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NOTES ON CARLITZ’S ¢-OPERATORS

Jian Cao

Abstract. In this paper, Carlitz’s g-operator and the auxiliary ones are applied
to prove g-Christoffel-Darboux formulas and some Carlitz type generating
functions. In addition, the technique of exponential operator decomposition
to deduce g-Mehler’s formulas for Rogers-Szego and Hahn polynomials are
shown.

1. INTRODUCTION

One of the customary ways to define the Hermite polynomials is by the relation
[14, p. 193]

(1.1) H,(z) = (=1)"exp(2*) D" exp(—2?), D =d/dx

Burchnall [5] employed the operational formula

(12) (D= 20)" = 3 (~1)"* (’,j) H, () D*

k=0

to prove the formula of Nielsen [21, p. 31]

0 = S () (’,Z) (Z) KH (2 o i (2).

k=0

For more information about the classical Hermite polynomial and its operational
formula, please refer to [1, 5, 9, 14, 15, 17, 20, 25].
The Rogers-Szego polynomials [7, 23]
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n

@8 i) = [1] 5 ) = 0 [1] a0t = tela ),

k=0 k=0

which are in some respects the analogue of the Hermite polynomial (See [8]), are
closely related to the continuous ¢g-Hermite polynomials via [22]

(1.5) H,(cosb)q) = e~ hy, (e2*|q).

The Hahn polynomials [3, 11, 24] are defined by

n

Ptala) = Y- |1 (ot

(1.6) =0
Walg) = [Z] "k (ag ;g
k=0

Carlitz gave a clever g-analogue of Burchnall’s method by defining the shifted
operator E and A as [8, Eq. (4) and (5)]

(1.7 E"f(z) = f(z¢") and A" =(1-E)(g—E)---(¢" ! —E),

and obtained the following results

n n

@&W:ZPWMATM(&aW:ZPWMMMWMﬂ

r=0 r=0

by means of inverse series relations and the noncommutative g-analogue of binomial
theorem (See Lemma 2.1 below).
Using mathematical induction, Carlitz obtained the general formula [8, Eq. (11)]

@G Dm_

(s 0 el

(L9) ATy (alg) =

and deduced the following linearization formulas for h,,(z|q):

Proposition 1.1. ([7, Eq. (1.7) and (1.8)]). For m,n € N, we have

110)  hu(elha(ele) - mirfzré’n} ) ] @ )
min{m,n}
@11) ol = 3 0 "] ] G la (el

r=0
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In this paper, we define the auxiliary operator of (1.8) as

(1.12) (B +2)" = Zn: [Z] grm gk k,
k=0

and the inverse pairs

k k

-k _ k r(r—k) sr Sk _ 1\ k (7)—(k) —r
(113) E _Z;[r q 6" and (—9) _Z;( n | @ ET
then we obtain the following result and further deduce the linearization formulas
for g,,(x|q) (See Proposition 2.3 below).

Theorem 1.1. For r,m € N, we have
_ m
(1.14) amtal) = a7 |7 @50l

In [8], Carlitz gave a clever proof of g-Mehler’s formula for h,(z|q) (See
Proposition 3.1 below) by relations among operators E,, E, and E;.

In fact, we can deduce ¢-Mehler’s formula for Rogers-Szegd polynomials by
Carlitz’s g-operators directly, the thought is decomposition, so the method may be
called “exponential operator decomposition”. See details in Sections 3 and 6.

The Christoffel-Darboux formula for Hermite polynomial reads that

Proposition 1.2. ([14, p. 193]).

n

w15 3 En@Hn) _ Hua@Haly) — Hu(@) Hoiav)

= , neN.
= 2mml 2ntpl(z — y)

We give g-analogue of Christoffel-Darboux formula for Hermite polynomial as
follows.
Theorem 1.2. For n € N, we have

(1.16) Zn:hk(x/q\q)hk(y‘q)yn_qu _ T (2]9) e (ylg) — T (x]@)hnt1 (ylg)

= (4 Dk (z — ) (¢ Dn '

Theorem 1.3. For n € N, we have

n —y)n—hq(5)=("3")
3" geeala)an(le) =L
(1_17) k=0 (CL Q)k
_ 9n1(#[9)9n(Yl9) = 9n(]0)gn+1(ylq)

(z —y)(a; Dn
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Corollary 1.1. For n € N, we have
n—k k n n—k k

(1.18) % hk(x/q\q)hk(y\q)zéq; q)qk = ;; hk(y/qm)hk(x\qyz%—qi.

Corollary 1.2. For n € N, we have

(—p)"*qd) ¢ (=)™ *ql5)

(L19) > gr(zdla)gk(ylq) (@D = ge(yala)gn(zla) (G Or
! k=0 7

k=0

The structure of this paper is organized as follows. In Section 2, we prove
Theorem 1.1 and the linearization formulas for g,,(x|g). In Section 3, we show how
to deduce Mehler’s formula for Rogers-Szegd polynomials by Carlitz’s g-operators.
In Section 4, we give a new proof of Carlitz type Mehler’s formulas for Rogers-
Szegod polynomials and deduce Theorems 1.2 and 1.3. In Section 5, we deduce
Mehler’s formula for Hahn polynomials by Carlitz’s g-operators. In Section 6, we
give some results related to Carlitz’s g-operators.

2. NoTtaTions AND ProOF oF THEOREM 1.1

In this paper, we follow the notations and terminology in [16] and suppose that
0 < ¢ < 1. The g-shifted and its compact factorials are defined by

n—1 00
(@go=1, (a0)n= ][]0 -0ad"), (60)0= ][0~ ad"
k=0 k=0
and (a1, a2,...,am;q)n = (a1;¢)n(a2; Q)n - .. (am; q)n, respectively, where n is

an integer or oo. The operator E acting on the variable x will be denoted by
E;. LHS (or RHS) means the left (or right) hand side of certain equality, and
N=1{0,1,2,---}.

The basic hypergeometric series ,.¢; is given by

a1y« Ay - (a’lva'?v"'va'T’;Q)n n|: n (n)i|8+1_r
21) s qz| = (e |
( ) ¢ [blv'--vbs QZ] nzg (q,bl,...,bs;q)nz ( )q

for convergence of the infinite series in (2.1), |¢| < 1 and |z| < oo when r < s,
or |¢g] < 1and |z| < 1 when r = s+ 1, provided that no zeros appear in the
denominator.

The ¢-Chu-Vandermonde formula [16, Eqg. (II.6) and (l.7)] reads that

N (/b @)n g™ b g (c/bi@)n
(2.2) 2¢1[ c 7q7Q]—W5 and 2¢1[ c 7q77]—m-

The noncommutative g-analogue of binomial theorem states that
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Lemma 2.1. ([16, p. 28] or [13, Lem. 2.2]). Let A and B be two noncommu-
tative identerminates satisfying BA = qAB, then we have

(2.3) (A+ B)" = Zn: [Z] Akprk
k=0

The linearization formulas for g, (z|q) are

Proposition 2.3. ([7, Eq. (4.18) and (4.19)]). For m,n € N, we have

(2.4) gn(zlg)gm(xla) = mirffé’n} m m (q; q)rg(B)Hrr=m=n)

X(=2)" gmin—2r(2]q),
min{m,n} |:

25) gmen(zlg) = > g ™
r=0

r] m (@ Or" gm—r (%]q) grn—r(x(q).

Proof of Theorem 1.1. In view of the fact that

n

b n
then applying operator E;™ to the second formula in (1.4) and using Lemma 2.1
give

n

5

)

gm(2]q)

m

J

m . o _n7 _j
j]qum ™) oh1 [ 1 Oq ;q,q]

I
17

<
Il
=)

] jqj(j—m—n)

<
Il
=)

I
=8 —

j J(j_m) ; m n e 1
q (q Q) Z |:n:| qr(r n—j)

Il
.MS

<
[e=]

3|l

(2.7) = @Dy ZLr (¢ 4)j—r
N\ rr-mn) (G Dm_ m—r] G—r)(G—m) 1
— q . X
Z; r (QQ Q)m—r Z: J=r
r Jj=r
=3 [ grtr-mem (@ Dm_ [m 7“] J=mer) 13
r] (@ Dm—r L

-n- rr—nm —rm m T
¢"g [r] (4 Q)r" Gm—r(]q).

\3
I
=)

Using the first formula in (1.13) yields
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—n S n r{r—m T
@8) B nale) = 3 |7] g ol
r=0
Comparing the coefficient of (2.7) and (2.8), we have (1.14). The proof of Theorem
is complete. ]

Proof of Proposition 2.3. Using (1.12), (1.13) and (1.14), LHS of (2.5) is equal
to

(" + )" {gm(ala)} = Z [Z] qk“f—%n—ké a9 el
=3 (1] gl o),

which is RHS of (2.5). The proof is complete.
Using formula (2.5), RHS of (2.4) is equal to

" ] o

X Z g lsmmmn ) [ms_ r] [n N r] (4: ) s7° gm—r—s (2q) gn—r—s(z[q)

S

mm{m n}

_ (4 Q)im(q; @)ng"F—m ) 2 (—1)7¢) (g; )1
- ,; (@ Om—k (4 On—r(a; D gm_k(m‘Q)gn_k(x‘Q)rgk (@ 04 0)s
)

min{m,n}

-y (¢:4

m( ) k(k—m—n)xk
= (G Dmr(G Dnk(g:q

7 Gm—k(2|q) gn—k(z|q)dk 0,

which is LHS of (2.4), where 6, ,, is the Kronecker delta. This achieves the proof. m

3. ¢-MEHLER’S FORMULAS FOR ROGERS-SZEGH POLYNOMIALS

Carlitz [7] deduced the following ¢-Mehler’s formulas by using the recurrence
relations of Rogers-Szego polynomials.

Proposition 3.1. ([7, Eq. (3.9)]). For max{|t|, |zt|, |yt|, |zyt|} < 1, we have

o (ayt*ia)
GOn (Gt yt, 2yt; @)oo

(3.1) Zh (ela)ha(yla)

Proposition 3.2. ([7, Eq. (3.13)]). For |zyt?/q| < 1, we have
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S (1B (1, at, yt, oyt g

(32) nzggn(w\qmn(y\@ o CErT N

Carlitz [10] gave another proofs of them by utilizing the transformation theory
and the technique of operator. The authors [18] deduced them by the combina-
torial method. Chen and Liu [12, 13] proved them by the method of parameter
augmentation. For more information, please refer to [7, 10, 12, 13, 18].

In this section, we deduce Propositions 3.1 and 3.2 directly by the thought of
exponential operator decomposition.

Proof of Proposition 3.1. LHS of (3.1) equals

S h(ylg) o (B + )" {1} = :
n=0

((Em + x)t, (Em + x)yt; q)oo

(¢ Dn ty

_ 1 — (y)* k
(B +2)t; Q). {Z (Q;Q)k(Em +2) {1}}
{ (yt, 2yt; @)oo }

R k 1
(@)oo 2 (QQQ)k(Em +2) {(wyt; q)oo}

—_

k=0
1 Xt [k] |
= x —_—
(yt;q)oo§(q;q)k§ s (zytq*; ¢)oo

o0

1 t5(xyt; q)s o= (xt)F*
_ Z(yQ)Z()

Wt 2yt oo =1 (©:0)s = (G Dk—s’
which is the RHS of (3.1). This completes the proof. |

Proof of Proposition 3.2. LHS of (3.2) is equal to

((E;l + x)t, (E;l + x)yt; q)oo{l}

n
1)rg(3) L
~ (¢ a)n

O ) e _
= (y0)00 3 _(—1)"q(2) [Z] ¢ @yt 9o
0

(B +2) {(wt, 2yt )}

S @)k i (—1)q() nghtk=—m) gn—k
= @ 5 (@5 Qn—rk

n



2236 Jian Cao

00 _(k+1 00 n
= (yt, zyt; @) o
(b eyt ) % (4 Q) Z:: G
L (zyt? Q)" (q/(xyt); @)k = 1 "
~ (gt o S /)((/ Pk =
k=0 EE q n=0
which is equivalent to RHS of (3.2). This achieve the proof. ]

4. ¢-CHRISTOFFEL-DARBOUX FORMULAS
The following Carlitz type generating functions for h,(z|q) is deduced by

Proposition 4.3. ([11, Eq. (4.1)]). For m € N, we have

TL

Z Rt (219) P (y]q)

_ (xyt27 )oo
(t, xt, yt, xyt; ¢) oo

1) (@ On
m_xt, vyt q™
3¢1 q Y 4, — |,

xyt2 T

where max{|t|, |xt|, |yt|, |zyt|} < 1.

The auxiliary ones is given by

Proposition 4.4. ([6, Eq. (4.3)]). For m € N and |zyt?/q| < 1, we have

>~ menlelign (ol (1)) L
“2) — % Q)n
_ 2™ (t 2t yt, vyt @)oo p a " q/(xt),q/(zyt) .
- (2] Q)oe 07 0,¢%/(zyt?) ]

There are many proofs of above Propositions. Al-Salam and Ismail [2] gave the
proof of Proposition 4.3 by using the transformation theory, while Srivastava and
Jain [24] obtained it by the technique of generating function. The author [6] utilized
the method of parameter augmentation [12, 13] to deduce above two Propositions.
For more information, please refer to [2, 6, 11, 12, 13, 24].

In this section, we will use Carlitz’s g-operators to derive Propositions 4.3 and
4.4, then we give the proof of Theorems 1.2 and 1.3.

Proof of Proposition 4.3. Formula (3.1) can be written as

n

tn 1 gt 2"y
(4.3) Zh (z|q)h y‘Q)(q Dn (t;q) Z (¢;Dn (25 ¢) oo (Yt @)oo

X =0




Notes on Carlitz’s g-Operators 2237

Applying (E, + )™ to both sides of (4.3) gives

th+n £19)hn(yla) ( t;

i o T (Eﬂ‘:*x)m{(f) |

3

oo = (G On (Yt Q) Tt q)o
TL o m
Z Z Z [m] pm—stntk q(k+n)
* =0 (@ 9)n yt @oc k:O ko L?
1 - [ ] (t7q xytqs )" o= (2tq®)
_(t,yt;q)oo; s nZ% Z (4 0k
which is the RHS of (4.1). The proof is complete. ]
Proof of Proposition 4.4. We can rewrite (3.2) as
o n n
> (1" gu(wlg)gn(yla) —
= (¢ @)n
(4.4)

_ (t:0) i (#/0)"(a/t Dn_n

=2 @ (715 @) ooy™ (Yt; @) o

Similar to the proof of (4.1), utilizing operator <E;1 + x)m to both sides of (4.4),
we obtain the proof of Proposition 4.4. [ ]

Proof of Theorem 1.2. For m = 1, formula (4.1) becomes

" (2yt% @)oo 1+ x — 2t — Yt
4.5 h = .
(#5) Z 1 (710)n(v]0) (GO (Lot ytayti gl 1—ayt?

Replacing = by y in (4.5), then differencing between them gives

o 1 (2]@)ha(ylg) — (2] ) 1 (y]0) (2y%; @)oo
4.6 th =
“9 RZ% (@ = y) (& Dn (tq, zt, yt, 2yt; @)oo
By virtue of formula (3.1), RHS of (4.6) equals
(zy*¢; @)oo 1
(tq, xt, ytq, zyt; @)oo 1 — yt
(4.7) = Z(lﬂf) Z hn—k(x/Q\Q)hn—k(y\Q)m
- n—kin
t
= Zzhn 1 (2/a]q) b k(y\q)y a
(¢ Dk

n=0 k=0
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Comparing the coefficient of (4.6) and (4.7) gives the proof of Theorem 1.2. m
Proof of Theorem 1.3. Similar to (4.6), by (4.2), we have

In+1(210)9n(Y1) = 9n (@) In+1(WID) 41y, (3)
RZ% (= y)(g9)n =1
_ (a2t yt, 2yt @)oo
(2yt?*/ 4% @)oo
_ /et yt/g wyti oo 1
(48) (zyt?/¢* @)o 1 —yt/q

0 i - (n
Z( ) Zgn k(74 q)gn— k(y\q)( t/q? *q

(CL Q)n—k

")

oy ot
— 5 q)n—

Equating the coefficient of ¢ on both sides of (4.8) yields the proof of Theorem
1.3. [ |

5. ¢-MEHLER’S FORMULA FOR HAHN POLYNOMIALS

Al-Salam and Carlitz [3] gave the following two bilinear generating functions
by the transformation theory. For more information, please refer to [3, 19].

Proposition 5.1. ([3, Eq. (1.17)]). If max{|z|, |xz|, |yz|, |zyz|} < 1, we have

> (azxz,byz; q)

1 (a) (b) 2" — ) ) oo a, bv )
(5.1) RZ%% (z[q) 8% (ylq) G~ Gy 02 aws, byt © T2

Proposition 5.2. ([3, Eq. (1.18)]). If max{|qazxz|, |gbyz|} < 1, we have

0 (2O (1) S 1)gl"z)zn
nzgiﬂ (zla)v’ vl —7

(5.2)

1 1 1
~ (q2,q72,9Y2; @)oo b | w0 _
(qazz, qgbyz; q)oo

In this section, we will deduce Propositions 5.1 and 5.2 directly from g-Mehler’s
formula for Rogers-Szegd polynomials by Carlitz’s g-operators.
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Proof of Proposition 5.1. We first prove that

- (Em—i—x)m{ ll }

(¢ Dm (225 )0
k

D
ksz

a

ot
3

m

o

z) " tE
(q;q)m(Egch ) "

i am i[fjﬂ] 2R {27 k)

= (@ D)m =
:x”i (m)k i ajqj(n+k) i (aw)m—j
=@k = (@9 = (GDm
z"(a; @)n(a2; q) o
(azxz;q)n(a, az, r2;q) 00

(a;9)
k

i
o

z

5.3
63) (4 Ok

ol

i
o

Similarly, we have

" mf v Y0 )albyzd)s
&4 mzo (Q%Q)W(Ey ) {(yz;Q)oo} = (byz; @)n(a, by, 23 @)oo’

A little computation shows that [11, Eq. (3.3)]

> am m o 1 (a)
(55) mz:o (q; q)m (Ea; + (L‘) {hn(x‘q)} - (a7 az; Q)m¢n (x‘Q)
and

o0 bm

. — " { by, = ————P(ylg).
(5.6) mzo G By +9)" (i)} = sl (o)
Now, we applying operators
1 1

(5.7) and

<a(Em+x);q>oo <b(Ey+y);q>

to both sides of (4.3), then combining (5.3)-(5.6) yield

o0

o0

1 (a) (®) Z"
58) (a,az,b, by§Q)oonZ%¢n (zla)én"(vla) (¢ 9)n
_ (azz,byz; q) oo i (23 @)n2" 2" (a; @) Y™ (b5 @)

(a,az,2,b,by, Y2, 2:4)0c 2= (@) (0225 q)n (by2; q)n

which equals RHS of (5.1). The proof is complete.

2239
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Proof of Proposition 5.2. From (1.12), we have

m

Z(q;)

m+1

(_1)mq( 2 )(E;l —l—x)m{%n(@'ZQQ)oo}

m ("3 - m| j(j—m—-n—k), m—j+nt+k
——)) q(z)Z[.]qJ(J L
(¢ Dm =L

— (_1\" g) az)” a: (GQ7axQ7xZ§Q)oo
(=10 )" (1 a)a ST

Similarly

(5.10) mzo (Q?:)m(_l)mq(mgl) (B, +9)" 1" (v 0)oc)
) (by)" (1/; ) LL UL Y% D)oo

(byzg™™; @)oo

Il
|
—_
S—
3
QI
—~~
S~—

It’s easily to verify that [11, Eq. (8.5)]

m+1

610 3 (1)) (5 0) ™ faulala)} = (a0, aas )t ol
m=0 1’ /™M

and

m—+1

612 > 1) () " (on0la)} = (. byas 0l
m=0 v E/m

Applying operators (a(E;l + x);q) and (b(Ey—l + y);q) to both sides of
(4.4) yields

- —1)g(3)n
(aq, azq,bq, byg; @)oo Y zb;“)(x\q)wng)(y\q)(t)#
n=0 y4)n

(2,aq, axq, xz,bq, byq, y2: )
(azz,byz; q)oo
y i (z%/q)"(q/ 7 q)nq_n2+n (abay)"(1/a,1/b; Q)n

—= (¢ (axzq™, byzq~"; q)n’

(5.13) =

replacing z by ¢z gives the proof. ]
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6. SoME REsuLTS RELATED TO CARLITZ'S g-OPERATORS

The generalized Rogers-Szegd polynomials are defined by

n

6.) huevle) = [Z] 2" Fy*and ga(eyla) = [Z] gFEmm gy,
k=0 k=0

In this section, using Carlitz’s g-operators, we first deduce their g-Mehler’s formulas
as follows.
Proposition 6.1. For max{|ztu|, |ztv|, |ytu|, [ytv|} < 1, we have

S ¢ (zyuvt®; ¢)oo
6.2 b (2, y|q) hn(u, = :
62 RZ% (#:810)n (s ola) (G@)n  (wtu, 2tv, ytu, ytv; @)oo

Proposition 6.2. For |zyuvt?/q| < 1, we have

(—1)ng(3)em _ (aut, wot, yut, yot; q) oo
(¢ On (zyuvt?/q; q)oo

©3) D gnl=,ylg)gn(u, vlg)

n=0

Remark 1. Comparing (1.4) and (6.1), we find that h,,(z, 1|q) = h,(x|q) and
gn(x,1lq) = gn(z|q). So when y = v = 1, Propositions 6.1 and 6.2 reduce to
Propositions 3.1 and 3.2 respectively.

In addition, we derive the following g-analogue of binomial theorem.

Proposition 6.3. ([16, p. 20]). For n € N, we have

n

(6.4) CTIIEDY [Z] (5 k(s Dnry”.

k=0

Proof of Proposition 6.1. By formula (1.8) and Proposition 2.1, we get

(yBy + )" = Zn: [Z] a"hyh é(—l)r m iy
] — [n - r] kb AT
ke

r

r

roo n—r

ny |:n - 7":| xn—k—rykAr
k=0

Il
—
|
—_
~—

3

Il
—
|
—
~—

3
<

Y hn—r(z,y|q) AT,

Il
—
|
—_
~—

3
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where A defined by (1.7), so we have (yE,+x)"{1} = h,(z,y|q). We can verified
that

> tn 1

6.5 hn (2, = .

69 RZ% (o) (¢ n  (2t,yt¢)oo

Using the technique of exponential operator decomposition, LHS of (6.2) equals

1
{1}
<ut (yEm + x), vt (yEm + x); q)
= (yvt; Q)oo <ut(yEm + 1‘); q> (xvt; q)oo )
which is RHS of (6.2) after some computation. The proof is complete. ]

Proof of Proposition 6.2. First we can deduce that

S (10D g (2 pla) b = (.t
(6.7) RZ%( 1)"q(2) g, 7y\Q)(q;q)n (wt, yt; q) oo,

and <yE;1 + x)n{l} = gn(x,y|q). Similar to (6.6), LHS of (6.3) is equivalent to

(ut (vE ! + o), ot (B, +); q) {1}
(6.8) o0
= (yvt; @)oo (ut<yE; L+ w) ; q) {(zvt; @)oo}

o0

which equals RHS of (6.3) after some computation. The proof is ended. ]
Proof of Proposition 6.3. We consider the following type of Carlitz’s g-operator
69) (v - 2B + (1 - ), )"
and find the fact that
(v~ DEa + (1= 9B, {1} =y(1 —2) + 1 -y = 1 —ay,

(v~ 2)Ee + (1= 9)B,) (1) = (40~ D). + (1~ )E, ) {1~ 20)

=y(1 —2)(1 —2yq) + (1 - y)(1 — zyq) = (1 — 2y)(1 — zyq) = (vy; q)2-
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Generally we have

(6.10) (v = 2B, + (1= 9B, ) {1} = (g ).

Similarly, we get

61 (1-9E) (W =@ae ad (y0-)E) (1} = @

From Proposition 2.1, we gain

612) (41— 2k, + (1- k)" =3 3] (- o) (- e)"

Combining (6.10), (6.11) and (6.12), we conclude the proof. ]
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