
TAIWANESE JOURNAL OF MATHEMATICS
Vol. 14, No. 3B, pp. 1111-1116, June 2010
This paper is available online at http://www.tjm.nsysu.edu.tw/

GROWTH ORDERS OF MEANS OF DISCRETE SEMIGROUPS OF
OPERATORS IN BANACH SPACES

Ryotaro Sato

Dedicated to the Memory of Professor Sen-Yen Shaw

Abstract. We study the growth orders of γ-th order Cesàro means Cγ
n(T )

(γ ≥ 0) and Abel means Ar(T ) of the discrete semigroup {Tn : n ≥ 0}
generated by a bounded linear operator T on a Banach space. Let T be of the
form T = −(I+N), where N is a nilpotent operator of order k+1 with k ∈ N.
Thus N k+1 = 0 and Nk �= 0. Then we prove that (a) ‖Cγ

n(T )‖ ∼ nk−γ (n →
∞) if 0 ≤ γ ≤ k + 1, and ‖Cγ

n(T )‖ ∼ n−1 (n → ∞) if γ ≥ k + 1; (b)
‖Ar(T )‖ ∼ 1−r (r ↑ 1). Here a(n) ∼ b(n) (n → ∞) [resp. a(r) ∼ b(r) (r ↑
1)] means that 0 < lim infn→∞ a(n)/b(n) ≤ lim supn→∞ a(n)/b(n) < ∞
[resp. 0 < lim infr↑1 a(r)/b(r) ≤ lim supr↑1 a(r)/b(r) < ∞].

1. INTRODUCTION AND THE RESULT

Let T be a bounded linear operator on a Banach space X . One of the important
issues of the ergodic theory of T is concerned with convergence of various means
of the discrete semigroup {Tn : n ≥ 0} generated by T . For γ ∈ R\{−1,−2, . . .},
we define the γ-th order Cesàro means Cγ

n(T ) by

(1) Cγ
n(T ) :=

1
σγ

n

n∑
l=0

σγ−1
n−l T

l (n ≥ 0),

where σγ
n :=

(γ+n
n

)
= (γ + n)(γ + n − 1) . . . (γ + 1)/n! for n ≥ 1, and σγ

0 := 1.
The following two particular means are well-known: C0

n(T ) = T n and C1
n(T ) =

(n + 1)−1
∑n

l=0 T l for n ≥ 0. Here it should be noted that to treat means of
{T n : n ≥ 0} it would be natural to examine the case where the coefficients σγ−1

n−l

of T l (0 ≤ l ≤ n) are all nonnegative. Therefore we will restrict ourselves to
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considering Cγ
n(T ) with γ ≥ 0. (In fact, there is a pathological phenomenon when

we consider Cγ
n(T ) with −1 < γ < 0 (see [2, Theorem 4.1])).

We define the Abel means Ar(T ) by

(2) Ar(T ) := (1− r)
∞∑

n=0

rnT n (0 < r < 1),

whenever the spectral radius r(T ) := limn→∞ ‖T n‖1/n is less than or equal to 1.
Since (1−r)−γ =

∑∞
n=0 rnσγ−1

n holds for all r ∈ R with |r| < 1, we have formally

(3)

∞∑
n=0

rnT n = (1− r)γ
( ∞∑

n=0

rnσγ−1
n

)( ∞∑
n=0

rnT n
)

= (1− r)γ
∞∑

n=0

rn
n∑

l=0

σγ−1
n−l T

l

= (1− r)γ
∞∑

n=0

rnσγ
n Cγ

n(T ),

so that if lim supn→∞ ‖Cγ
n(T )‖1/n ≤ 1, then r(T ) ≤ 1. The following result is

well-known (cf. [4, Chapter 3]): If 0 < γ < β < ∞, then

(4) sup
n≥0

‖T n‖ ≥ sup
n≥0

‖Cγ
n(T )‖ ≥ sup

n≥0
‖Cβ

n (T )‖ ≥ sup
0<r<1

‖Ar(T )‖.

From now on, we consider T of the form T = −(I +N ), where N is a nilpotent
operator of order k + 1 with k ∈ N. Thus Nk �= 0 and N k+1 = 0. Then we have

(5) T n = (−1)n(I + N )n = (−1)n
k∑

l=0

(
n

l

)
N l,

and

(6)
(

n

l

)
‖N l‖ =

n(n − 1) . . . (n − l + 1)
l!

‖N l‖.

Thus

(7) ‖C0
n(T )‖ = ‖T n‖ ∼ nk (n → ∞),

so that r(T ) = 1. It was proved by Li, Sato and Shaw [2] that the operator T =
−(I + N ) satisfies supn≥0 ‖Cγ

n‖ = ∞ if 0 ≤ γ < k, and supn≥0 ‖Ck
n(T )‖ < ∞.

The purpose of this paper is to refine on this result. That is, we prove the
following
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Theorem. The above operator T = −(I + N ) satisfies

(8) ‖Cγ
n(T )‖ ∼

{
nk−γ (n → ∞) if 0 ≤ γ ≤ k + 1,

n−1 (n → ∞) if γ ≥ k + 1

and

(9) ‖Ar(T )‖ ∼ 1 − r (r ↑ 1).

The proof is an adaptation of the argument in [2, Propositions 4.4]; the details
will be given in the next section. We would like to note that the continuous analog
of the above Theorem has been obtained in [3] (see also Chen, Sato and Shaw [1]).

2. PROOF OF THE THEOREM

The proof is divided into several steps.

Step I. In view of (7) we first consider the case 0 < γ < 1. We write

(10)

Cγ
n(T ) =

1
σγ

n

n∑
l=0

σγ−1
n−l (−1)l(I + N )l

=
1
σγ

n

n∑
l=0

(−1)lσγ−1
n−l

k−1∑
s=0

(
l

s

)
N s +

1
σγ

n

n∑
l=0

(−1)lσγ−1
n−l

(
l

k

)
Nk

=: I(n, γ)+ II(n, γ).

Putting M(N ) := max{‖N s‖ : 0 ≤ s ≤ k}, we have for all n ≥ k

(11)

‖I(n, γ)‖ ≤ 1
σγ

n

n∑
l=0

σ
γ−1
n−l

k−1∑
s=0

(
l

s

)
M(N )

≤ 1
σγ

n

n∑
l=0

σγ−1
n−l · n(n − 1) . . . (n − k + 2)M(N )

= n(n − 1) . . .(n − k + 2)M(N ) ∼ nk−1 (n → ∞).

Next

(12) ‖II(n, γ)‖ =
1
σ

γ
n

∣∣∣∣∣
n∑

l=0

(−1)lσγ−1
n−l

(
l

k

)∣∣∣∣∣ ‖Nk‖.

Since 0 < σγ−1
n ↓ 0 (n → ∞) for 0 < γ < 1, and 0 ≤ (

l
k

) ≤ (
l+1
k

)
for all l ≥ 0, it

follows that

0 ≤ σ
γ−1
n−l

(
l

k

)
≤ σ

γ−1
n−(l+1)

(
l + 1

k

)
(0 ≤ l ≤ n − 1),
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whence for all n ≥ k

(13)

σγ−1
0

(
n

k

)
≥

∣∣∣∣∣
n∑

l=0

(−1)lσγ−1
n−l

(
l

k

)∣∣∣∣∣
≥ σγ−1

0

(
n

k

)
− σγ−1

1

(
n − 1

k

)

=
1
k!

{
n(n − 1) . . . (n − k + 1) − γ(n− 1) . . .(n − k)

}

=
1
k!

n(n − 1) . . .(n − k + 1)
{
1 − γ

n
(n − k)

}

>
1
k!

n(n − 1) . . .(n − k + 1)(1− γ) ∼ nk (n → ∞).

Thus, applying the known fact that σγ
n ∼ nγ/Γ(γ + 1) (n → ∞) (see e.g. [4, p.

77]), we obtain that

(14) ‖II(n, γ)‖ ∼ nk‖Nk‖
σγ

n
∼ nk−γ (n → ∞).

Combining this with (11) we see that

(15) ‖Cγ
n(T )‖ ∼ nk−γ (n → ∞).

Step II. Next suppose 1 ≤ γ < k + 1. Then we use the fundamental equation

(16) (T − I)Cγ
n(T ) =

γ

n + 1

[
Cγ−1

n+1 (T ) − I
]

(γ ≥ 1).

(This can be proved by an elementary calculation (cf. [4, Chapter 3]).) We already
know from the above argument that if 0 ≤ β < 1, then ‖Cβ

n (T )‖ ∼ nk−β (n → ∞),
so that ‖Cβ

n (T )−I‖ ∼ nk−β (n → ∞). Combining this with (16), we easily see that
(15) holds for all 1 ≤ γ < 2. (Here we used the fact that (T−I)−1 = −(2I+N )−1

exists, which follows from σ(N ) = {0}.) This process can be repeated until
k ≤ γ < k + 1, and hence (15) holds for all 1 ≤ γ < k + 1.

Step III. Suppose γ = k + 1. As in Step II it suffices to prove that ‖Ck
n(T )−

I‖ ∼ 1 (n → ∞). Since ‖Ck
n(T )‖ ∼ 1 (n → ∞) by Step II, it follows that ‖Ck

n −
I‖ = O(1) (n → ∞). Thus it suffices to prove that lim infn→∞ ‖Ck

n(T )− I‖ > 0.
To do this, we write

(T − I)Ck
n(T ) =

k

n + 1

[
Ck−1

n+1(T ) − I
]

=:
k

n + 1
Ck−1

n+1(T ) + D1
n(T ),

where limn→∞ ‖D1
n(T )‖ = 0; next
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(T − I)2Ck
n(T ) =:

k(k − 1)
(n + 1)(n + 2)

Ck−2
n+2(T ) + D2

n(T ),

where limn→∞ ‖D2
n(T )‖ = 0; and finally

(T − I)kCk
n(T ) =:

k!
(n + 1) . . .(n + k)

C0
n+k(T ) + Dk

n(T ),

where limn→∞ ‖Dk
n(T )‖ = 0. By (5) we then write

k!
(n + 1) . . . (n + k)

C0
n+k =

k!
(n + 1) . . . (n + k)

(−1)n+k
k∑

l=0

(
n + k

l

)
N l

=: (−1)n+kNk + Ek
n(T ),

where limn→∞ ‖Ek
n(T )‖ = 0. Consequently we have

(17) Ck
n(T ) = (T − I)−k(−1)n+kNk + (T − I)−k(Ek

n(T ) + Dk
n(T )).

Now, take an x ∈ X such that ‖x‖ = 1 and N kx = 0. Then limn→∞ ‖Ck
n(T )x‖

= 0 by (17), and

lim inf
n→∞ ‖Ck

n(T )− I‖ ≥ lim
n→∞ ‖Ck

n(T )x− x‖ = ‖ − x‖ = 1,

which is the desired result.

Step IV. Suppose γ > k + 1. From Steps II and III we know that if k < β ≤
k + 1, then ‖Cβ

n (T )‖ ∼ nk−β (n → ∞), so that ‖Cβ
n (T ) − I‖ ∼ 1 (n → ∞)

because limn→∞ nk−β = 0. Thus if k + 1 < γ ≤ k + 2, then (16) implies

(18) ‖Cγ
n(T )‖ ∼ n−1 (n → ∞).

This argument can be repeated by induction, and we see that (18) holds for all γ

with k + j < γ ≤ k + j + 1, where j ∈ N. This completes the proof of (8).

Step V. Using (1− r)−1Ar(T ) = (I − rT )−1 (0 < r < 1), we see that

lim
r↑1

(1− r)−1Ar(T ) = lim
r↑1

(I − rT )−1 = −(T − I)−1.(19)

Hence ‖Ar(T )‖ ∼ 1 − r (r ↑ 1). This completes the proof.

Remark. From (16) and (8) we see that

(20) lim
n→∞

n + 1
γ

Cγ
n(T ) = lim

n→∞(T − I)−1(Cγ−1
n+1 (T )− I) = −(T − I)−1
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if γ > k + 1. (It would be interesting to compare this with (19).) On the other
hand, limn→∞ n+1

k+1 Ck+1
n (T ) does not exist because limn→∞ Ck

n(T ) does not exist
by (17), and n+1

k+1 ‖Ck+1
n (T )‖ ∼ 1 (n → ∞) by (8). If k < γ < k + 1, then

limn→∞ n+1
γ ‖Cγ

n(T )‖ = ∞, and limn→∞ ‖Cγ
n(T )‖ = 0. ‖Ck

n(T )‖ ∼ 1 (n → ∞),
and limn→∞ Ck

n(T ) does not exist. If 0 ≤ γ < k, then limn→∞ ‖Cγ
n(T )‖ = ∞.
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