GROWTH ORDERS OF MEANS OF DISCRETE SEMIGROUPS OF OPERATORS IN BANACH SPACES

Ryotaro Sato
Dedicated to the Memory of Professor Sen-Yen Shaw

Abstract

We study the growth orders of γ-th order Cesàro means $C_{n}^{\gamma}(T)$ ($\gamma \geq 0$) and Abel means $A_{r}(T)$ of the discrete semigroup $\left\{T^{n}: n \geq 0\right\}$ generated by a bounded linear operator T on a Banach space. Let T be of the form $T=-(I+N)$, where N is a nilpotent operator of order $k+1$ with $k \in \mathbb{N}$. Thus $N^{k+1}=0$ and $N^{k} \neq 0$. Then we prove that (a) $\left\|C_{n}^{\gamma}(T)\right\| \sim n^{k-\gamma}(n \rightarrow$ $\infty)$ if $0 \leq \gamma \leq k+1$, and $\left\|C_{n}^{\gamma}(T)\right\| \sim n^{-1}(n \rightarrow \infty)$ if $\gamma \geq k+1$; (b) $\left\|A_{r}(T)\right\| \sim 1-r(r \uparrow 1)$. Here $a(n) \sim b(n)(n \rightarrow \infty)$ [resp. $a(r) \sim b(r)(r \uparrow$ 1)] means that $0<\liminf _{n \rightarrow \infty} a(n) / b(n) \leq \lim \sup _{n \rightarrow \infty} a(n) / b(n)<\infty$ $\left[\right.$ resp. $0<\liminf _{r \uparrow 1} a(r) / b(r) \leq \lim \sup _{r \uparrow 1} a(r) / b(r)<\infty$].

1. Introduction and the Result

Let T be a bounded linear operator on a Banach space X. One of the important issues of the ergodic theory of T is concerned with convergence of various means of the discrete semigroup $\left\{T^{n}: n \geq 0\right\}$ generated by T. For $\gamma \in \mathbb{R} \backslash\{-1,-2, \ldots\}$, we define the γ-th order Cesàro means $C_{n}^{\gamma}(T)$ by

$$
\begin{equation*}
C_{n}^{\gamma}(T):=\frac{1}{\sigma_{n}^{\gamma}} \sum_{l=0}^{n} \sigma_{n-l}^{\gamma-1} T^{l} \quad(n \geq 0) \tag{1}
\end{equation*}
$$

where $\sigma_{n}^{\gamma}:=\binom{\gamma+n}{n}=(\gamma+n)(\gamma+n-1) \ldots(\gamma+1) / n$! for $n \geq 1$, and $\sigma_{0}^{\gamma}:=1$. The following two particular means are well-known: $C_{n}^{0}(T)=T^{n}$ and $C_{n}^{1}(T)=$ $(n+1)^{-1} \sum_{l=0}^{n} T^{l}$ for $n \geq 0$. Here it should be noted that to treat means of $\left\{T^{n}: n \geq 0\right\}$ it would be natural to examine the case where the coefficients $\sigma_{n-l}^{\gamma-1}$ of $T^{l}(0 \leq l \leq n)$ are all nonnegative. Therefore we will restrict ourselves to

[^0]considering $C_{n}^{\gamma}(T)$ with $\gamma \geq 0$. (In fact, there is a pathological phenomenon when we consider $C_{n}^{\gamma}(T)$ with $-1<\gamma<0$ (see [2, Theorem 4.1])).

We define the Abel means $A_{r}(T)$ by

$$
\begin{equation*}
A_{r}(T):=(1-r) \sum_{n=0}^{\infty} r^{n} T^{n} \quad(0<r<1) \tag{2}
\end{equation*}
$$

whenever the spectral radius $r(T):=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{1 / n}$ is less than or equal to 1 . Since $(1-r)^{-\gamma}=\sum_{n=0}^{\infty} r^{n} \sigma_{n}^{\gamma-1}$ holds for all $r \in \mathbb{R}$ with $|r|<1$, we have formally

$$
\begin{align*}
\sum_{n=0}^{\infty} r^{n} T^{n} & =(1-r)^{\gamma}\left(\sum_{n=0}^{\infty} r^{n} \sigma_{n}^{\gamma-1}\right)\left(\sum_{n=0}^{\infty} r^{n} T^{n}\right) \\
& =(1-r)^{\gamma} \sum_{n=0}^{\infty} r^{n} \sum_{l=0}^{n} \sigma_{n-l}^{\gamma-1} T^{l} \tag{3}\\
& =(1-r)^{\gamma} \sum_{n=0}^{\infty} r^{n} \sigma_{n}^{\gamma} C_{n}^{\gamma}(T)
\end{align*}
$$

so that if $\lim \sup _{n \rightarrow \infty}\left\|C_{n}^{\gamma}(T)\right\|^{1 / n} \leq 1$, then $r(T) \leq 1$. The following result is well-known (cf. [4, Chapter 3]): If $0<\gamma<\beta<\infty$, then

$$
\begin{equation*}
\sup _{n \geq 0}\left\|T^{n}\right\| \geq \sup _{n \geq 0}\left\|C_{n}^{\gamma}(T)\right\| \geq \sup _{n \geq 0}\left\|C_{n}^{\beta}(T)\right\| \geq \sup _{0<r<1}\left\|A_{r}(T)\right\| \tag{4}
\end{equation*}
$$

From now on, we consider T of the form $T=-(I+N)$, where N is a nilpotent operator of order $k+1$ with $k \in \mathbb{N}$. Thus $N^{k} \neq 0$ and $N^{k+1}=0$. Then we have

$$
\begin{equation*}
T^{n}=(-1)^{n}(I+N)^{n}=(-1)^{n} \sum_{l=0}^{k}\binom{n}{l} N^{l} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\binom{n}{l}\left\|N^{l}\right\|=\frac{n(n-1) \ldots(n-l+1)}{l!}\left\|N^{l}\right\| \tag{6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left\|C_{n}^{0}(T)\right\|=\left\|T^{n}\right\| \sim n^{k} \quad(n \rightarrow \infty) \tag{7}
\end{equation*}
$$

so that $r(T)=1$. It was proved by Li, Sato and Shaw [2] that the operator $T=$ $-(I+N)$ satisfies $\sup _{n \geq 0}\left\|C_{n}^{\gamma}\right\|=\infty$ if $0 \leq \gamma<k$, and $\sup _{n \geq 0}\left\|C_{n}^{k}(T)\right\|<\infty$.

The purpose of this paper is to refine on this result. That is, we prove the following

Theorem. The above operator $T=-(I+N)$ satisfies

$$
\left\|C_{n}^{\gamma}(T)\right\| \sim \begin{cases}n^{k-\gamma}(n \rightarrow \infty) & \text { if } 0 \leq \gamma \leq k+1, \tag{8}\\ n^{-1} \quad(n \rightarrow \infty) & \text { if } \gamma \geq k+1\end{cases}
$$

and

$$
\begin{equation*}
\left\|A_{r}(T)\right\| \sim 1-r(r \uparrow 1) \tag{9}
\end{equation*}
$$

The proof is an adaptation of the argument in [2, Propositions 4.4]; the details will be given in the next section. We would like to note that the continuous analog of the above Theorem has been obtained in [3] (see also Chen, Sato and Shaw [1]).

2. Proof of the Theorem

The proof is divided into several steps.
Step I. In view of (7) we first consider the case $0<\gamma<1$. We write

$$
\begin{align*}
C_{n}^{\gamma}(T) & =\frac{1}{\sigma_{n}^{\gamma}} \sum_{l=0}^{n} \sigma_{n-l}^{\gamma-1}(-1)^{l}(I+N)^{l} \\
& =\frac{1}{\sigma_{n}^{\gamma}} \sum_{l=0}^{n}(-1)^{l} \sigma_{n-l}^{\gamma-1} \sum_{s=0}^{k-1}\binom{l}{s} N^{s}+\frac{1}{\sigma_{n}^{\gamma}} \sum_{l=0}^{n}(-1)^{l} \sigma_{n-l}^{\gamma-1}\binom{l}{k} N^{k} \tag{10}\\
& =: I(n, \gamma)+I I(n, \gamma) .
\end{align*}
$$

Putting $M(N):=\max \left\{\left\|N^{s}\right\|: 0 \leq s \leq k\right\}$, we have for all $n \geq k$

$$
\begin{align*}
\|I(n, \gamma)\| & \leq \frac{1}{\sigma_{n}^{\gamma}} \sum_{l=0}^{n} \sigma_{n-l}^{\gamma-1} \sum_{s=0}^{k-1}\binom{l}{s} M(N) \\
& \leq \frac{1}{\sigma_{n}^{\gamma}} \sum_{l=0}^{n} \sigma_{n-l}^{\gamma-1} \cdot n(n-1) \ldots(n-k+2) M(N) \tag{11}\\
& =n(n-1) \ldots(n-k+2) M(N) \sim n^{k-1} \quad(n \rightarrow \infty) .
\end{align*}
$$

Next

$$
\begin{equation*}
\|I I(n, \gamma)\|=\frac{1}{\sigma_{n}^{\gamma}}\left|\sum_{l=0}^{n}(-1)^{l} \sigma_{n-l}^{\gamma-1}\binom{l}{k}\right|\left\|N^{k}\right\| . \tag{12}
\end{equation*}
$$

Since $0<\sigma_{n}^{\gamma-1} \downarrow 0(n \rightarrow \infty)$ for $0<\gamma<1$, and $0 \leq\binom{ l}{k} \leq\binom{ l+1}{k}$ for all $l \geq 0$, it follows that

$$
0 \leq \sigma_{n-l}^{\gamma-1}\binom{l}{k} \leq \sigma_{n-(l+1)}^{\gamma-1}\binom{l+1}{k} \quad(0 \leq l \leq n-1)
$$

whence for all $n \geq k$

$$
\begin{align*}
\sigma_{0}^{\gamma-1}\binom{n}{k} & \geq\left|\sum_{l=0}^{n}(-1)^{l} \sigma_{n-l}^{\gamma-1}\binom{l}{k}\right| \\
& \geq \sigma_{0}^{\gamma-1}\binom{n}{k}-\sigma_{1}^{\gamma-1}\binom{n-1}{k} \\
& =\frac{1}{k!}\{n(n-1) \ldots(n-k+1)-\gamma(n-1) \ldots(n-k)\} \tag{13}\\
& =\frac{1}{k!} n(n-1) \ldots(n-k+1)\left\{1-\frac{\gamma}{n}(n-k)\right\} \\
& >\frac{1}{k!} n(n-1) \ldots(n-k+1)(1-\gamma) \sim n^{k} \quad(n \rightarrow \infty)
\end{align*}
$$

Thus, applying the known fact that $\sigma_{n}^{\gamma} \sim n^{\gamma} / \Gamma(\gamma+1)(n \rightarrow \infty)$ (see e.g. [4, p. 77]), we obtain that

$$
\begin{equation*}
\|I I(n, \gamma)\| \sim \frac{n^{k}\left\|N^{k}\right\|}{\sigma_{n}^{\gamma}} \sim n^{k-\gamma} \quad(n \rightarrow \infty) \tag{14}
\end{equation*}
$$

Combining this with (11) we see that

$$
\begin{equation*}
\left\|C_{n}^{\gamma}(T)\right\| \sim n^{k-\gamma} \quad(n \rightarrow \infty) \tag{15}
\end{equation*}
$$

Step II. Next suppose $1 \leq \gamma<k+1$. Then we use the fundamental equation

$$
\begin{equation*}
(T-I) C_{n}^{\gamma}(T)=\frac{\gamma}{n+1}\left[C_{n+1}^{\gamma-1}(T)-I\right] \quad(\gamma \geq 1) \tag{16}
\end{equation*}
$$

(This can be proved by an elementary calculation (cf. [4, Chapter 3]).) We already know from the above argument that if $0 \leq \beta<1$, then $\left\|C_{n}^{\beta}(T)\right\| \sim n^{k-\beta}(n \rightarrow \infty)$, so that $\left\|C_{n}^{\beta}(T)-I\right\| \sim n^{k-\beta}(n \rightarrow \infty)$. Combining this with (16), we easily see that (15) holds for all $1 \leq \gamma<2$. (Here we used the fact that $(T-I)^{-1}=-(2 I+N)^{-1}$ exists, which follows from $\sigma(N)=\{0\}$.) This process can be repeated until $k \leq \gamma<k+1$, and hence (15) holds for all $1 \leq \gamma<k+1$.

Step III. Suppose $\gamma=k+1$. As in Step II it suffices to prove that $\| C_{n}^{k}(T)-$ $I \| \sim 1(n \rightarrow \infty)$. Since $\left\|C_{n}^{k}(T)\right\| \sim 1(n \rightarrow \infty)$ by Step II, it follows that $\| C_{n}^{k}-$ $I \|=O(1)(n \rightarrow \infty)$. Thus it suffices to prove that $\liminf _{n \rightarrow \infty}\left\|C_{n}^{k}(T)-I\right\|>0$. To do this, we write

$$
(T-I) C_{n}^{k}(T)=\frac{k}{n+1}\left[C_{n+1}^{k-1}(T)-I\right]=: \frac{k}{n+1} C_{n+1}^{k-1}(T)+D_{n}^{1}(T)
$$

where $\lim _{n \rightarrow \infty}\left\|D_{n}^{1}(T)\right\|=0$; next

$$
(T-I)^{2} C_{n}^{k}(T)=: \frac{k(k-1)}{(n+1)(n+2)} C_{n+2}^{k-2}(T)+D_{n}^{2}(T)
$$

where $\lim _{n \rightarrow \infty}\left\|D_{n}^{2}(T)\right\|=0$; and finally

$$
(T-I)^{k} C_{n}^{k}(T)=: \frac{k!}{(n+1) \ldots(n+k)} C_{n+k}^{0}(T)+D_{n}^{k}(T)
$$

where $\lim _{n \rightarrow \infty}\left\|D_{n}^{k}(T)\right\|=0$. By (5) we then write

$$
\begin{aligned}
\frac{k!}{(n+1) \ldots(n+k)} C_{n+k}^{0} & =\frac{k!}{(n+1) \ldots(n+k)}(-1)^{n+k} \sum_{l=0}^{k}\binom{n+k}{l} N^{l} \\
& =:(-1)^{n+k} N^{k}+E_{n}^{k}(T),
\end{aligned}
$$

where $\lim _{n \rightarrow \infty}\left\|E_{n}^{k}(T)\right\|=0$. Consequently we have

$$
\begin{equation*}
C_{n}^{k}(T)=(T-I)^{-k}(-1)^{n+k} N^{k}+(T-I)^{-k}\left(E_{n}^{k}(T)+D_{n}^{k}(T)\right) . \tag{17}
\end{equation*}
$$

Now, take an $x \in X$ such that $\|x\|=1$ and $N^{k} x=0$. Then $\lim _{n \rightarrow \infty}\left\|C_{n}^{k}(T) x\right\|$ $=0$ by (17), and

$$
\liminf _{n \rightarrow \infty}\left\|C_{n}^{k}(T)-I\right\| \geq \lim _{n \rightarrow \infty}\left\|C_{n}^{k}(T) x-x\right\|=\|-x\|=1
$$

which is the desired result.
Step IV. Suppose $\gamma>k+1$. From Steps II and III we know that if $k<\beta \leq$ $k+1$, then $\left\|C_{n}^{\beta}(T)\right\| \sim n^{k-\beta}(n \rightarrow \infty)$, so that $\left\|C_{n}^{\beta}(T)-I\right\| \sim 1(n \rightarrow \infty)$ because $\lim _{n \rightarrow \infty} n^{k-\beta}=0$. Thus if $k+1<\gamma \leq k+2$, then (16) implies

$$
\begin{equation*}
\left\|C_{n}^{\gamma}(T)\right\| \sim n^{-1} \quad(n \rightarrow \infty) \tag{18}
\end{equation*}
$$

This argument can be repeated by induction, and we see that (18) holds for all γ with $k+j<\gamma \leq k+j+1$, where $j \in \mathbb{N}$. This completes the proof of (8).

Step V. Using $(1-r)^{-1} A_{r}(T)=(I-r T)^{-1}(0<r<1)$, we see that

$$
\begin{equation*}
\lim _{r \uparrow 1}(1-r)^{-1} A_{r}(T)=\lim _{r \uparrow 1}(I-r T)^{-1}=-(T-I)^{-1} . \tag{19}
\end{equation*}
$$

Hence $\left\|A_{r}(T)\right\| \sim 1-r(r \uparrow 1)$. This completes the proof.
Remark. From (16) and (8) we see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n+1}{\gamma} C_{n}^{\gamma}(T)=\lim _{n \rightarrow \infty}(T-I)^{-1}\left(C_{n+1}^{\gamma-1}(T)-I\right)=-(T-I)^{-1} \tag{20}
\end{equation*}
$$

if $\gamma>k+1$. (It would be interesting to compare this with (19).) On the other hand, $\lim _{n \rightarrow \infty} \frac{n+1}{k+1} C_{n}^{k+1}(T)$ does not exist because $\lim _{n \rightarrow \infty} C_{n}^{k}(T)$ does not exist by (17), and $\frac{n+1}{k+1}\left\|C_{n}^{k+1}(T)\right\| \sim 1 \quad(n \rightarrow \infty)$ by (8). If $k<\gamma<k+1$, then $\lim _{n \rightarrow \infty} \frac{n+1}{\gamma}\left\|C_{n}^{\gamma}(T)\right\|=\infty$, and $\lim _{n \rightarrow \infty}\left\|C_{n}^{\gamma}(T)\right\|=0 .\left\|C_{n}^{k}(T)\right\| \sim 1(n \rightarrow \infty)$, and $\lim _{n \rightarrow \infty} C_{n}^{k}(T)$ does not exist. If $0 \leq \gamma<k$, then $\lim _{n \rightarrow \infty}\left\|C_{n}^{\gamma}(T)\right\|=\infty$.

References

1. J.-C. Chen, R. Sato and S.-Y. Shaw, Growth orders of Cesàro and Abel means of functions in Banach spaces, Taiwanese J. Math., to appear.
2. Y.-C. Li, R. Sato and S.-Y. Shaw, Boundedness and growth orders of means of discrete and continuous semigroups of operators, Studia Math., 187 (2008), 1-35.
3. R. Sato, Growth orders of Cesàro and Abel means of uniformly continuous operator semi-groups and cosine functions, preprint.
4. A. Zygmund, Trigonometric Series. Vol. I, Cambridge Univesity Press, Cambridge, 1959.

Ryotaro Sato

Department of Mathematics,
Okayama University,
Okayama 700-8530,
Japan
Current address:
19-18, Higashi-hongo 2-chome,
Midori-ku, Yokohama 226-0002,
Japan
E-mail: satoryot@math.okayama-u.ac.jp

[^0]: Received February 9, 2009.
 2000 Mathematics Subject Classification: 47A35.
 Key words and phrases: Ces àro mean, Abel mean, Growth order, Nilpotent operator.

