but
shows (4.2) is a contradiction.

If f(z0 +c¢) # 0, then % has a simple pole at z; —[%ii’fc))] = 0;

_fo)  _ __a T .
Tegre) = V- BUL 577y has pole at 2o of multiplicity £ > 2. This shows (4.2)
Is also a contradiction.

Hence H (z) takes every value a infinitely often.

m has pole at z of multiplicity k. + k. This

The Proof of Theorem 4. Using the same method as in the proof of Theorem 3,
we can prove Theorem 4.

5. THE ProoF OF THEOREM 5

(i) If f(z) has infinitely many zeros, then H(z) has infinitely many zeros since
Af(z) is an entire function and Af(z) #Z 0.

Now we suppose that f(z) has only finitely many zeros and o(f) # 1. Thus
f(2) can be written as the form

(5.1) f(z) = p(z)e
where p(z) (£ 0), h(z) are polynomials, deg h(z) > 2. Thus
F(z+¢) = p(z + )=o),

By Lemma 2.3, we see that H (z) is transcendental. If H(z) has only finitely many
zeros, then H(z) can be written as the form

(5:2)  H(2) = ple)plz + )t HETD — p(z)26) = peeh ()

where p*(z) (£ 0), h*(z) are polynomials and deg h*(z) > 1. Since deg h(z) > 2,
we see that [h(z) + h(z + ¢)] — 2h(%) is not constant.

If h*(z) —[h(2) +h(z+c)] and h*(z) —2h(z) are not constants, then by Lemma
2.1 and (5.2), we obtain that

p(2)2 =0, p(2)p(z+¢) =0

which is a contradiction.
If either h*(z) — [h(z) + h(z + ¢)] or h*(z) — 2h(z) is constant, then using the
same method, we get that

p(2)2=0o0r p(2)p(z+¢) = 0.

Both are contradictions. Hence H (z) has infinitely many zeros.
(if) Suppose that f(z) has only finitely many zeros and o ( f) =1. Using the same
method as in the proof of Theorem 1(ii), we can finish the proof of Theorem 5.
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