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TAUBERIAN THEOREMS FOR THE WEIGHTED MEANS OF
MEASURABLE FUNCTIONS OF SEVERAL VARIABLES

Chang-Pao Chen and Chi-Tung Chang

Abstract. Let f, ω : Rn
+ → C and Tωf(x) denote the weighted mean of f at

x with respect to the weight function ω. We prove that the conditions of slow
oscillation and slow decrease are Tauberian conditions for the implications:
f(x) st→ l =⇒ f(x) → l and Tωf(x) st→ l =⇒ f(x) → l. We also prove
that the statistical version of the conditions of deferred means are Tauberian
conditions for the implication: Tωf(x) st→ l =⇒ f(x) st→ l. These generalize
several well-known results.

1. INTRODUCTION

Let R+ = [0,∞) and f, ω : R
n
+ → C be Lebesgue measurable. Suppose

W (x) =
∫
[0,x1]×···×[0,xn] ω(y)dy �= 0 for each x = (x1, · · · , xn) > 0 = (0, · · · , 0).

Here x > 0 means that xk > 0 for all k. The weighted mean Tωf(x) of f at x is
defined by

Tωf(x) = W (x)−1

∫
[0,x1]×···×[0,xn]

f(y)ω(y)dy.

We say that f is (N, ω) summable to l at ∞ and write f(x) → l (N, ω) if
Tωf(x) → l in the sense of Pringsheim, that is, Tωf(x) → l as x → ∞. Here
“x → ∞” means “min(x1, · · · , xn) → ∞”. The notion of (N, ω) summability
defined here is the integral analogue of the one given in [8, p.57]. Following [13],
we say that f(x) is statistically convergent to l at ∞, in symbols, f(x) st→ l or
st- lim

x→∞ f(x) = l, if the following equality holds for all ε > 0:
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lim
x→∞

1
x1 · · ·xn

∣∣∣{u : 0 ≤ u ≤ x, |f(u)− l| ≥ ε
}∣∣∣ = 0.

Here |E| denotes the Lebesgue measure of E ⊂ R
n
+ and 0 ≤ u ≤ x means that

0 ≤ uk ≤ xk for all k. We write f(x) st→ l (N, ω) if Tωf(x) st→ l. The readers
can easily prove that the ordinary convergence implies the corresponding statistical
convergence. For n = 1 and W (x) → ∞ as x → ∞, ones can also deduce

f(x) → l =⇒ f(x) → l (N, ω) =⇒ f(x) st→ l (N, ω).(1.1)

But the converse implications of (1.1) are false, in general.
The purpose of this paper is to investigate the following converse implication:

f(x) st→ l (N, ω) =⇒ f(x) → l.(1.2)

We try to find conditions under which (1.2) holds. These conditions are known
as Tauberian conditions and the corresponding results are called Tauberian results.
Such kind of problems have been investigated in the literature for a long time (cf.
e.g., [5, 6, 8, 12, 14, 15] for n = 1, and [9] for n = 2). In particular, in [9], Móricz
investigated the variant of (1.2) with f(x) → l (N, ω) instead of f(x) st→ l (N, ω)
for the case that ω = 1 and n = 2. He proved that (1.3) is a Tauberian condition
for this implication:

inf
ρ>1

{
lim sup

x→∞

(
sup

xk<uk<ρxk
u�=x� for ��=k

∣∣f(u) − f(x)
∣∣)} = 0 (k = 1, · · · , n).(1.3)

Here the limit superior “lim supx→∞” is defined in [2, p.1243] and [4, p.632].
Condition (1.3) is the n-dimensional analogue of the condition of slow oscillation.
In [14], Móricz also showed that (1.3) is a Tauberian condition for (1.2), whenever
n = 1 and ω = 1. However, it is unknown whether (1.3) is a Tauberian condition
of (1.2) for n ≥ 2 and general ω. This problem for the discrete case was posed by
Móricz [10] and solved by the present authors in [2]. In this paper, we shall prove
that the following weak form of (1.3) is a Tauberian condition of (1.2):

inf
ρ>1

{
lim sup

x→∞

(
sup

x<u<ρx

∣∣f(u)− f(x)
∣∣)} = 0(1.4)

(see Corollary 6.1). For real-valued f , a similar result is also established (see
Corollary 6.4). Our results not only extend [9, 14, 15] from ω = 1 to general ω,
and [5, 6, 12, 14, 15] from 1-dimensional case to n-dimensional case, but also relax
the (N, ω) summability to its statistical version.

In order to derive Corollaries 6.1 and 6.4, we first deduce in §2 the convergence
property of subsequence type from f(x) st→ l and check the convergence of deferred
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means from f(x) st→ l (N, ω). We indicate that the subsequences involved here
must be restricted. Next, we investigate the Tauberian problem of the implication:
f(x) st→ l =⇒ f(x) → l (see §3). In §4, we present two Tauberian results for the
implication: f(x) st→ l (N, ω) =⇒ f(x) st→ l (see Theorems 4.1 & 4.2). Based on
the above results, we present the Tauberian conditions for the implication: f(x) st→ l
(N, ω) =⇒ f(x) → l (see Theorems 5.1 & 5.2). As a consequence, several special
cases of the last two theorems are deduced, which include Corollaries 6.1 and 6.4.
We refer the readers to §6 for details.

Throughout this paper, 0 = (0, · · · , 0), 1 = (1, · · · , 1), x, y, u, a, b, α, β, γ, · · ·
will denote the points in Rn

+, s, t, ρ, · · · ∈ R, and λ, ω, · · · are functions defined on
R

n
+. For α = (α1, α2, · · · , αn) ∈ {0, 1}n, let |α| = |α1| + |α2| + · · ·+ |αn|.

2. PRELIMINARIES

In this paper, we write λ ∈ SI if λ : Rn
+ 	→ Rn is of the form λ(x) =

(λ1(x1), · · · , λn(xn)) and each λk : [0,∞) → [0,∞) is strictly increasing, λk(0) =
0, and limt→∞ λk(t) = ∞. Without loss of generality, we shall further assume that
each λk is piecewise smooth. More precisely, for each k, there exist countably many
� and a disjoint decomposition of subintervals of [0,∞), say ∪�[a�, b�), so that λk

is C1 on [a�, b�] for each �.
The following is an integral analogue of [1, Lemma 2.3]. It examines the

convergence problem of subsequence type from the statistical convergence of a
given function, and will be used to derive the convergence of deferred means from
the (N, ω) summability (see Theorem 2.3).

Theorem 2.1. Let f(x) st→ l and λ ∈ SI . Suppose that (2.1) holds for all k:

λk(t) ≤ Mt (t ≥ t0) and λ′
k(t) ≥ m (almost all t > 0),(2.1)

where M > 0, t0 > 0, and m > 0 are constants. Then f(λβ1
1 (x1), · · · , λβn

n (xn)) st→
l for all 0 ≤ β ≤ 1, where

λ�
k(t) =

{
t for � = 0,

λk(t) for � = 1.
(2.2)

Proof. It suffices to prove the case β = 1. Let ε > 0 and a > 0. Set
E∗ = λ(E), where

E = {x : 0 ≤ x ≤ a, |f(λ1(x1), · · · , λn(xn)) − l| ≥ ε}.
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The Jacobian of the mapping x 	→ λ(x) is λ′
1(x1) · · ·λ′

n(xn), so by the second
condition in (2.1) and [17, Theorem 7.26],

|E∗| =
∫

λ(E)
dy =

∫
E
|Jλ(x)| dx ≥ mn

∫
E

dx = mn|E|.

Putting this with the first condition in (2.1) together yields

1
a1 · · ·an

|E| ≤
(

M

m

)n 1
λ1(a1) · · ·λn(an)

|E∗|

=
(

M

m

)n 1
λ1(a1) · · ·λn(an)

| {y : 0 ≤ y ≤ λ(a), |f(y)− l| ≥ ε} |

−→ 0 as min (a1, · · · , an) → ∞.

Hence, f(λ1(x1), · · · , λn(xn)) st→ l.
Theorem 2.1 is false if any of the two conditions in (2.1) is removed. Consider

the functions f : [0,∞) → [0, 1] and λ : [0,∞) → [0,∞), defined by the rules:

f(x) =

{
0 if x ∈ [k + φ(k), k + φ(k + 1)] for some k ∈ N ∪ {0},
1 otherwise

and

λ(t) =

{
k + φ(k) for t = 2k with k ∈ N ∪ {0},
k + φ(k + 1) for t = 2k + 1 with k ∈ N ∪ {0},

where φ(k) ↑, φ(0) = 0, and λ is linear on each subinterval. Whenever k+φ(k) ≤
a < k + 1 + φ(k + 1), we have

k−1∑
�=0

(φ(� + 1) − φ(�)) ≤ |{0 ≤ x ≤ a : f(x) = 0}| ≤
k∑

�=0

(φ(� + 1) − φ(�))

and k ≤ |{0 ≤ x ≤ a : f(x) = 1}| ≤ k + 1. These imply

f(x) st→
{

0 if φ(k)/k → ∞,

1 if φ(k)/k → 0.

On the other hand, st-limt→∞ f(λ(t)) does not exist. Moreover, λ ∈ SI . For
φ(k) =

∑k
�=0 �2, the first condition in (2.1) fails, but the second one holds. We

get another case, if φ(0) = 0 and φ(k) =
∑k

�=1 1/�2 for k = 1, 2, · · · . These two
examples indicate that both conditions in (2.1) are required in Theorem 2.1.

Next, we consider the convergence problem of deferred means. For this purpose,
we introduce an equality in the following.
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Lemma 2.2. For xα, yα ∈ C, where 0 ≤ α ≤ 1, we have

∑
0≤α≤1

(−1)|α|xαyα =
∑

0≤α≤1


 ∑

α≤β≤1

(−1)|α|+|β|xβ




 ∑

0≤γ≤α

(−1)|γ|yγ


 .(2.3)

Proof. We prove (2.3) by the mathematical induction. For a0, a1, b0, b1 ∈ C,
it is trivial that a0b0 − a1b1 = (a0 − a1)b0 + a1(b0 − b1). In particular,∑

0̃≤α̃≤1̃

(aα̃
0 bα̃

0 − aα̃
1 bα̃

1 ) =
∑

0̃≤α̃≤1̃

[
(aα̃

0 − aα̃
1 )bα̃

0 + aα̃
1 (bα̃

0 − bα̃
1 )
]
,

where

aα̃
0 =

∑
α̃≤β̃≤1̃

(−1)|α̃|+|β̃|x(β̃,0), bα̃
0 =

∑
0̃≤γ̃≤α̃

(−1)|γ̃|y(γ̃,0),

aα̃
1 =

∑
α̃≤β̃≤1̃

(−1)|α̃|+|β̃|x(β̃,1), bα̃
1 =

∑
0̃≤γ̃≤α̃

(−1)|γ̃|y(γ̃,1),

and ξ ∈ C
n−1 is obtained from ξ ∈ C

n by deleting the last coordinate. Suppose
that (2.3) holds for the case n − 1. Then∑
0≤α≤1

(−1)|α|xαyα =
∑

0̃≤α̃≤1̃

(−1)|α̃|x(α̃,0)y(α̃,0) −
∑

0̃≤α̃≤1̃

(−1)|α̃|x(α̃,1)y(α̃,1)

=
∑

0̃≤α̃≤1̃


 ∑

α̃≤β̃≤1̃

(−1)|α̃|+|β̃|x(β̃,0)




 ∑

0̃≤γ̃≤α̃

(−1)|γ̃|y(γ̃,0)




−
∑

0̃≤α̃≤1̃


 ∑

α̃≤β̃≤1̃

(−1)|α̃|+|β̃|x(β̃,1)




 ∑

0̃≤γ̃≤α̃

(−1)|γ̃|y(γ̃,1)




=
∑

0̃≤α̃≤1̃

(aα̃
0 bα̃

0 − aα̃
1 bα̃

1 )=
∑

0̃≤α̃≤1̃

[
(aα̃

0 −aα̃
1 )bα̃

0 +aα̃
1 (bα̃

0−bα̃
1 )
]
.

On the other hand,∑
0̃≤α̃≤1̃

[
(aα̃

0 − aα̃
1 )bα̃

0 + aα̃
1 (bα̃

0 − bα̃
1 )
]

=
∑

0̃≤α̃≤1̃




 ∑

α̃≤β̃≤1̃

(
(−1)|α̃|+|β̃|x(β̃,0) − (−1)|α̃|+|β̃|x(β̃,1)

)

 ∑

0̃≤γ̃≤α̃

(−1)|γ̃|y(γ̃,0)



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+


 ∑

α̃≤β̃≤1̃

(−1)|α̃|+|β̃|x(β̃,1)




 ∑

0̃≤γ̃≤α̃

(
(−1)|γ̃|y(γ̃,0) − (−1)|γ̃|y(γ̃,1)

)



=
∑

0≤α≤1


 ∑

α≤β≤1

(−1)|α|+|β|xβ




 ∑

0≤γ≤α

(−1)|γ|yγ


 .

This shows that (2.3) holds for the case n. The proof is complete.

Denote by Dn
+ (respectively Dn−) the class consisting of all λ ∈ SI so that each

λk dilates at infinity in the sense of (2.4) (respectively (2.4*)):

lim inf
t→∞

λk(t)
t

> 1 (k = 1, · · · , n),(2.4)

lim inf
t→∞

t

λk(t)
> 1 (k = 1, · · · , n).(2.4*)

For a fixed α = (α1, · · · , αn) ∈ {0, 1}n, λ ∈ Dn
+, and a weight ω : Rn

+ → C,
define

�α
λW (x) =

∫
E1×···×En

ω(y)dy,(2.5)

where

Ek =

{
[0, xk] if αk = 0,

[xk, λk(xk)] if αk = 1.
(2.6)

If λ ∈ Dn−, (2.6) will be changed to (2.6*):

Ek =

{
[0, λk(xk)] if αk = 0,

[λk(xk), xk] if αk = 1.
(2.6*)

Consider the subclass st-Dn
+(ω) of Dn

+ and the subclass st-Dn−(ω) of Dn−. We
write λ ∈ st-Dn

+(ω) (respectively λ ∈ st-Dn−(ω)) if λ ∈ Dn
+ (respectively λ ∈ Dn−)

and both of (2.1) and (2.7) hold:

st- lim sup
x→∞

∣∣∣∣�α
λW (x)

�1
λW (x)

∣∣∣∣ < ∞ for each 0 ≤ α ≤ 1.(2.7)

Here st-lim sup
x→∞

φ(x) is defined as the supremum of those r satisfying
lim
a→∞

1
a1 · · ·an

|{u : 0 ≤ u ≤ a, φ(u) > r}| �= 0
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(cf. [7, 11]). For λ ∈ Dn
+, we have W (λ(x)) =

∑
0≤α≤1 �α

λW (x). Thus, for
such λ and positive ω, (2.7) can be replaced by the following equivalent condition:

st- lim sup
x→∞

W (λ(x))
�1

λW (x)
< ∞.(2.7*)

Obviously, (2.7*) is the statistical version of the integral form of [16, Eq.(2.8)].
Hence, st-Dn

+(ω) can be regarded as a substitute of Λu given in [16]. Analogously,
for λ ∈ Dn− and positive ω, (2.7) is equivalent to (2.7**):

st- lim sup
x→∞

W (x)
�1

λW (x)
< ∞,(2.7**)

which is the statistical version of the integral form of [16, Eq.(2.9)]. This indicates
that st-Dn−(ω) is a substitute of Λ� defined in [16]. From §6, we shall see

st-Dn
+(ω) � {λρ : ρ > 1} and st-Dn

−(ω) � {λρ : 0 < ρ < 1},

where ω ∈ st-SVA and λρ denotes the mapping x 	→ ρx (see §6 for details).
The following theorem shows the convergence property of deferred means ob-

tained from the (N, ω) summability. This result is an integral analogue of [1,
Theorem 3.1]. It plays an important role in the proofs of Theorems 4.1 and 4.2.

Theorem 2.3. Let f(x) st→ l (N, ω). Then for each λ ∈ st-Dn
+(ω),

(
�1

λW (x)
)−1 ∫

[x1,λ1(x1)]×···×[xn,λn(xn)]
f(y)ω(y)dy

st−→ l,(2.8)

and for each λ ∈ st-Dn−(ω),

(
�1

λW (x)
)−1 ∫

[λ1(x1),x1]×···×[λn(xn),xn]
f(y)ω(y)dy

st−→ l.(2.8*)

Proof. We suppose λ ∈ st-Dn
+(ω) and the proof for λ ∈ st-Dn−(ω) will be car-

ried out in a similar way. For each 0 ≤ α ≤ 1, let xα = W (λ1−α1
1 (x1), · · · , λ1−αn

n

(xn)) and yα = Tωf(λ1−α1
1 (x1), · · · , λ1−αn

n (xn)), where λ�
k is defined by (2.2).

Then the left side of (2.3) becomes
∫
[x1,λ1(x1)]×···×[xn,λn(xn)] f(y)ω(y)dy. On the

other hand, the readers can prove that
∑

α≤β≤1(−1)|α|+|β|xβ = �1−α
λ W (x). From
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(2.3), we obtain
(
�1

λW (x)
)−1 ∫

[x1,λ1(x1)]×···×[xn,λn(xn)]
f(y)ω(y)dy

=
∑

0≤α≤1

(
�1−α

λ W (x)
�1

λW (x)

) ∑
0≤γ≤α

(−1)|γ| Tωf(λ1−γ1
1 (x1), · · · , λ1−γn

n (xn))




= Tωf(λ1(x1), · · · , λn(xn)) +
∑
α �=0

{
· · ·
}

, say.

For α �= 0, the term “
∑

0≤γ≤α(· · · )” in (2.9) tends to 0 statistically as min(x1, · · · ,
xn) → ∞. This can be proved by using Theorem 2.1 and the linearity of the
statistical convergence. From (2.9), we get (2.8). This finishes the proof.

3. TAUBERIAN CONDITIONS FROM f(x) st→ l TO f(x) → l

The following gives a Tauberian result from f(x) st→ l to f(x) → l and gener-
alizes [14, Theorem 2].

Theorem 3.1. Let f(x) st→ l. If (3.1) or (3.1*) holds, then f(x) → l, where

inf
λ∈Dn

+

{
lim sup

x→∞

(
sup

x<u<λ(x)

∣∣f(u)− f(x)
∣∣)} = 0,(3.1)

inf
λ∈Dn

−

{
lim sup

x→∞

(
sup

λ(x)<u<x

∣∣f(x)− f(u)
∣∣)} = 0.(3.1*)

Proof. We adopt the same proof of [2, Theorem 2.1]. It is easy to see that
λ ∈ Dn

+ ⇐⇒ λ−1 ∈ Dn−, where λ−1 denotes the inverse function of λ. This
indicates that (3.1) ⇐⇒ (3.1*). Hence, it suffices to prove the case of (3.1). Let
ε > 0. By (3.1), we can find λ ∈ Dn

+ and N1 > 0 such that

min(x1, · · · , xn) ≥ N1 =⇒ sup
x<u<λ(x)

∣∣f(u) − f(x)
∣∣ < ε.(3.2)

We have assumed that f(x) st→ l. Thus, there exists N2 > 0 so that for min(a1, · · · ,
an) ≥ N2,

1
a1 · · ·an

∣∣∣{u : 0 ≤ u ≤ a, |f(u)− l| ≥ ε
}∣∣∣ <

(
1 − 1

K

)n

,(3.3)
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where

K = min
(

inf
t≥t0

λ1(t)
t

, · · · , inf
t≥t0

λn(t)
t

)
> 1 for some t0 > 0.

Set N0 = max(N1, N2, t0). For min(x1, · · · , xn) ≥ N0, we have min(λ1(x1), · · · ,

λn(xn)) ≥ N2, and so (3.3) tells us that∣∣∣∣
{

u : 0 ≤ u ≤ λ(x), |f(u)− l| ≥ ε

}∣∣∣∣ <

{ n∏
k=1

(
1− xk

λk(xk)

)}( n∏
k=1

λk(xk)
)

=
n∏

k=1

(
λk(xk) − xk

)
.

This enables us to find u∗ = (u∗
1, · · · , u∗

n) with the properties: x < u∗ < λ(x) and
|f(u∗)− l| < ε. Putting this with (3.2) together yields

|f(x) − l| ≤ |f(u∗) − l|+ sup
x<u<λ(x)

∣∣f(u)− f(x)
∣∣ < 2ε.

Theorem 3.1 is an integral analogue of [2, Theorem 2.1]. We know that λ(x) =
ρx with ρ > 1 is in Dn

+, so (3.1) can be replaced by (1.4). We indicate that the λ
in (3.1) can not be relaxed to those of the form λ(x) = (λ1(x1), · · · , λn(xn)) with
the property:

lim inf
t→∞

λk(t)
t

= 1 (k = 1, · · · , n).

This is illustrated by the functions f : [0,∞) → [0, 1] and λ : [0,∞) → [0,∞),
defined in the following way:

f(x) =

{
0 if x = 0 or x = n or x = n + 1

n2 for some n ∈ N,

1 if x = n + 1
2n2 for some n ∈ N,

f is linear on each subinterval, and

λ(t) =

{
17
16t if t ∈ [0, 2),

t + 1
t3

if t ∈ [2,∞).

In this case, f(x) st→ 0, f(x) � 0, lim inf
t→∞

λ(t)
t

= 1, and sup
x<u<x+ 1

x3

|f(u)−f(x)| <

2(n + 1)2

n3
for 2 ≤ n ≤ x < n + 1. Hence,

lim sup
x→∞

(
sup

x<u<λ(x)

∣∣f(u) − f(x)
∣∣) ≤ lim

n→∞
2(n + 1)2

n3
= 0.
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For real-valued f , we have the following corresponding result of Theorem 3.1,
in which (3.1) and (3.1*) are replaced by the combination of (3.4) and (3.4*):

sup
λ∈Dn

+

{
lim inf
x→∞

(
inf

x<u<λ(x)
(f(u)− f(x))

)}
≥ 0,(3.4)

sup
λ∈Dn

−

{
lim inf
x→∞

(
inf

λ(x)<u<x
(f(x) − f(u))

)}
≥ 0.(3.4*)

Theorem 3.2. Let f be real-valued. If f(x) st→ l and one of (3.4)-(3.4*) holds,
then f(x) → l.

Proof. It is easy to see that (3.4) ⇐⇒ (3.4*). By (3.4), we have the following
fact instead of (3.2):

min(x1, · · · , xn) ≥ N1 =⇒ inf
x<u<λ(x)

(f(u)− f(x)) > −ε.(3.5)

The proof of Theorem 3.1 with this change leads us to

−ε < inf
x<u<λ(x)

(f(u) − f(x)) ≤ (f(u∗) − l)− (f(x)− l) < ε − (f(x) − l),

where u∗ is defined there. This implies sup
min(x1,··· ,xn)≥N0

(f(x) − l) ≤ 2ε, and

therefore, lim sup
x→∞

(f(x) − l) ≤ 0. To replace (3.4) by (3.4*), we see that a similar

proof to the above also lead us to lim inf
x→∞ (f(x)− l) ≥ 0. Therefore, f(x) → l.

Theorem 3.2 is an integral analogue of [2, Theorem 2.3]. It generalizes [14,
Theorem 1]. The same functions f and λ given after Theorem 3.1 indicate that the
λ in (3.4) (respectively (3.4*)) can not be relaxed to those with equality sign instead
of the inequality sign in (2.4) (respectively (2.4*)).

4. TAUBERIAN CONDITIONS FROM f(x) st→ l (N, ω) TO f(x) st→ l

The (N, ω) summability can be related to the original convergence by the use
of controlling the magnitudes of M+

λ f(x; ω) and M−
λ f(x; ω), which are defined

below:

M+
λ f(x; ω)

=
(�1

λW (x)
)−1

∫
[x1,λ1(x1)]×···×[xn,λn(xn)]

f(y)ω(y)dy − f(x)

=
(�1

λW (x)
)−1
∫

[x1,λ1(x1)]×···×[xn,λn(xn)]

(f(y)−f(x))ω(y)dy (λ ∈ st-Dn
+(ω)),
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M−
λ f(x; ω)

= f(x) − (�1
λW (x)

)−1
∫

[λ1(x1),x1]×···×[λn(xn),xn]
f(y)ω(y)dy

=
(�1

λW (x)
)−1
∫

[λ1(x1),x1]×···×[λn(xn),xn]
(f(x)−f(y))ω(y)dy (λ∈st-Dn

−(ω)).

The following is an integral analogue of [1, Theorem 3.2]. It generalizes [5, Theo-
rem 2].

Theorem 4.1. Let f(x) st→ l (N, ω). The following four assertions hold:

(i) Suppose st-Dn
+(ω) �= ∅. Then f(x) st→ l if and only if for all ε > 0,

inf
λ∈st-Dn

+(ω)
lim sup
a→∞

1
a1a2 · · ·an

∣∣∣∣
{

x : 0 ≤ x ≤ a, |M+
λ f(x; ω)| ≥ ε

}∣∣∣∣= 0.(4.1)

(ii) Suppose st-Dn−(ω) �= ∅. Then f(x) st→ l if and only if for all ε > 0,

inf
λ∈st-Dn

−(ω)
lim sup
a→∞

1
a1a2 · · ·an

∣∣∣∣
{

x : 0 ≤ x ≤ a, |M−
λ f(x; ω)| ≥ ε

}∣∣∣∣= 0.(4.1*)

(iii) Condition (4.1) can be replaced by M +
λ f(x; ω) st−→ 0 for some λ ∈ st-

Dn
+(ω), and condition (4.1*) can be replaced by M−

λ f(x; ω) st−→ 0 for some
λ ∈ st-Dn−(ω).

(iv) Moreover, if M+
λ f(x; ω) st−→ 0 holds for some λ ∈ st-Dn

+(ω), then it holds
for all λ ∈ st-Dn

+(ω). The same situation happens to M −
λ f(x; ω) st−→ 0 with

λ ∈ st-Dn−(ω).

Proof. Consider (i). Assume that f(x) st→ l. Let λ ∈ st-Dn
+(ω). From (2.8)

and the linearity of the statistical convergence, we get

M+
λ f(x; ω) =

(
�1

λW (x)
)−1 ∫

[x1,λ1(x1)]×···×[xn,λn(xn)]

f(y)ω(y)dy − f(x)

st−→ l − l = 0.

Hence, (4.1) follows. For the converse, write f(x) = M̃+
λ f(x; ω) − M+

λ f(x; ω),
where

M̃+
λ f(x; ω) =

(
�1

λW (x)
)−1 ∫

[x1,λ1(x1)]×···×[xn,λn(xn)]

f(y)ω(y)dy.
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We have

{x : 0 ≤ x ≤ a, |f(x)− l| ≥ ε}

⊆
{

x : 0≤x≤a, |M̃+
λ f(x; ω)−l| ≥ ε

2

} ⋃{
x : 0≤x≤a, |M+

λ f(x; ω)|≥ ε

2

}
.

By (2.8) and (4.1), we infer that f(x) st→ l. This completes the proof of (i). The
above argument also verifies both of the first parts in (iii) and (iv). As for λ ∈ st-
Dn−(ω), it can be carried out in a similar way. We leave it to the readers.

Theorem 4.1 indicates that any of (4.1) and (4.1*) is a Tauberian condition
from f(x) st→ l (N, ω) to f(x) st→ l. However, the example that f(x) = 1 for
x1 = · · · = xn > 0 and 0 otherwise tells us that it is no longer the case, whenever
“f(x) st→ l” is replaced by f(x) → l. It is easy to see that for such f , (4.1) and
(4.1*) hold, f(x) st→ 0 (N, ω), f(x) st→ 0, but f(x) � 0.

For real-valued f , we have the following analogue of Theorem 4.1. It is an
integral analogue of [1, Theorem 4.1] and generalizes [5, Theorem 1].

Theorem 4.2. Let f(x) st→ l (N, ω), where f and ω are real-valued, st-
Dn

+(ω) �= ∅, and st-Dn−(ω) �= ∅. Then f(x) st→ l if and only if both of (4.2)-(4.2*)
are satisfied for all ε > 0:

inf
λ∈st-Dn

+(ω)
lim sup
a→∞

1
a1a2 · · ·an

∣∣∣∣
{

x : 0 ≤ x ≤ a, M+
λ f(x; ω) ≤ −ε

}∣∣∣∣= 0(4.2)

and

inf
λ∈st-Dn

−(ω)
lim sup
a→∞

1
a1a2 · · ·an

∣∣∣∣
{

x : 0 ≤ x ≤ a, M−
λ f(x; ω) ≤ −ε

}∣∣∣∣= 0.(4.2*)

Proof. Suppose f(x) st→ l. Let ε > 0. For λ ∈ st-Dn
+(ω), we have

{x : 0 ≤ x ≤ a, M+
λ f(x; ω) ≤ −ε} ⊆ {x : 0 ≤ x ≤ a, |M+

λ f(x; ω)| ≥ ε}.

By Theorem 4.1, (4.2) holds. A similar argument also applies to (4.2*). Conversely,
assume that both of (4.2) and (4.2*) hold. Write f(x) − l = (M̃+

λ f(x; ω) − l) −
M+

λ f(x; ω), where M̃+
λ f(x; ω) is defined in the proof of Theorem 4.1. By (4.2)

and (2.8), for ε > 0 and δ > 0, there exists λ ∈ st-Dn
+(ω) such that

lim sup
a→∞

1
a1a2 · · ·an

∣∣∣∣
{

x : 0 ≤ x ≤ a, M+
λ f(x; ω) ≤ − ε

2

}∣∣∣∣< δ(4.3)
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and

lim sup
a→∞

1
a1a2 · · ·an

∣∣∣∣
{

x : 0 ≤ x ≤ a, M̃+
λ f(x; ω)− l ≥ ε

2

}∣∣∣∣= 0.(4.4)

Putting (4.3)-(4.4) together first and then letting δ ↘ 0 yields

lim sup
a→∞

1
a1a2 · · ·an

∣∣∣∣
{

x : 0 ≤ x ≤ a, f(x) − l ≥ ε

}∣∣∣∣= 0.(4.5)

On the other hand, consider the expression f(x)−l = (M̃−
λ f(x; ω)−l)+M−

λ f(x; ω),
where

M̃−
λ f(x; ω) =

(
�1

λW (x)
)−1 ∫

[λ1(x1),x1]×···×[λn(xn),xn]
f(y)ω(y)dy.

To modify the above proof by changing (4.2) and (2.8) to (4.2*) and (2.8*), respec-
tively, we see that

lim sup
a→∞

1
a1a2 · · ·an

∣∣∣∣
{

x : 0 ≤ x ≤ a, f(x)− l ≤ −ε

}∣∣∣∣= 0.(4.6)

Putting (4.5) and (4.6) together, we get f(x) st→ l. This completes the proof.

5. TAUBERIAN CONDITIONS FROM f(x) st→ l (N, ω) TO f(x) → l

We have seen in §4 that (4.1) and (4.1*) are not Tauberian conditions of (1.2).
The purpose of this section is to find conditions under which such an implication
holds. Consider the following slow oscillation conditions:

inf
λ∈st-Dn

+(ω)

{
lim sup

x→∞

(
sup

x<u<λ(x)

∣∣f(u) − f(x)
∣∣)} = 0(5.1)

and

inf
λ∈st-Dn

−(ω)

{
lim sup

x→∞

(
sup

λ(x)<u<x

∣∣f(x) − f(u)
∣∣)} = 0.(5.1*)

Clearly, (5.1) =⇒ (3.1) and (5.1*) =⇒ (3.1*). For ω ∈ st-SVA (see §6 for the
definition), we have (1.4) =⇒ (5.1) and (1.4) =⇒ (5.1*). The following is an
integral analogue of [2, Corollary 2.2]. Our result not only extends [6, Corollary
2] and [12, Corollary 2] from 1-dimensional case to n-dimensional case, but also
relaxes the (N, ω) summability to its statistical version.
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Theorem 5.1. Let f(x) st→ l (N, ω), where ω ≥ 0. If st-Dn
+(ω) �= ∅ (respec-

tively st-Dn−(ω) �= ∅) and (5.1) (respectively (5.1*)) holds, then f(x) → l.

Proof. We show the case of (5.1) and leave (5.1*) to the readers. It is clear
that

|M+
λ f(x; ω)| ≤ sup

x<u<λ(x)
|f(u) − f(x)|.

Thus, (5.1) =⇒ (4.1). By Theorem 4.1(i), f(x) st→ l. Putting this with Theorem
3.1, we get the desired result.

Next, assume that f and ω are real-valued. Instead of (5.1)-(5.1*), we consider
the following slow decrease conditions:

sup
λ∈st-Dn

+(ω)

{
lim inf
x→∞

(
inf

x<u<λ(x)
(f(u)− f(x))

)}
≥ 0(5.2)

and

sup
λ∈st-Dn

−(ω)

{
lim inf
x→∞

(
inf

λ(x)<u<x
(f(x)− f(u))

)}
≥ 0.(5.2*)

It is clear that (5.2) =⇒ (3.4) and (5.2*) =⇒ (3.4*). The following is an integral
analogue of [2, Corollary 2.4]. It extends [6, Corollary 1] and [12, Corollary 1]
from 1-dimensional case to n-dimensional case, and relaxes the (N, ω) summability
to its statistical version.

Theorem 5.2. Let f be real-valued. Assume that f(x) st→ l (N, ω) and (5.2)-
(5.2*) hold, where ω ≥ 0, st-Dn

+(ω) �= ∅, and st-Dn−(ω) �= ∅. Then f(x) → l.

Proof. The inequality

M+
λ f(x; ω) ≥ inf

x<u<λ(x)
(f(u)− f(x)),

where ω ≥ 0, shows the fact that (5.2) =⇒ (4.2). Similarly, (5.2*) =⇒ (4.2*). By
Theorem 4.2, f(x) st→ l. We have (5.2) =⇒ (3.4) and (5.2*)=⇒ (3.4*), so Theorem
3.2 ensures that f(x) → l.

6. OTHER TAUBERIAN CONDITIONS

In §3-§5, the Tauberian conditions introduced there involve the classes: SI , D
n
+,

Dn−, st-Dn
+(ω), and st-Dn−(ω). We have

st-Dn
+(ω) ⊆ Dn

+ ⊆ SI and st-Dn
−(ω) ⊆ Dn

− ⊆ SI .
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In the following, we shall further investigate the subclasses of st-Dn
+(ω) and st-

Dn−(ω), and then derive new types of Tauberian conditions.
Following [1, 2, 3], we write ω ∈ st-SVA if ω(x) = ω1(x1) · · ·ωn(xn) and

st- lim inf
t→∞

∣∣∣∣Wk(ρt)
Wk(t)

− 1
∣∣∣∣ > 0 for all ρ > 0 with ρ �= 1 (k = 1, · · · , n),

where Wk(t) =
∫ t
0 ωk(z)dz. For the definition of “st-lim inf”, we refer the readers

to [7, 11]. It is obvious that st-SVA is the n-dimensional statistical version of SVA
defined in [1, 2, 3]. For ω ∈ st-SVA,

st-Dn
+(ω) � {λρ : ρ > 1} and st-Dn

−(ω) � {λρ : 0 < ρ < 1},

where λρ denotes the mapping x 	→ ρx. Moreover, the following result is true.

Corollary 6.1. We have (1.4) =⇒ (5.1) =⇒ (3.1) and (6.1) =⇒ (5.1*) =⇒
(3.1*), where ω ∈ st-SVA and

inf
0<ρ<1

{
lim sup

x→∞

(
sup

ρx<u<x

∣∣f(x) − f(u)
∣∣)} = 0.(6.1)

Hence, the conclusions of Theorems 3.1 and 5.1 remain true, if the Tauberian
conditions involved there are replaced by any of (1.4) and (6.1).

It is easy to see that for ρ > 1,

sup
x<u<ρx

|f(u)− f(x)| ≤ sup
x<u<ρx

( n∑
k=1

|f̃(x, k, u)− f̃(x, k + 1, u)|
)

(6.2)

≤
n∑

k=1

sup
y≥x

(
sup

yk<vk<ρyk
v�=y� for ��=k

|f(v)− f(y)|
)

,

where f̃(x, k, u) = f(x1, · · · , xk−1, uk, uk+1, · · · , un). This leads us to the fol-
lowing consequence of Corollary 6.1.

Corollary 6.2. We have (1.3) =⇒ (1.4) and (6.3) =⇒ (6.1), where

inf
0<ρ<1

{
lim sup

x→∞

(
sup

ρxk<uk<xk
u�=x� for ��=k

∣∣f(x)− f(u)
∣∣)} = 0 (k = 1, · · · , n).(6.3)

Hence, for ω ∈ st-SVA, the conclusions of Theorems 3.1 and 5.1 remain true, if the
Tauberian conditions involved there are replaced by any of (1.3) and (6.3).
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It should be noticed that (1.3) ⇐⇒ (6.3). Moreover, Corollary 6.2 is an integral
analogue of [2, Corollaries 3.1 & 3.2] for Schmidt-type condition. Our result extends
[9, Corollary 3], [14, Theorem 4] and [15, Corollary 3] from ωk = 1 to general ω,
and relaxes the (N, ω) summability to its statistical version.

For ρ > 1 and xk < s < ρxk, set

f∗(x, k, s) = f(x1, · · · , xk−1, s, xk+1, · · · , xn).

By the Mean-Value Theorem, there exists t ∈ (xk, s) such that

|f∗(x, k, s)− f(x)| ≤ 2t

∣∣∣∣
(

∂f

∂xk

)∗
(x, k, t)

∣∣∣∣(ρ − 1)

≤ 2M(ρ − 1) for min(s, x1, · · · , xn) ≥ N0,

where M is a suitable constant satisfying

s

∣∣∣∣
(

∂f

∂xk

)∗
(x, k, s)

∣∣∣∣ ≤ M (min(s, x1, · · · , xn) ≥ N0; k = 1, · · · , n).(6.4)

Hence, Corollary 6.2 has the following consequence.

Corollary 6.3. We have (6.4) =⇒ (1.3). Hence, for ω ∈ st-SVA, the conclu-
sions of Theorems 3.1 and 5.1 remain true, if the Tauberian conditions involved
there are replaced by (6.4).

Corollary 6.3 is an integral analogue of [2, Corollaries 3.1 & 3.2] for the Hardy-
type condition. It extends [9, Corollary 4] and [14, Corollary 4] from ωk = 1 to
general ω, and relaxes the (N, ω) summability to its statistical version.

For real-valued f , the Tauberian conditions (1.4) and (6.1) are replaced by (6.5)
and (6.5*), stated below:

sup
ρ>1

{
lim inf
x→∞

(
inf

x<u<ρx
(f(u)− f(x))

)}
≥ 0,(6.5)

sup
0<ρ<1

{
lim inf
x→∞

(
inf

ρx<u<x
(f(x)− f(u))

)}
≥ 0.(6.5*)

Like Corollary 6.1, we have the following result.

Corollary 6.4. Let f be real-valued. Then (6.5) =⇒ (5.2) =⇒ (3.4) and (6.5*)
=⇒ (5.2*) =⇒ (3.4*), where ω ∈ st-SVA. Hence, the conclusions of Theorems
3.2 and 5.2 remain true, if the Tauberian conditions involved there are replaced by
(6.5) and (6.5*), respectively.
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For real-valued f , (6.2) is changed to

inf
x<u<ρx

(f(u)− f(x)) ≥
n∑

k=1

inf
y≥x

(
inf

yk<vk<ρyk
v�=y� for ��=k

(f(v)− f(y))
)

.

This lead us to the following consequence of Corollary 6.4.

Corollary 6.5. Let f be real-valued. Then (6.6) =⇒ (6.5) and (6.6*) =⇒
(6.5*), where

sup
ρ>1

{
lim inf
x→∞

(
inf

xk<uk<ρxk
u�=x� for ��=k

(
f(u) − f(x)

))} ≥ 0 (k = 1, · · · , n),(6.6)

sup
0<ρ<1

{
lim inf
x→∞

(
inf

ρxk<uk<xk
u�=x� for ��=k

(
f(x) − f(u)

))} ≥ 0 (k = 1, · · · , n).(6.6*)

Hence, for ω ∈ st-SVA, the conclusions of Theorems 3.2 and 5.2 remain true, if the
Tauberian conditions involved there are replaced by (6.6) and (6.6*), respectively.

Conditions (6.6) and (6.6*) are known as Landau-type conditions. The readers
can check that (6.7) implies both of (6.6) and (6.6*), where

(6.7)
s

{(
∂f

∂xk

)∗
(x, k, s)

}
≥ −M

(min(s, x1, · · · , xn) ≥ N0; k = 1, · · · , n),

where N0 > 0 and M > 0 are suitable constants. This gives the following result.

Corollary 6.6. Let f be real-valued. Then (6.7) =⇒ (6.6) and (6.7) =⇒
(6.6∗). Hence, for ω ∈ st-SVA, the conclusions of Theorems 3.2 and 5.2 remain
true, if the Tauberian conditions involved there are replaced by (6.7).

Corollaries 6.5 and 6.6 are the integral analogues of [2, Corollaries 3.4 & 3.5].
Our results extend [9, Corollaries 1 & 2], [14, Theorem 3] and [15, Corollaries 1
& 2] from ωk = 1 to general ω, and relax the (N, ω) summability to its statistical
version.
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