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Dedicated to the Memory of Professor Sen-Yen Shaw

Abstract. Robert has established a global convergence theorem in {0, 1}n:
If a map F̂ from {0, 1}n to itself is contracting relative to the boolean vector
distance d, then there exists a positive integer p ≤ n such that F̂ p is constant.
In other words, F̂ has a unique fixed point ξ such that for any x in {0, 1}n,
we have F̂ p(x) = ξ. The structure ({0, 1}, +, ·,−, 0, 1) may be regarded as
the two-element boolean algebra. In this paper, this result is extended to any
map F from the product X of n finite boolean algebras to itself.

1. INTRODUCTION

In the course of Robert’s analysis of boolean contraction and applications, he
introduced the boolean vector distance, the discrete incidence matrix for the maps
from {0, 1}n to itself and the notion of spectra of boolean matrices [2, 4, 7]. In the
first place, he proved the following characterizations for boolean contraction [4]:

Theorem 1.1. The following conditions are mutually equivalent:

(1) The map F̂ from{0, 1}n to itself is contracting to the booleanvectordistance.
(2) ρ(B(F̂ )) = 0 (the boolean spectra radius of the incidence matrix of F̂ is

zero).
(3) There exists a positive integer p ≤ n, such that (B(F̂ ))n = 0.
(4) There exists an n × n permutation matrix P such that P T B(F̂ )P is strictly

lower triangular.

This implies the Robert’s global convergence theorem:
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Theorem 1.2. If a map F̂ from {0, 1}n to itself is contracting relative to the
boolean vector distance, then there exists a positive integer p ≤ n such that F̂ p is
constant. Stated differently, F̂ has a unique fixed point ξ, such that for any x in
{0, 1}n, we have F̂ p(x) = ξ.

The spectral condition ”ρ(B(F )) = 0” implies the conclusions, one is the
existence of the unique fixed point, the other one concludes that this fixed point is a
global attractor for the boolean network: F̂ p(xr) = xr+1 (r = 0, 1, . . .) [3, 4, 5, 6].
We can obtain these conclusions by the weaker conditions which has been studied
in [9, 11]. Also we can obtain the first conclusion alone by the condition with
discrete Jacobian matrix which has been studied in the finite discrete case and the
combinatorial boolean case [1, 10]. In this paper, we attempted to extend Theorem
1.2 in the finite boolean algebra case.

In order to extend this theorem from the {0, 1} case to the finite boolean algebra
case, we will adopt notations from [8] to introduce here, the incidence matrix for
maps from the product X of n finite boolean algebras to itself which generalizes
Robert’s incidence matrix for maps from {0, 1}n to itself. Let us recall that a
boolean algebra is a structure (A, +, ·,−, 0, 1) with two binary operations + and
·, a unary operation −, and two distinguished elements 0 and 1, such that the
associativity, commutativity, absorption, distributivity and complementation laws
hold. For example, let X be any set and P (X) its power set. The structure
(P (X),∪,∩,−, φ,X) where −D is the complement X \ D of D with respect to
X , is a boolean algebra. P (X) is called the power set algebra of X . A boolean
algebra (A, +, ·,−, 0, 1) is finite if its underlying set A is finite. Then, we present
and prove the extension of the Robert’s global convergence theorem: if the boolean
spectra radius of the incidence matrix of a map F from the product X of n finite
boolean algebras to itself is zero, then there exists a positive integer p ≤ n and a
unique fixed point ξ such that, for any x in X , F p(x) = ξ.

This paper ends with an example to illustrate the contraction of F is sufficient,
but not necessary condition for the map Fn to be constant.

2. INCIDENCE MATRIX

In this section, we state some notions needed to formulate and to prove the main
result.

Let (A, +, ·,−, 0, 1) be a finite boolean algebra. Define a ∈ A to be an atom of
A if 0 < a but there is no x in A satisfying 0 < x < a. We denoted by At(A) the
set of atoms of A. We say A is atomic if for each positive element x of A , there is
some atom a such that a ≤ x. We say A is complete if the least upper bound and
the greatest lower bound of D belong to A for each D ⊆ A. Write the cardinality
of At(A) by #At(A) and the power set algebra of At(A) by P (At (A)). Remark
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that for every boolean algebra A, the map ϕ∗ from A to the power set algebra
P (At (A)) defined by

ϕ∗(x) = {a ∈ At(A) : a ≤ x}
is a homomorphism. It is an embedding if A is atomic, and f is an epimorphism if
A is complete.(see [8, Proposition 2.6] )

Given a finite boolean algebra (A, +, ·,−, 0, 1) with At(A) = {a1, . . . , am},
consider a positive integer n, such that Xi = A (i = 1, . . . , n). Then X =
X1× . . .×Xn is a product of n finite boolean algebras. For x = (x1, . . . , xn) ∈ X ,
we denoted by x̃j(k) the j(k)th neighbour of x (j = 1, . . . , n; k = 1, . . . , m) which
is defined to be an element in X such that

if i �= j, then x̃
j(k)
i = xi (i = 1, . . . , n),

if i = j and ak /∈ ϕ∗(xj), then set x̃
j(k)
i with ϕ∗(x̃j(k)

j ) = ϕ∗(xj) ∪ {ak},
if i = j and ak ∈ ϕ∗(xj), then set x̃

j(k)
i with ϕ∗(x̃j(k)

j ) = ϕ∗(xj) � {ak}.
Furthermore, the element γk in {0, 1}m is the m-tuple whose kth component

is 1 and whose other components are 0. Therefore, if m = n then it is the kth
unit vector ek of {0, 1}n. Define the map η∗ from the power set algebra P (At(A))
to{0, 1}m by

η∗(D) =




0 (zero vector) if D = φ,

γk if D = {ak},∑
j∈{k:ak∈D}

γj otherwise.

For a map F = (f1, . . . , fn) from the product X of n finite boolean algebras to
itself. Define a map F̄ = (f̄1(1), . . . , f̄1(m), f̄2(1), . . . , f̄2(m), . . . , f̄n(1), . . . , f̄n(m))
from X to {0, 1}nm by

f̄i(k)(x) = [η∗(ϕ∗(fi(x)))]k (i = 1, . . . , n; k = 1, . . . , m).

Now, it is in position to introduce the notion of incidence matrix. Given a map
F = (f1, . . . , fn) from X to itself. We denoted by

B(F ) =




b1(1)1(1) . . . b1(1)1(m)
... . . . ...

b1(m)1(1) . . . b1(m)1(m)

. . .
... . . . ...

. . .

b1(1)n(1) . . . b1(1)n(m)
... . . . ...

b1(m)n(1) . . . b1(m)n(m)
. . .

... . . . ...
. . .

. . .
... . . . ...

. . .

. . .
... . . . ...

. . .
bn(1)1(1) . . . bn(1)1(m)

... . . . ...
bn(m)1(1) . . . bn(m)1(m)

. . .
... . . . ...

. . .

bn(1)n(1) . . . bn(1)n(m)
... . . . ...

bn(m)n(1) . . . bn(m)n(m)




= (bi(k1)j(k2))



1138 Juei-Ling Ho

the incidence matrix of F . It is the nm × nm matrix over {0, 1} defined by

bi(k1)j(k2) =

{
0 if f̄i(k1)(x) = f̄i(k1)(x̃

j(k2)) for all x ∈ X,

1 otherwise.

(i, j = 1, . . . , n; k1, k2 = 1, . . . , m)
Note that this incidence matrix is the Robert’s n × n boolean incidence matrix

[4] when A = {0, 1}. We will state it in the next section.
Throughout this paper, a boolean matrix is meant to be a matrix over {0, 1}.

Here the incidence matrices are the boolean matrices. Boolean matrix multiplication
and addition are the same as in the case of complex matrices but the concerned
products of entries are boolean. A non-zero element u ∈ {0, 1}n is called the
(boolean) eigenvector of a boolean matrix M if there exists an λ in {0, 1} such that
Mu = λu; λ is called the (boolean) eigenvalue associated with eigenvector. For
any boolean matrix M , the symbol σ(M) denotes the (boolean) spectrum of M , it
is the set of all eigenvalues of M , so that σ(M)⊂{0, 1}. The (boolean) spectral
radius of M ,which is denoted byρ(M), is defined tobethe largest eigenvalue of M .

3. MAIN RESULT

We shall establish the following theorem.

Theorem 3.1. Given a finite boolean algebra (A, +, ·,−, 0, 1) with At(A) =
{a1, . . . , am}. Let X be the product of n finite boolean algebras with X i = A

(i = 1, . . . , n). If a map F from X to itself is such that ρ(B(F )) = 0, then it has a
unique fixed point ξ and there exists a positive integer p ≤ nm such that, for any
x in X , we have F p(x) = ξ.

Let A = {0, 1}. Its operations are given by the table below

a b a + b a · b −a

0 0 0 0 1
0 1 1 0 1
1 0 1 0 0
1 1 1 1 0

Obviously, this structure ({0, 1}, +, ·,−, 0, 1) is a boolean algebra, it is called the
two-element boolean algebra. Then X = {0, 1}n; hence the map F from X to itself
is a boolean network.

The order “≤” in {0, 1} is given by 0 ≤ 0 ≤ 1 ≤ 1. Then At({0, 1}) = {1} =
{a1}; hence m = 1. By the definitions of the maps ϕ∗ and η∗, we obtain

a ∈ A ϕ∗(a) η∗(ϕ∗(a))
0 φ 0
1 {1} 1

,
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which shows that f̄i(1)(x) = (fi(x))1 = fi(x)(i = 1, . . . , n). Hence F̄ =
(f̄1(1), f̄2(1), . . . , f̄n(1)) = (f1, . . . , fn) = F . Note also that

x̃
j(1)
j ϕ∗(x̃j(1)

j ) ϕ∗(xj) xj

0 φ {1} 1
1 {1} φ 0

,

hence x̃
j(1)
j = −xj , and then x̃j(1) = (x1, . . . ,−xj, . . . , xn) = x̃j , which is the jth

neighbor of x in {0, 1}n [4], so that now the incidence matrix of F is the matrix
over {0, 1} defined by

bi(1)j(1) =

{
0 if fi(x) = fi(x̃j) for all x ∈ {0, 1}n,

1 otherwise.

(i, j = 1, . . . , n). it is the Robert’s n × n boolean incidence matrix. Hence, for
A = {0, 1}, this theorem is equivalent to the Robert’s global convergence theorem
(Theorem 1.2).

The following lemma will play a prominent role in the proof of the principal
theorem.

Lemma 3.1. Given a finite boolean algebra (A, +, ·,−, 0, 1) with At(A) =
{a1, . . . , am}. Let X be the product of n finite boolean algebras with X i = A

(i = 1, . . . , n). For a map F from X to itself, there is a map F̂ from {0, 1}nm to
itself and two isomorphisms η and ϕ such that

F = (ηϕ)−1 F̂ ηϕ

Proof. Define the map ϕ from X into [P (At(A))]n by

ϕ (x) = ϕ (x1, ..., xn)

= (ϕ∗ (x1) , ..., ϕ∗ (xn)),

where ϕ∗ is defined in the section 2. Since A is a finite boolean algebra, At(A)
is finite and A is both complete and atomic. Hence ϕ∗ is an isomorphism (see [8,
Corollary 2.7] ). Then ϕ is also an isomorphism.

Also we had defined the map η∗ from the power set algebra P (At(A)) to {0, 1}m

in the section 2. For y = (y1, . . . , ym) ∈ {0, 1}m, define −y = (−y1, . . . ,−ym).
Obviously, η∗ is a bijection. For any D1, D2 ∈ P (At(A))

η∗ (D1 ∪ D2)

=
∑

j∈{k:ak∈D1∪D2}
ej =

∑
j∈{k:ak∈D1}

ej +
∑

j∈{k:ak∈D2}
ej (boolean sum)

= η∗ (D1) + η∗ (D2)

η∗ (D1 ∩ D2)
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=
∑

j∈{k:ak∈D1∩D2}
ej =

∑
j∈{k:ak∈D1}

ej ·
∑

j∈{k:ak∈D2}
ej(boolean vector product)

= η∗ (D1) · η∗ (D2)

η∗ (φ) = (0, ..., 0)

η∗ (At(A)) = (1, ..., 1)

η∗(−D) =
∑

j∈{k:ak∈−D}
ej =

∑
j∈{k:ak /∈D}

ej = −

 ∑

j∈{k:ak∈D}
ej


 = −η∗ (D) .

Hence η∗ is a homomorphism(see [8] ), and so η∗ is an isomorphism.
Define the map η from [P (At (A))]n to {0, 1}nm by

η(D) = η (D1, ..., Dn)
= (η∗ (D1) , ..., η∗ (Dn))

Then η is also an isomorphism. For any y ∈ {0, 1}nm, throughout this paper, we
will set

y = (y1(1), . . . , y1(m), y2(1), . . . , y2(m), . . . , yn(1), . . . , yn(m)),

and

η−1(y) = ((η∗)−1
(
y1(1), . . . , y1(m)

)
, ..., (η∗)−1

(
yn(1), . . . , yn(m)

)
).

Now we can define a map

F̂ = (f̂1(1), . . . , f̂1(m), f̂2(1), . . . , f̂2(m), . . . , f̂n(1), . . . , f̂n(m))

from {0, 1}nm to itself by

f̂i(k)(y) = [η∗(ϕ∗(fi(ϕ−1(η−1(y)))))]k (i = 1, . . . , n; k = 1, . . . , m).

X
ϕ−→ [P (At(A))]n

η−→ {0, 1}nm

fj ↓ ↓ f̂j

A
ϕ∗
−→ P (At(A))

η∗
−→ {0, 1}m

For y ∈ {0, 1}nm, we obtain

F̂ (x) =




f̂1(1)
...

f̂n(m)


 (y) =




[f̂1(1)(y), · · · , f̂1(m)(y)]T
...

[f̂n(1)(y), · · · , f̂n(m)(y)]T




=




[ [η∗ϕ∗f1 (ηϕ)−1 (y)]1, · · · , [η∗ϕ∗f1 (ηϕ)−1 (y)]m]T
...

[ [η∗ϕ∗fn (ηϕ)−1 (y)]1, · · · , [η∗ϕ∗fn (ηϕ)−1 (y)]m]T






A Global Convergence Theorem in Boolean Algebra 1141

=




[η∗ϕ∗f1 (ηϕ)−1 (y)]T
...

[η∗ϕ∗fn (ηϕ)−1 (y)]T




= ηϕ




f1
...

fn


 (ηϕ)−1 (y) = ηϕF (ηϕ)−1 (y) .

Therefore, F̂ is a map from {0, 1}nm to itself such that F = (ηϕ)−1 F̂ ηϕ.

4. PROOF OF THEOREM 3.1

Given a finite boolean algebra (A, +, ·,−, 0, 1) with At(A) = {a1, . . . , am}.
Let X be the product of n finite boolean algebras with Xi = A (i = 1, . . . , n). For
a map F from X to itself is such that ρ(B(F )) = 0. By Lemma 3.1, there is a map F̂
from {0, 1}nm to itself and two isomorphisms η and ϕ such that F = (ηϕ)−1 F̂ ηϕ.

Let B(F ) = (bi(k1)j(k2)) be the incidence matrix of F . For the map

F̂ = (f̂1(1), . . . , f̂1(m), f̂2(1), . . . , f̂2(m), . . . , f̂n(1), . . . , f̂n(m)),

here we quote the definition of the incidence matrix of F̂ from [4]. It is the nm×nm

matrix B(F̂ ) = (di(k1)j(k2)) over {0, 1} defined by

di(k1)j(k2) =

{
0 if f̂i(k1)(y) = f̂i(k1)(ỹ

j(k2)) for all y ∈ {0, 1}nm,

1 otherwise.

(i, j = 1, . . . , n; k1, k2 = 1, . . . , m), where

ỹj(k2) = (y1(1), . . . , y1(m), . . . ,−yj(k2), . . . , yn(1), . . . , yn(m))

is the j(k2)th neighbor of y [4]. Then

bi(k1)j(k2) = 0 (i, j = 1, . . . , n; k1, k2 = 1, . . . , m)

⇔ f̄i(k1)(x) = f̄i(k1)(x̃j(k2)) for all x ∈ X

⇔ [η∗(ϕ∗(fi(x)))]k1 = [η∗(ϕ∗(fi(x̃j(k2))))]k1 for all x ∈ X

⇔ f̂i(k1)(η−1(ϕ−1(x))) = f̂i(k1)(η−1(ϕ−1(x̃j(k2)))) for all x ∈ X

⇔ f̂i(k1)(y) = f̂i(k1)(ỹj(k2)) for all y ∈ {0, 1}nm

⇔ di(k1)j(k2) = 0 (i, j = 1, . . . , n; k1, k2 = 1, . . . , m).

So that B(F ) = B(F̂ ), we obtain ρ(B(F̂ )) = 0. Combining Theorems 1.1 and
1.2, we see that F̂ has a unique fixed point c.
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Put ξ = (ηϕ)−1 (c). Then ξ ∈ X and we have

F̂ (c) = c
⇒ ηϕF (ηϕ)−1(c) = c

⇒ F (ηϕ)−1(c) = (ηϕ)−1(c)

⇒ F (ξ) = ξ.

Since (ηϕ)−1 is an isomorphism, ξ is a unique fixed point of F .
Note also that there is a positive integer p(≤ nm) such that F̂ p(y) = c for any

y ∈ {0, 1}nm. For any x ∈ X, there exists an element y in {0, 1}nm such that
x = (ηϕ)−1 (y). Then

F̂ p(y) = c

⇒ ηϕF p (ηϕ)−1 (y) = c

⇒ F p (ηϕ)−1 (y) = (ηϕ)−1 (c)

⇒ F p (x) = ξ.

Hence p is also the positive integer such that F p(x) = ξ for any x ∈ X . This
completes the proof of Theorem 3.1

5. REMARKS

If F is a map from the product of n finite boolean algebras to itself. Then the
spectral condition ”ρ(B(F )) = 0” implies that F has a unique fixed point ξ, and
it also implies there exists a positive integer p ≤ nm such that, for any x in X , we
have Fp(x) = ξ. But this condition is not necessary for a map to obtain the result,
as shown by the following example.

Example 1. If A = {0, a1, a2, 1} with 0 < a1 < 1 and 0 < a2 < 1 ,
such that this structure (A, +, ·,−, 0, 1) is a boolean algebra. Then it is finite and
At(A) = {a1, a2}.

Let X =X1 ×X2 with Xi =A (i=1, 2). Let the map F :X→X be defined by

x (0, ∗) (∗, 1) (a1, 0) (a1, a1) (a1, a2)
F (x) (1, 1) (1, 1) (1, a1) (1, 1) (1, a1)

x (a2, 0) (a2, a1) (a2, a2) (1, 0) (1, a1) (1, a2)
F (x) (1, 1) (a2, 1) (1, 1) (1, 1) (a2, 1) (1, 1)

where ∗ is any element in A, Then F has a unique fixed point (1, 1). Choose p = 3
so that p ≤ nm = 4 and for any x in X , we have Fp(x) = (1, 1). Now we consider
the incidence matrix of F
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B(F ) =




b1(1)1(1) b1(1)1(2) b1(1)2(1) b1(1)2(2)

b1(2)1(1) b1(2)1(2) b1(2)2(1) b1(2)2(2)

b2(1)1(1) b2(1)1(2) b2(1)2(1) b2(1)2(2)

b2(2)1(1) b2(2)1(2) b2(2)2(1) b2(2)2(2)


.

From

a ∈ A ϕ∗(a) η∗(ϕ∗(a))
0 φ (0, 0)
a1 {a1} (1, 0)
a2 {a2} (0, 1)
1 {a1, a2} (1, 1)

we have, for any x = (x1, x2) ∈ X,this map

f̄i(k)(x) = [η∗(ϕ∗(fi(x)))]k (i = 1, 2; k = 1, 2).

is given by tables below.

x (0, ∗) (∗, 1) (a1, 0) (a1, a1) (a1, a2)
f̄1(1)(x) 1 1 1 1 1
f̄1(2)(x) 1 1 1 1 1
f̄2(1)(x) 1 1 1 1 1
f̄2(2)(x) 1 1 0 1 0

x (a2, 0) (a2, a1) (a2, a2) (1, 0) (1, a1) (1, a2)
f̄1(1)(x) 1 0 1 1 0 1
f̄1(2)(x) 1 1 1 1 1 1
f̄2(1)(x) 1 1 1 1 1 1
f̄2(2)(x) 1 1 1 1 1 1

Furthermore, the j(k)th neighbor of x is given by tables below.

x (0, 0) (0, a1) (0, a2) (0, 1) (a1, 0) (a1, a1) (a1, a2) (a1, 1)
x̃1(1) (a1, 0) (a1, a1) (a1, a2) (a1, 1) (0, 0) (0, a1) (0, a2) (0, 1)
x̃1(2) (a2, 0) (a2, a1) (a2, a2) (a2, 1) (1, 0) (1, a1) (1, a2) (1, 1)
x̃2(1) (0, a1) (0, 0) (0, 1) (0, a2) (a1, a1) (a1, 0) (a1, 1) (a1, a2)
x̃2(2) (0, a2) (0, 1) (0, 0) (0, a1) (a1, a2) (a1, 1) (a1, 0) (a1, a1)

x (a2, 0) (a2, a1) (a2, a2) (a2, 1) (1, 0) (1, a1) (1, a2) (1, 1)
x̃1(1) (1, 0) (1, a1) (1, a2) (1, 1) (a2, 0) (a2, a1) (a2, a2) (a2, 1)
x̃1(2) (0, 0) (0, a1) (0, a2) (0, 1) (a1, 0) (a1, a1) (a1, a2) (a1, 1)
x̃2(1) (a2, a1) (a2, 0) (a2, 1) (a2, a2) (1, a1) (1, 0) (1, 1) (1, a2)
x̃2(2) (a2, a2) (a2, 1) (a2, 0) (a2, a1) (1, a2) (1, 1) (1, 0) (1, a1)

Thus
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B(F ) =




0 1 1 1
0 0 0 0
0 0 0 0
1 1 1 0


,

and this implies ρ(B(F )) = 1; hence the spectral condition ”ρ(B(F )) = 0” fails
to hold in this case.
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