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EXISTENCE OF SOLUTIONS FOR IMPULSIVE ANTI-PERIODIC
BOUNDARY VALUE PROBLEMS OF FRACTIONAL ORDER

Bashir Ahmad and Juan J. Nieto

Abstract. In this paper, we prove the existence of solutions for impulsive
differential equations of fractional order ¢ € (1, 2] with anti-periodic boundary
conditions in a Banach space. Our study is based on the contraction mapping
principle and Krasnoselskii’s fixed point theorem.

1. INTRODUCTION

Fractional differential equations have recently gained much importance and at-
tention. The study of fractional differential equations ranges from the theoretical
aspects of existence and uniqueness of solutions to the analytic and numerical meth-
ods for finding solutions. Fractional differential equations appear naturally in a
number of fields such as physics, polymer rheology, regular variation in thermo-
dynamics, biophysics, blood flow phenomena, aerodynamics, electro-dynamics of
complex medium, viscoelasticity, Bode's analysis of feedback amplifiers, capacitor
theory, electrical circuits, electron-analytical chemistry, biology, control theory, fit-
ting of experimental data, etc. For examples and details, see [1-3, 5, 7, 10, 15-16,
18-19, 23-24, 26] and the references therein.

The theory of impulsive differential equations of integer order has found its ex-
tensive applications in realistic mathematical modelling of a wide variety of practical
situations and has emerged as an important area of investigation in recent years. For
the general theory and applications of impulsive differential equations, we refer the
reader to the references [17, 25, 27, 33].

Anti-periodic problems have recently received considerable attention as anti-
periodic boundary conditions appear in numerous situations. Examples include
anti-periodic trigonometric polynomials in the study of interpolation problems [11],
anti-periodic wavelets [8], difference equations [6], ordinary, partial and abstract
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differential equations [13-14, 20, 22, 28-32], and impulsive differential equations
[4, 12, 21], etc. For some more application of anti-periodic boundary conditions in
physics, see [9] and the references therein.

In this paper, we study an anti-periodic boundary value problem for impulsive dif-
ferential equations of fractional order

Dig(t) = f(t,2(t), 1< q<2, tedi=[0,T]\ {t, ta ... t,},
(1.1) { Av(t) =Ta(z(t;)), Ax'(t) =Ti(x(t)), tr € (0,T), k=1,2,....p,
z(0) = —x(T), 2'(0) = —2/(T),

where ¢D is the Caputo fractional derivative, f : J x R — R is a continuous
function, J = [0,7),Zy, Ji : R — R, Az(ty) = z(t) — x(t;) with z(t]) =
limy, o+ x(tk —l—h), w(t,;) = limy,_,o- x(tk —|—h), k=1,2,....pfor0=t) <t1 <
o < ... < tp < tp+1 =T.

2. PRELIMINARIES

We define PC(J,R) ={z:J —= R; z € C((tg, tg+1],R), k=0,1,2,....,p+ 1
and z(¢;) and x(t; ) exist with (¢, ) = z(tx), k=1,2,...,p},and PC1(J,R) =
{2/ € PC(J,R); 2/(t]), «/(t;) exist and 2’ is left continuous at tj, for k =
1,2,...,p}. Note that PC'(J,R) is a Banach space with the norm |z|| =
supye r{ |z ()| pc, [|2'() | P}

Definition 2.1. A function € PC'(J,R)} with its Caputo derivative of order
q existing on J is a solution of (1.1) if it satisfies (1.1).

We need the following result to prove the existence of at least one solution of
(1.2).

Theorem 2.1. (Krasnoselskii’s Theorem) Let M be a closed convex and
nonempty subset of a Banach space X. Let A, B be the operators such that (i)
Ax + By € M whenever z,y € M; (ii) A is compact and continuous; (iii) B is a
contraction mapping. Then there exists z € M such that z = Az + Bz.

To study the nonlinear problem (1.1), we first consider the associated linear
problem and obtain its solution.

Lemma 2.1. For a given o € PC|0,T], a function x is a solution of the
following linear impulsive boundary value problem

cDix(t) = o(t), 1< q<2 teJi =0T\ {tr,ta, ... tp},

(2.1) { Ax(te) =Te(a(ty)), A'(te)=Ji(x(ty)), th€(0,T), k=1,2,....p,
z(0) = —z(T), 2'(0) = —2'(T),
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if and only if x is a solution of the impulsive fractional integral equation

x(t) =

b (t—s)1! 1 (T (T—s)"!
/Oif(q) J(S)d8_§/tp 7F(q) o(s)ds

(T—2t) [T (T—5)172
+ 1 /tp Tlg=1) o(s)ds

Ly / B ayds + Tial )

0<tr<T F(q)

—i > (T+2(t—tk))</tk Ma(s)ds—i—Jk(x(t,;))),

0<tp<T e I(g—1)

(2.2) /t Ma(s)ds — l/T Ma(s)ds

€ [0, tl],

I'(q)
(T —20) /T (T - s)q—2g(s)d8

4
5 3 ([ et ne)

0<tr<T

_i S (T2t -t )(/k tk g (8)d8+~7k($(t/?))>

0<tp<T tk—1

250 ([ s+ e 7))

O<tp<t “lk-1 ')

tr —g g2
+ 3 (t—tk)< /tk_l%a(s)ds—i—jk(x(t,;))), t e (b tros].

Proof. Suppose that z is a solution of (2.1). Then, for some constants by, b; €
R, we have

" t (t _ s)q—l
(2.3) x(t) =17 +J(t) — bo —bit = 70(8)6[8 — bo — blt, te [0, tl].
to o I'(g)
For some constants ¢y, ¢c; € R, we can write
t (t _ s)q—l
z(t) = I o(t)—co—cy(t—t :/7
( ) ti&- ( ) 0 1( 1) " F(Q)

Using the impulse conditions Az (t1) = z(t]) —x(t]) = Z1(z(¢;)) and Ax/ () =
o' (tF) — 2 (t]7) = Ji(x(t])), we find that

J(S)dS—CQ—Cl(t—tl), te (tl,tg].
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t1 t — q—1
—co = / %a(s)dé’ —bo — bit1 + Ty (x(ty)),
0

I'(q)
t1 —s q—2
—C1 :/0 %J(S)ds—bl+jl(x(t;))
Thus,
t — s q—1 t1 —s q—1
(1) = /t %J(s)ds +/0 %J(s)ds by — byt + Ta(2(t7))
t1 —s q—2
+(t—t1)[/0 %J(S)dS%—jl(w(tl_)) , t € (tl,tg].

Repeating the process in this way, the solution x(t) for t € (¢, tx+1] cane be written
as

x(t)
t —s q—1
:/t %J(S)ds — bo — blt
k tr — s q—1
29 ¥ (/ %a(s)ds—i—lk(x(t,;)))
O<tp<t “ltk—1
ty _ )2
+ Y [(t—tk)</ %a(s)ds—i—jk(x(t,;)))},te(tk,tk+1].
0<tp<t tk—1

Applying the anti-periodic boundary conditions z(0) = —z(T'), 2/(0) = —/(T),
the values of by, by are given by

T (p _ g)a-1 T _ )42
by = l/ ud(s)ds—g/t %J(s)ds

th —g)e1
t %a(s)ds + T(a (1))

i) / %(I(s)dsmk(x(t;))),

1T (T—s)T? 1 b (ty—s)T2 _
bl B §/tp F(q) J(S)d$+§ 0<tzk:<T </tk—1 kF(Q) J(S)d$+jk(x(tk ))> '

Substituting the values of by, b1 in (2.3) and (2.4), we obtain (2.2). Conversely, we
assume that = is a solution of the impulsive fractional integral equation (2.2). It
follows by a direct computation that 2 given by (2.2) satisfies the fractional linear
anti-periodic boundary value problem (2.1). This completes the proof.
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Remark. 2.1. The first three terms of the solution (2.2) correspond to the
solution for the problem without impulses [3]. The solution for the associated
homogeneous problem with impulses and anti-periodic boundary conditions can be
obtained by taking o = 0 in (2.2).

3. MaIN REsuLTS

Theorem 3.1. Let f : [0,7] x R — R be a jointly continuous function and
I, Jr : R — R are continuous functions. Assume that there exist positive constants
Ly, Lo, Ly, Mo, M3 such that

(Al) Hf(tv 1‘) - f(tv y)” < Lle - y”? vt e [OvT]v T,y € R;

(A2) [|Zi(x)—Tr(y)|| < Lollz—yll, |Tx(x)=Ta(y)|| < Lsllz—yl with |Z(x)|| <
My, || Ti(2)|| < M3, Vz,y €R, k=1,2,....p.

2l(g+1) * 4I(q)

i;(zp }]=1. Then the impulsive anti-periodic boundary value problem (1.1) has a

unique solution on J.

Proof. Define an operator © : PC'(J,R) — PC'(J,R) by

Further Lqu< S(11p) +ﬂ) +B(6Ly+T7TLg) < 1, with Ly < J[T9{ 5048 +

t(p_ g)a-1 T _ g\a-1
©0) = [ st atnis— 5 [ o, as

(T —2t) T (T —s)a—2
+ 1 /tp T = 1) f(s,z(s))ds

1y (/ L (q§ lf( o(s))ds-+ Tu(a(t)))

ty —g)e1
s / Mf(s,x(s))ds—i—lk(x(t,;)))

O<tp<t Ylk—1 ['(q)
T (t _ 8)q—2 B
+0§<t(t — tr) < /tk 1 ﬁf(é’, x(s))ds + Tr(x(t;, )))

Setting sup;c(o,77 (¢, 0)] = M; and choosing

314+p) 1+ 7p>
2'(g+ 1)  4T'(q)

we show that ©B,. C B,., where B, = {x € PC'(J,R) : ||z|| < r}. For z € B,,

r>2 [Mqu< n §<6M2 n 7TM3)} ,
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we have
[(©)@)]]
ft—s)"! 1 (T (T —s)r!
5/ Tg) M x(s)llds +2/tp g (e a(s)llds
W / =Gl s
+§0<§<T /tk_l tk;(;j; (s, () s + | ZeCe ()]
+% > |T+2(t—tk)|</t’“ (;k(q_i); Hf(s’x(s))”der”jk(x(tiz))”)
0<tr<T k—1
t (t )q 1 B
+OZ</ g M e lds + 1T i)
+ \t—tk\(/ <§( )) (5. 2(s))llds + | it )]
0<tp<t te—1
(t—s)at
: / T (1 Gss2s) = F(5, 001+ 155, 0)] ) s
3 / ( F<)) (Hf(s 2(s)) = f(5,0)l| + 1 £(s,0) | )ds

\T—Qt\
/p T(q— 1 Hf s,2(s)) — f(s,0)[| + Hf(s,O)H)ds

= Z(/t )" (s, (5)) — (5, O) 1+ 15,0 s+ Zulalt )

0<tp<T v k-1 F()
! (te=s)"
+10<§<T‘T”“‘t’“”</tk_lPk<q (115,76~ F 0 411501 s
| T (‘))H)
Y (s § 1 (s 2(5) = £ (3, 0) |+ 117 (5. 0) ) ds+ | Ze(w (2
O<tp<t *th-1
+ > It / e (15 2(5)) = 6. 00 + 15, 0] ) s
0<ty<t tk—1

T (t))])
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4 (T—S)*1 \T—Qt\ T (T—s)
/tp dot /tp I'(g—1) !

i
/ (q ds+— 3 |T+2t t)| bl

0<t <T 0<t <T tk—1 Ilg—1)

N Z /:1( (q;q ld N Z P— tk—sq 2 8}

0<t <t 0<tp<t tk—1

L1T+M1

+_ S | Zk H+Z ST+ 2t — i) 1Tk ()]

0<tk <T 0<tr<T

+ D T+ D 1= el Tz @)

0<tp<t 0<tp<t
3(1+p) 1+7p>r [M Tq< 3(1+p) 1+7p>
2(g+1)  4I(q) 2l(g+1)  4I(q)

+§ (6M2 n 7TM3)} <r

< Lqu<

Now, for =,y € PC*(J,R) and for each t € [0, T, we obtain
1(©z)(t) — (©y)(®)]]
—g)a1
< [T Goat) - sl s

L1 / E " 15, 2(5)) — Fls,y(s)) s

I'(q)
LIT= Qt\/ Hf (s)) = f(s,y(s))|lds
+%o<tzk:<T </t,:1 (tk I:(S; 17 (s, 2()) = £ (5, y(s))llds

HIZe(2(t7) = Tuly ()]
5 ¥ ree-wl( [ U= "2 s, a(5)) - (5, w()lds

0<tr<T k—1 F(q )

H Te((ty)) - Jk(y(t,;))u)
£ (L (tk5<3q_ 1G5, 2()) = £(s, y(5)) s

0<tp<t

HIZe(2(t)) = Tuly ()]
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- i, M S, T — S S S
# 3 o=l S o ool

Tk () - Tyt
<nlf %Hw() v s+ 5 [ T late) -yl

\T—Qt\
[ et = tas

tr _ <\q—-1
5 3 [ ) - vl

s
0<§<T|T+2t—m|/ = o) (o)

) [ %Ms) — y(s)ds

o 3 eeul [ G —voal

(5 3 Nt = w)l+ 3 elt) — i)

L (5 3 IRt wllet) - )

L : telllz(t) — w(t)|)

< ApquT,LlaLz,Lsux - va

where

3(1+p) N 1+7p>
2l'(g+1)  4T'(g)
which depends only on the parameters involved in the problem. As Ay, o 7.1, 1,,15 <

1, therefore © is a contraction. Thus, the conclusion of the theorem follows by the
contraction mapping principle.

Ap g1 Ly LoLs = Lqu<

+ §(6L2 4 TTLy),

Theorem 3.2. Assume that (A;) — (As2) hold with £(6Ly 4+ 7TL3) < 1 and
I f(t, z)]| < p(t), V(t,z) € [0, T] xR, where € L'([0, T], R*). Then the bound-
ary value problem (1.1) has at least one solution on [0, 7.

Proof. Let us fix
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31+p)  1+7p
2T (g+1) ' 4I(q)

P pl T ) + (60, + TTMy),

and consider B, = {z € PC'(J,R) : ||z|| < r}. We define the operators ® and ¥
on B, as

t(p— )1 T (p _ g)a-1
@) = | " by a(s))ds — / T b a(s))ds

, D) 2), T
LT - 21) /tT (?(; i)ijf(sv o(s))ds
5 5 ettt
E oazk:q (7420 -4) /tt %f (s, 2(s))ds
" 0<%:<t < /t:: (tkp_(i;;q_lf(sv 2(s))ds + (t — t1,)
[ ),
(wa)(t) = —ik;T (2Zal6)) + (T +2(t — 1) Fu(a )

+ (Ik(w(t,;))+(t—tk)7k(x(t,;))).

0<tp<t
For =,y € B,, we find that

31+p) 147p
2 (g+1)  4I(q)

@z +wy| < 77 ) + G (66 + TTA) <

Thus, ®z + Uy € B,. It follows from the assumption (As) that ¥ is a contraction
mapping for £(6L, + 7TL3) < 1. Continuity of f implies that the operator ® is
continuous. Also, ® is uniformly bounded on B, as

3(1+p) 1+7p>'

Bzl < Tq<
o] < oo (SOEEL LT

Now we prove the compactness of the operator ®. Letting Q@ = [0,7] x B,, we
define sup(; ,)cq I/ (¢, 2)|| = fi < oo, and consequently we have
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[(@2)(72) — (@) ()]
™2 (1y—s5)%1 T (19— 8)47 — (71 — 5)97!
[ s aopas [ B I aas

-

Mo . )
e T
+0<t§2_ﬁ /t z (““;(7361_1 s, 2(s))ds
+O<t§2_ﬁ(m — 1) /t t %7?;2 f(s,2(s))ds
w2 e [ S el
< f [ﬁ(‘(ﬁ — )+ = (=) + (e — )T — (11 — tp)qo
- n;gq)— )" L 0%2 T (2 = 71);?(;)tk_l)q—1‘
+$ <O<t§m ‘(tk—tk_l)q_l(’fg—tk)‘+0<%;T1‘ (72—71)(%_%_1)(,4‘)}7

which is independent of x. So ® is relatively compact on B,. Hence, By Arzela
Ascoli Theorem, & is compact on B,. Thus all the assumptions of Theorem 2.1
are satisfied and the conclusion of Theorem 2.1 implies that the boundary value
problem (1.1) has at least one solution on [0, 7.

Example. Consider the following impulsive fractional boundary value problem

“D3a(t) = e a f‘(i)(‘t)‘), tel0,1], t # -,
(3.1) Arly— GO pdy o RGO
(5+lz(5 ) 35 (T+]x(3)))

z(0) = —z(1), 2'(0) = —2/(1).

Clearly Ly = 55, Ly =1, Ly = %, ¢ =3 and p = 1. Further,
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2 1
97 ' 20

Tq< 3(1+p)  1+47p

p
M(g+1)  40(q) ) 6Lz +TTLy) = (

) < 1.

Thus, all the assumptions of Theorem 3.1 are satisfied. Hence, by the conclusion of
Theorem 3.1, the impulsive fractional boundary value problem (3.1) has a unique
solution on [0, 1].
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