
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 14, No. 6, pp. 2229-2244, December 2010
This paper is available online at http://www.tjm.nsysu.edu.tw/

NOTES ON CARLITZ’S q-OPERATORS

Jian Cao

Abstract. In this paper, Carlitz’s q-operator and the auxiliary ones are applied
to prove q-Christoffel-Darboux formulas and some Carlitz type generating
functions. In addition, the technique of exponential operator decomposition
to deduce q-Mehler’s formulas for Rogers-Szegö and Hahn polynomials are
shown.

1. INTRODUCTION

One of the customary ways to define the Hermite polynomials is by the relation
[14, p. 193]

(1.1) Hn(x) = (−1)n exp
(
x2

)
Dn exp

(−x2
)
, D = d/dx.

Burchnall [5] employed the operational formula

(1.2) (D− 2x)n =
n∑

k=0

(−1)n−k

(
n
k

)
Hn−k(x)Dk

to prove the formula of Nielsen [21, p. 31]

(1.3) Hm+n(x) =
min{m,n}∑

k=0

(−2)k

(
m
k

)(
n
k

)
k!Hm−k(x)Hn−k(x).

For more information about the classical Hermite polynomial and its operational
formula, please refer to [1, 5, 9, 14, 15, 17, 20, 25].

The Rogers-Szegö polynomials [7, 23]

Received January 11, 2009, accepted April 6, 2009.
Communicated by H. M. Srivastava.
2000 Mathematics Subject Classification: 05A30, 11B65, 33D15, 33D45.
Key words and phrases: Carlitz’s q-operators, Rogers-Szegö polynomials, q-Mehler’s formula, Hahn
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(1.4) hn(x|q) =
n∑

k=0

[
n
k

]
xk, gn(x|q) =

n∑
k=0

[
n
k

]
qk(k−n)xk = hn

(
x|q−1

)
,

which are in some respects the analogue of the Hermite polynomial (See [8]), are
closely related to the continuous q-Hermite polynomials via [22]

(1.5) Hn(cos θ|q) = e−inθhn

(
e2iθ|q).

The Hahn polynomials [3, 11, 24] are defined by

(1.6)

φ
(a)
n (x|q) =

n∑
k=0

[
n

k

]
(a; q)kx

k,

ψ
(a)
n (x|q) =

n∑
k=0

[
n

k

]
qk(k−n)xk(aq1−k; q)k.

Carlitz gave a clever q-analogue of Burchnall’s method by defining the shifted
operator E and � as [8, Eq. (4) and (5)]

(1.7) E
nf(x) = f(xqn) and �n = (1 − E)(q − E) · · · (qn−1 − E),

and obtained the following results

(1.8) E
n =

n∑
r=0

(−1)r

[
n
r

]
�r and (Ex + x)n =

n∑
r=0

(−1)r

[
n
r

]
hn−r(x|q)�r,

by means of inverse series relations and the noncommutative q-analogue of binomial
theorem (See Lemma 2.1 below).

Using mathematical induction, Carlitz obtained the general formula [8, Eq. (11)]

(1.9) �rhm(x|q) =
(q; q)m

(q; q)m−r
q(

r
2)xrhm−r(x|q),

and deduced the following linearization formulas for hn(x|q):
Proposition 1.1. ([7, Eq. (1.7) and (1.8)]). For m, n ∈ N, we have

(1.10) hm(x|q)hn(x|q) =
min{m,n}∑

r=0

[
m
r

] [
n
r

]
(q; q)rx

rhm+n−2r(x|q),

(1.11) hm+n(x|q) =
min{m,n}∑

r=0

(−1)rq(
r
2)

[
m

r

][
n

r

]
(q; q)rx

rhm−r(x|q)hn−r(x|q).
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In this paper, we define the auxiliary operator of (1.8) as

(1.12)
(
E
−1
x + x

)n
=

n∑
k=0

[
n
k

]
qk(k−n)xn−k

E
−k
x ,

and the inverse pairs

(1.13) E
−k =

k∑
r=0

[
k
r

]
qr(r−k)δr and (−δ)k =

k∑
r=0

(−1)r

[
k
r

]
q(

r
2)−(k

2)E−r ,

then we obtain the following result and further deduce the linearization formulas
for gn(x|q) (See Proposition 2.3 below).

Theorem 1.1. For r,m ∈ N, we have

(1.14) δrgm(x|q) = q−rm

[
m
r

]
(q; q)rx

rgm−r(x|q).

In [8], Carlitz gave a clever proof of q-Mehler’s formula for hn(x|q) (See
Proposition 3.1 below) by relations among operators Ex, Ey and Et.

In fact, we can deduce q-Mehler’s formula for Rogers-Szeg̈o polynomials by
Carlitz’s q-operators directly, the thought is decomposition, so the method may be
called “exponential operator decomposition”. See details in Sections 3 and 6.

The Christoffel-Darboux formula for Hermite polynomial reads that

Proposition 1.2. ([14, p. 193]).

(1.15)
n∑

m=0

Hm(x)Hm(y)
2mm!

=
Hn+1(x)Hn(y)−Hn(x)Hn+1(y)

2n+1n!(x− y)
, n ∈ N.

We give q-analogue of Christoffel-Darboux formula for Hermite polynomial as
follows.

Theorem 1.2. For n ∈ N, we have

(1.16)
n∑

k=0

hk(x/q|q)hk(y|q)y
n−kqk

(q; q)k
=
hn+1(x|q)hn(y|q)− hn(x|q)hn+1(y|q)

(x− y)(q; q)n
.

Theorem 1.3. For n ∈ N, we have

(1.17)

n∑
k=0

gk(xq|q)gk(y|q) (−y)n−kq(
k
2)−(n+1

2 )

(q; q)k

=
gn+1(x|q)gn(y|q)− gn(x|q)gn+1(y|q)

(x− y)(q; q)n
.
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Corollary 1.1. For n ∈ N, we have

(1.18)
n∑

k=0

hk(x/q|q)hk(y|q)y
n−kqk

(q; q)k
=

n∑
k=0

hk(y/q|q)hk(x|q)x
n−kqk

(q; q)k
.

Corollary 1.2. For n ∈ N, we have

(1.19)
n∑

k=0

gk(xq|q)gk(y|q) (−y)n−kq(
k
2)

(q; q)k
=

n∑
k=0

gk(yq|q)gk(x|q) (−x)n−kq(
k
2)

(q; q)k
.

The structure of this paper is organized as follows. In Section 2, we prove
Theorem 1.1 and the linearization formulas for gn(x|q). In Section 3, we show how
to deduce Mehler’s formula for Rogers-Szegö polynomials by Carlitz’s q-operators.
In Section 4, we give a new proof of Carlitz type Mehler’s formulas for Rogers-
Szegö polynomials and deduce Theorems 1.2 and 1.3. In Section 5, we deduce
Mehler’s formula for Hahn polynomials by Carlitz’s q-operators. In Section 6, we
give some results related to Carlitz’s q-operators.

2. NOTATIONS AND PROOF OF THEOREM 1.1

In this paper, we follow the notations and terminology in [16] and suppose that
0 < q < 1. The q-shifted and its compact factorials are defined by

(a; q)0 = 1, (a; q)n =
n−1∏
k=0

(1 − aqk), (a; q)∞ =
∞∏

k=0

(1− aqk)

and (a1, a2, . . . , am; q)n = (a1; q)n(a2; q)n . . . (am; q)n, respectively, where n is
an integer or ∞. The operator E acting on the variable x will be denoted by
Ex. LHS (or RHS) means the left (or right) hand side of certain equality, and
N = {0, 1, 2, · · · }.

The basic hypergeometric series rφs is given by

(2.1) rφs

[
a1, . . . , ar

b1, . . . , bs
; q, z

]
=

∞∑
n=0

(a1, a2, . . . , ar; q)n

(q, b1, . . . , bs; q)n
zn

[
(−1)nq(

n
2)

]s+1−r
,

for convergence of the infinite series in (2.1), |q| < 1 and |z| < ∞ when r ≤ s,
or |q| < 1 and |z| < 1 when r = s + 1, provided that no zeros appear in the
denominator.

The q-Chu-Vandermonde formula [16, Eq. (II.6) and (II.7)] reads that

2φ1

[
q−n, b

c
; q, q

]
=

(c/b; q)n

(c; q)n
bn and 2φ1

[
q−n, b

c
; q,

cqn

b

]
=

(c/b; q)n

(c; q)n
.(2.2)

The noncommutative q-analogue of binomial theorem states that
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Lemma 2.1. ([16, p. 28] or [13, Lem. 2.2]). Let A and B be two noncommu-
tative identerminates satisfying BA = qAB, then we have

(2.3) (A+B)n =
n∑

k=0

[
n
k

]
AkBn−k .

The linearization formulas for gn(x|q) are

Proposition 2.3. ([7, Eq. (4.18) and (4.19)]). For m, n ∈ N, we have

(2.4)
gn(x|q)gm(x|q) =

min{m,n}∑
r=0

[
m

r

] [
n

r

]
(q; q)rq

(r
2)+r(r−m−n)

×(−x)rgm+n−2r(x|q),

(2.5) gm+n(x|q) =
min{m,n}∑

r=0

qr(r−m−n)

[
m
r

] [
n
r

]
(q; q)rx

rgm−r(x|q)gn−r(x|q).

Proof of Theorem 1.1. In view of the fact that

(2.6) 2φ1

[
q−n, b

0
; q, q

]
= bn,

then applying operator E
−n
x to the second formula in (1.4) and using Lemma 2.1

give

(2.7)

E
−n
x gm(x|q)

=
m∑

j=0

[
m
j

]
xjqj(j−m−n)

=
m∑

j=0

[
m

j

]
xjqj(j−m)

2φ1

[
q−n, q−j

0
; q, q

]

=
m∑

j=0

xjqj(j−m)(q; q)m

(q; q)m−j

n∑
r=0

[
n
r

]
qr(r−n−j) 1

(q; q)j−r

=
n∑

r=0

[
n

r

]
qr(r−m−n) (q; q)m

(q; q)m−r

m∑
j=r

[
m− r

j − r

]
q(j−r)(j−m)xj

=
n∑

r=0

[
n

r

]
qr(r−m−n) (q; q)m

(q; q)m−r
xr

m−r∑
j=0

[
m− r

j

]
qj(j−m+r)xj

=
n∑

r=0

[
n
r

]
qr(r−n)q−rm

[
m
r

]
(q; q)rx

rgm−r(x|q).

Using the first formula in (1.13) yields
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(2.8) E
−n
x gm(x|q) =

n∑
r=0

[
n

r

]
qr(r−n)δrgm(x|q).

Comparing the coefficient of (2.7) and (2.8), we have (1.14). The proof of Theorem
is complete.

Proof of Proposition 2.3. Using (1.12), (1.13) and (1.14), LHS of (2.5) is equal
to (

E
−1
x + x

)n{gm(x|q)} =
n∑

k=0

[
n
k

]
qk(k−n)xn−k

k∑
r=0

[
k
r

]
qr(r−k)δr{gm(x|q)}

=
n∑

r=0

[
n
r

]
qr(r−n)gn−r(x|q)δr{gm(x|q)},

which is RHS of (2.5). The proof is complete.
Using formula (2.5), RHS of (2.4) is equal to

min{m,n}∑
r=0

[
m

r

][
n

r

]
(q; q)rq

(r
2)+r(r−m−n)(−x)r

×
∞∑

s=0

qs(s−m−n+2r)

[
m− r
s

] [
n− r
s

]
(q; q)sx

sgm−r−s(x|q)gn−r−s(x|q)

=
min{m,n}∑

k=0

(q; q)m(q; q)nq
k(k−m−n)xk

(q; q)m−k(q; q)n−k(q; q)k
gm−k(x|q)gn−k(x|q)

∑
r+s=k

(−1)rq(
r
2)(q; q)k

(q; q)r(q; q)s

=
min{m,n}∑

k=0

(q; q)m(q; q)nq
k(k−m−n)xk

(q; q)m−k(q; q)n−k(q; q)k
gm−k(x|q)gn−k(x|q)δk,0,

which is LHS of (2.4), where δm,n is the Kronecker delta. This achieves the proof.

3. q-MEHLER’S FORMULAS FOR ROGERS-SZEGÖ POLYNOMIALS

Carlitz [7] deduced the following q-Mehler’s formulas by using the recurrence
relations of Rogers-Szegö polynomials.

Proposition 3.1. ([7, Eq. (3.9)]). For max{|t| , |xt| , |yt| , |xyt|} < 1, we have

(3.1)
∞∑

n=0

hn(x|q)hn(y|q) tn

(q; q)n
=

(
xyt2; q

)
∞

(t, xt, yt, xyt; q)∞
.

Proposition 3.2. ([7, Eq. (3.13)]). For
∣∣xyt2/q∣∣ < 1, we have
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(3.2)
∞∑

n=0

gn(x|q)gn(y|q) (−1)nq(
n
2)tn

(q; q)n
=

(t, xt, yt, xyt; q)∞(
xyt2/q; q

)
∞

.

Carlitz [10] gave another proofs of them by utilizing the transformation theory
and the technique of operator. The authors [18] deduced them by the combina-
torial method. Chen and Liu [12, 13] proved them by the method of parameter
augmentation. For more information, please refer to [7, 10, 12, 13, 18].

In this section, we deduce Propositions 3.1 and 3.2 directly by the thought of
exponential operator decomposition.

Proof of Proposition 3.1. LHS of (3.1) equals
∞∑

n=0

hn(y|q) tn

(q; q)n

(
Ex + x

)n{1} =
1((

Ex + x
)
t,

(
Ex + x

)
yt; q

)
∞
{1}

=
1((

Ex + x
)
t; q

)
∞

{ ∞∑
k=0

(yt)k

(q; q)k

(
Ex + x

)k{1}
}

=
1((

Ex + x
)
t; q

)
∞

{
1

(yt, xyt; q)∞

}

=
1

(yt; q)∞

∞∑
k=0

tk

(q; q)k

(
Ex + x

)k
{

1
(xyt; q)∞

}

=
1

(yt; q)∞

∞∑
k=0

tk

(q; q)k

k∑
s=0

[
k
s

]
xk−s 1

(xytqs; q)∞

=
1

(yt, xyt; q)∞

∞∑
s=0

ts(xyt; q)s

(q; q)s

∞∑
k=s

(xt)k−s

(q; q)k−s
,

which is the RHS of (3.1). This completes the proof.

Proof of Proposition 3.2. LHS of (3.2) is equal to((
E
−1
x + x

)
t,

(
E
−1
x + x

)
yt; q

)
∞
{1}

=
∞∑

n=0

(−1)nq(
n
2) tn

(q; q)n

(
E
−1
x + x

)n{(yt, xyt; q)∞}

= (yt; q)∞
∞∑

n=0

(−1)nq(
n
2) tn

(q; q)n

n∑
k=0

[
n

k

]
qk(k−n)xn−k(xytq−k; q)∞

= (yt, xyt; q)∞
∞∑

k=0

(xytq−k; q)k

(q; q)k

∞∑
n=k

(−1)nq(
n
2)tnqk(k−n)xn−k

(q; q)n−k
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= (yt, xyt; q)∞
∞∑

k=0

q−(k+1
2 )(xyt)k(q/(xyt); q)k

(q; q)k

∞∑
n=0

(−1)nq(
n+k

2 )tn+kq−nkxn

(q; q)n

= (yt, xyt; q)∞
∞∑

k=0

(xyt2/q)k(q/(xyt); q)k

(q; q)k

∞∑
n=0

(−1)nq(
n
2)(xt)n

(q; q)n
,

which is equivalent to RHS of (3.2). This achieve the proof.

4. q-CHRISTOFFEL-DARBOUX FORMULAS

The following Carlitz type generating functions for hn(x|q) is deduced by

Proposition 4.3. ([11, Eq. (4.1)]). For m ∈ N, we have

(4.1)

∞∑
n=0

hm+n(x|q)hn(y|q) tn

(q; q)n

=
xm(xyt2; q)∞

(t, xt, yt, xyt; q)∞
3φ1

[
q−m, xt, xyt

xyt2
; q,

qm

x

]
,

where max{|t| , |xt| , |yt| , |xyt|} < 1.

The auxiliary ones is given by

Proposition 4.4. ([6, Eq. (4.3)]). For m ∈ N and
∣∣xyt2/q∣∣ < 1, we have

(4.2)

∞∑
n=0

gm+n(x|q)gn(y|q)(−1)nq(
n
2) tn

(q; q)n

=
xm(t, xt, yt, xyt; q)∞

(xyt2/q; q)∞
3φ2

[
q−m, q/(xt), q/(xyt)

0, q2/(xyt2)
; q, q

]
.

There are many proofs of above Propositions. Al-Salam and Ismail [2] gave the
proof of Proposition 4.3 by using the transformation theory, while Srivastava and
Jain [24] obtained it by the technique of generating function. The author [6] utilized
the method of parameter augmentation [12, 13] to deduce above two Propositions.
For more information, please refer to [2, 6, 11, 12, 13, 24].

In this section, we will use Carlitz’s q-operators to derive Propositions 4.3 and
4.4, then we give the proof of Theorems 1.2 and 1.3.

Proof of Proposition 4.3. Formula (3.1) can be written as

(4.3)
∞∑

n=0

hn(x|q)hn(y|q) tn

(q; q)n
=

1
(t; q)∞

∞∑
n=0

(t; q)nt
n

(q; q)n

xn

(xt; q)∞
yn

(yt; q)∞
.
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Applying
(
Ex + x

)m to both sides of (4.3) gives
∞∑

n=0

hm+n(x|q)hn(y|q) tn

(q; q)n

=
1

(t; q)∞

∞∑
n=0

(t; q)nt
n

(q; q)n

yn

(yt; q)∞

(
Ex + x

)m
{

xn

(xt; q)∞

}

=
1

(t; q)∞

∞∑
n=0

(t; q)nt
n

(q; q)n

yn

(yt; q)∞

∞∑
k=0

tk

(q; q)k

m∑
s=0

[
m

s

]
xm−s+n+kq(k+n)s

=
1

(t, yt; q)∞

m∑
s=0

[
m
s

]
xm−s

∞∑
n=0

(t; q)n(xytqs)n

(q; q)n

∞∑
k=0

(xtqs)k

(q; q)k
,

which is the RHS of (4.1). The proof is complete.

Proof of Proposition 4.4. We can rewrite (3.2) as

(4.4)

∞∑
n=0

(−1)nq(
n
2)gn(x|q)gn(y|q) tn

(q; q)n

= (t; q)∞
∞∑

n=0

(t2/q)n(q/t; q)n

(q; q)n
xn(xt; q)∞yn(yt; q)∞.

Similar to the proof of (4.1), utilizing operator
(

E
−1
x + x

)m
to both sides of (4.4),

we obtain the proof of Proposition 4.4.

Proof of Theorem 1.2. For m = 1, formula (4.1) becomes

(4.5)
∞∑

n=0

hn+1(x|q)hn(y|q) tn

(q; q)n
=

(xyt2; q)∞
(t, xt, yt, xyt; q)∞

1 + x− xt− xyt

1 − xyt2
.

Replacing x by y in (4.5), then differencing between them gives

(4.6)
∞∑

n=0

hn+1(x|q)hn(y|q)− hn(x|q)hn+1(y|q)
(x− y)(q; q)n

tn =
(xyt2q; q)∞

(tq, xt, yt, xyt; q)∞
.

By virtue of formula (3.1), RHS of (4.6) equals

(4.7)

(xyt2q; q)∞
(tq, xt, ytq, xyt; q)∞

1
1 − yt

=
∞∑

k=0

(yt)k
∞∑

n=k

hn−k(x/q|q)hn−k(y|q) (tq)n−k

(q; q)n−k

=
∞∑

n=0

n∑
k=0

hn−k(x/q|q)hn−k(y|q)y
kqn−ktn

(q; q)n−k
.
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Comparing the coefficient of (4.6) and (4.7) gives the proof of Theorem 1.2.

Proof of Theorem 1.3. Similar to (4.6), by (4.2), we have

(4.8)

∞∑
n=0

gn+1(x|q)gn(y|q)− gn(x|q)gn+1(y|q)
(x− y)(q; q)n

tn(−1)nq(
n
2)

=
(t/q, xt, yt, xyt; q)∞

(xyt2/q2; q)∞

=
(t/q, xt, yt/q, xyt; q)∞

(xyt2/q2; q)∞
1

1 − yt/q

=
∞∑

k=0

(
yt

q

)k ∞∑
n=k

gn−k(xq|q)gn−k(y|q) (−t/q)n−kq(
n−k

2 )

(q; q)n−k

=
∞∑

n=0

n∑
k=0

gn−k(xq|q)gn−k(y|q) (−1)n−kq(
n−k

2 )yktn

qn(q; q)n−k
.

Equating the coefficient of t on both sides of (4.8) yields the proof of Theorem
1.3.

5. q-MEHLER’S FORMULA FOR HAHN POLYNOMIALS

Al-Salam and Carlitz [3] gave the following two bilinear generating functions
by the transformation theory. For more information, please refer to [3, 19].

Proposition 5.1. ([3, Eq. (1.17)]). If max{|z|, |xz|, |yz|, |xyz|} < 1, we have

(5.1)
∞∑

n=0

φ(a)
n (x|q)φ(b)

n (y|q) zn

(q; q)n
=

(axz, byz; q)∞
(z, xz, yz; q)∞

3φ2

[
a, b, z
axz, byz

; q, xyz
]
.

Proposition 5.2. ([3, Eq. (1.18)]). If max{|qaxz|, |qbyz|} < 1, we have

(5.2)

∞∑
n=0

ψ(a)
n (x|q)ψ(b)

n (y|q) (−1)nq(
n+1

2 )zn

(q; q)n

=
(qz, qxz, qyz; q)∞
(qaxz, qbyz; q)∞

3φ2

[
1
a ,

1
b ,

1
z

1
axz ,

1
byz

; q, q

]
.

In this section, we will deduce Propositions 5.1 and 5.2 directly from q-Mehler’s
formula for Rogers-Szegö polynomials by Carlitz’s q-operators.
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Proof of Proposition 5.1. We first prove that

(5.3)

∞∑
m=0

am

(q; q)m

(
Ex + x

)m
{

xn

(xz; q)∞

}

=
∞∑

k=0

zk

(q; q)k

∞∑
m=0

am

(q; q)m

(
Ex + x

)m{xn+k}

=
∞∑

k=0

zk

(q; q)k

∞∑
m=0

am

(q; q)m

m∑
j=0

[
m
j

]
xm−j

E
j
x{xn+k}

= xn
∞∑

k=0

(xz)k

(q; q)k

∞∑
j=0

ajqj(n+k)

(q; q)j

∞∑
m=j

(ax)m−j

(q; q)m−j

=
xn(a; q)n(axz; q)∞

(axz; q)n(a, ax, xz; q)∞
.

Similarly, we have

(5.4)
∞∑

m=0

bm

(q; q)m

(
Ey + y

)m
{

yn

(yz; q)∞

}
=

yn(b; q)n(byz; q)∞
(byz; q)n(a, by, yz; q)∞

.

A little computation shows that [11, Eq. (3.3)]

(5.5)
∞∑

m=0

am

(q; q)m

(
Ex + x

)m {hn(x|q)} =
1

(a, ax; q)∞
φ(a)

n (x|q)

and

(5.6)
∞∑

m=0

bm

(q; q)m

(
Ey + y

)m {hn(y|q)} =
1

(b, by; q)∞
φ(b)

n (y|q).

Now, we applying operators

(5.7)
1(

a
(
Ex + x

)
; q

)
∞

and
1(

b
(
Ey + y

)
; q

)
∞

to both sides of (4.3), then combining (5.3)-(5.6) yield

(5.8)

1
(a, ax, b, by; q)∞

∞∑
n=0

φ(a)
n (x|q)φ(b)

n (y|q) zn

(q; q)n

=
(axz, byz; q)∞

(a, ax, xz, b, by, yz, z; q)∞

∞∑
n=0

(z; q)nz
n

(q; q)n

xn(a; q)n

(axz; q)n

yn(b; q)n

(byz; q)n
,

which equals RHS of (5.1). The proof is complete.
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Proof of Proposition 5.2. From (1.12), we have

(5.9)

∞∑
m=0

am

(q; q)m
(−1)mq(

m+1
2 )

(
E
−1
x + x

)m {xn(xz; q)∞}

=
∞∑

k=0

(−1)kq(
k
2)zk

(q; q)k

×
∞∑

m=0

am

(q; q)m
(−1)mq(

m+1
2 )

m∑
j=0

[
m

j

]
qj(j−m−n−k)xm−j+n+k

= (−1)nq−(n
2)(ax)n(1/a; q)n

(aq, axq, xz; q)∞
(axzq−n; q)∞

.

Similarly

(5.10)

∞∑
m=0

bm

(q; q)m
(−1)mq(

m+1
2 )

(
E
−1
y + y

)m {yn(yz; q)∞}

= (−1)nq−(n
2)(by)n(1/b; q)n

(bq, byq, yz; q)∞
(byzq−n; q)∞

.

It’s easily to verify that [11, Eq. (8.5)]

(5.11)
∞∑

m=0

am

(q; q)m
(−1)mq(

m+1
2 )

(
E
−1
x +x

)m {gn(x|q)}=(aq, axq; q)∞ψ(a)
n (x|q)

and

(5.12)
∞∑

m=0

bm

(q; q)m
(−1)mq(

m+1
2 )

(
E
−1
y +y

)m {gn(y|q)} = (bq, byq; q)∞ψ(b)
n (y|q).

Applying operators
(
a
(
E−1

x + x
)
; q

)
and

(
b
(
E−1

y + y
)
; q

)
to both sides of

(4.4) yields

(5.13)

(aq, axq, bq, byq; q)∞
∞∑

n=0

ψ(a)
n (x|q)ψ(b)

n (y|q) (−1)nq(
n
2)zn

(q; q)n

=
(z, aq, axq, xz, bq, byq, yz; q)∞

(axz, byz; q)∞

×
∞∑

n=0

(z2/q)n(q/z; q)n

(q; q)n
q−n2+n (abxy)n(1/a, 1/b; q)n

(axzq−n, byzq−n; q)n
,

replacing z by qz gives the proof.
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6. SOME RESULTS RELATED TO CARLITZ’S q-OPERATORS

The generalized Rogers-Szegö polynomials are defined by

(6.1) hn(x, y|q) =
n∑

k=0

[
n

k

]
xn−kyk and gn(x, y|q) =

n∑
k=0

[
n

k

]
qk(k−n)xn−kyk.

In this section, using Carlitz’s q-operators, we first deduce their q-Mehler’s formulas
as follows.

Proposition 6.1. For max{|xtu| , |xtv| , |ytu| , |ytv|} < 1, we have

(6.2)
∞∑

n=0

hn(x, y|q)hn(u, v|q) tn

(q; q)n
=

(xyuvt2; q)∞
(xtu, xtv, ytu, ytv; q)∞

.

Proposition 6.2. For
∣∣xyuvt2/q∣∣ < 1, we have

(6.3)
∞∑

n=0

gn(x, y|q)gn(u, v|q) (−1)nq(
n
2)tn

(q; q)n
=

(xut, xvt, yut, yvt; q)∞
(xyuvt2/q; q)∞

.

Remark 1. Comparing (1.4) and (6.1), we find that hn(x, 1|q) = hn(x|q) and
gn(x, 1|q) = gn(x|q). So when y = v = 1, Propositions 6.1 and 6.2 reduce to
Propositions 3.1 and 3.2 respectively.

In addition, we derive the following q-analogue of binomial theorem.

Proposition 6.3. ([16, p. 20]). For n ∈ N, we have

(6.4) (xy; q)n =
n∑

k=0

[
n

k

]
(x; q)k(y; q)n−ky

k.

Proof of Proposition 6.1. By formula (1.8) and Proposition 2.1, we get

(yEx + x)n =
n∑

k=0

[
n
k

]
xn−kyk

k∑
r=0

(−1)r

[
k
r

]
�r

=
n∑

r=0

(−1)r

[
n

r

] n∑
k=r

[
n− r

k − r

]
xn−kyk�r

=
n∑

r=0

(−1)r

[
n
r

]
yr

n−r∑
k=0

[
n − r
k

]
xn−k−ryk�r

=
n∑

r=0

(−1)r

[
n

r

]
yrhn−r(x, y|q)�r,
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where � defined by (1.7), so we have
(
yEx+x

)n{1} = hn(x, y|q). We can verified
that

(6.5)
∞∑

n=0

hn(x, y|q) tn

(q; q)n
=

1
(xt, yt; q)∞

.

Using the technique of exponential operator decomposition, LHS of (6.2) equals

(6.6)

1(
ut

(
yEx + x

)
, vt

(
yEx + x

)
; q

)
∞

{1}

=
1

(yvt; q)∞
1(

ut
(
yEx + x

)
; q

)
∞

{
1

(xvt; q)∞

}
,

which is RHS of (6.2) after some computation. The proof is complete.

Proof of Proposition 6.2. First we can deduce that

(6.7)
∞∑

n=0

(−1)nq(
n
2)gn(x, y|q) tn

(q; q)n
= (xt, yt; q)∞,

and
(
yE−1

x + x
)n{1} = gn(x, y|q). Similar to (6.6), LHS of (6.3) is equivalent to

(6.8)

(
ut

(
yE−1

x + x
)
, vt

(
yE−1

x + x
)
; q

)
∞
{1}

= (yvt; q)∞
(
ut

(
yE−1

x + x
)
; q

)
∞
{(xvt; q)∞},

which equals RHS of (6.3) after some computation. The proof is ended.

Proof of Proposition 6.3. We consider the following type of Carlitz’s q-operator

(6.9)
(
y(1 − x)Ex + (1 − y)Ey

)n

and find the fact that(
y(1 − x)Ex + (1− y)Ey

)
{1} = y(1 − x) + 1 − y = 1 − xy,(

y(1 − x)Ex + (1− y)Ey

)2{1} =
(
y(1 − x)Ex + (1 − y)Ey

)
{1 − xy}

= y(1 − x)(1− xyq) + (1− y)(1− xyq) = (1− xy)(1− xyq) = (xy; q)2.
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Generally we have

(6.10)
(
y(1 − x)Ex + (1− y)Ey

)n{1} = (xy; q)n.

Similarly, we get

(6.11)
(
(1− y)Ey

)k{1} = (y; q)k and
(
y(1− x)Ex

)k{1} = yk(x; q)k.

From Proposition 2.1, we gain

(6.12)
(
y(1 − x)Ex + (1− y)Ey

)n
=

n∑
k=0

[
n

k

] (
y(1− x)Ex

)k(
(1 − y)Ey

)n−k
.

Combining (6.10), (6.11) and (6.12), we conclude the proof.
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