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MEAN ERGODIC THEOREMS FOR ALMOST PERIODIC SEMIGROUPS
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Abstract. We show mean ergodic theorems for vector-valued weakly almost
periodic functions (in the sense of Eberlein) defined on a semigroup which
take values in a locally convex topological vector space. Next, motivated by
Fréchet [10], we study the relationship between almost periodicity of semi-
groups of mappings and their equicontinuity, and also prove mean ergodic
theorems for equicontinuous semigroups.

1. INTRODUCTION

Let C be a closed and convex subset of a real Banach space. Then a mapping
T : C → C is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C.
In 1975, Baillon [3] originally proved the first nonlinear ergodic theorem in the
framework of Hilbert spaces: Let C be a closed and convex subset of a Hilbert
space and let T be a nonexpansive mapping of C into itself. If the set F (T ) of
fixed points of T is nonempty, then for each x ∈ C, the Cesàro means

Sn(x) =
1
n

n−1∑
k=0

T kx

converge weakly to some y ∈ F (T ). In this case, putting y = Px for each
x ∈ C, we have that P is a nonexpansive retraction of C onto F (T ) such that
PT = TP = P and Px is contained in the closure of convex hull of {Tnx : n =
1, 2, . . .} for each x ∈ C. We call such a retraction an “ergodic retraction”. In
1981, Takahashi [27, 29] proved the existence of ergodic retractions for amenable
semigroups of nonexpansive mappings on Hilbert spaces. Rodé [20] also found a
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sequence of means on a semigroup, generalizing the Cesàro means, and extended
Baillon’s theorem. These results were extended to a uniformly convex Banach
space whose norm is Fréchet differentiable in the case of commutative semigroups
of nonexpansive mappings by Hirano, Kido and Takahashi [12]. In 1999, Lau,
Shioji and Takahashi [15] extended Takahashi’s result and Rod é’s result to amenable
semigroups of nonexpansive mappings in the Banach space.

By using Rodé’s method, Kido and Takahashi [14] also proved a mean ergodic
theorem for noncommutative semigroups of bounded linear operators in Banach
spaces.

On the other hand, by using results of Bruck [5], Atsushiba and Takahashi [1]
proved a nonlinear ergodic theorem for nonexpansive mappings on a compact and
convex subset of a strictly convex Banach space. This result was extended to
commutative semigroups of nonexpansive mappings by Atsushiba, Lau and Taka-
hashi [2]. Miyake and Takahashi [16] proved a nonlinear ergodic theorem for non-
expansive mappings on a compact and convex subset of a general Banach space.
Later, these results were extended to amenable semigroups of nonexpansive map-
pings by Miyake and Takahashi [17].

Motivated by Kido and Takahashi [14], Hirano, Kido and Takahashi [12], Lau,
Shioji and Takahashi [15], Atsushiba, Lau and Takahashi [2] and Miyake and
Takahashi [17], Miyake and Takahashi [18] proved weak and strong mean ergodic
theorems for vector-valued weakly almost periodic functions (in the sense of Eber-
lein) defined on a semigroup which take values in a Banach space. Using these
results, they obtained well-known and new mean ergodic theorems for commutative
and noncommutative semigroups of nonexpansive mappings, affine nonexpansive
mappings and bounded linear operators in Banach spaces.

In this paper, we introduce the notion of weakly almost periodicity for vector-
valued bounded functions defined on a semigroup which take values in a locally
convex topological vector space and show mean ergodic theorems for vector-valued
weakly almost periodic functions in the sense of Eberlein. Next, motivated by
Fréchet [10], we study the relationship between almost periodicity of semigroups
of mappings and their equicontinuity in order to prove a mean ergodic theorem for
equicontinuous semigroups of mappings. We also show mean ergodic theorems for
such semigroups in Banach spaces as special cases.

2. PRELIMINARIES

Throughout this paper, we denote by S a semigroup with identity and by E a
locally convex topological vector space (or l.c.s.). We also denote by R+ and N+ the
set of non-negative real numbers and the set of non-negative integers, respectively.
Let 〈E, F 〉 be the duality between vector spaces E and F . For each y ∈ F , we
define a linear functional fy on E by fy(x) = 〈x, y〉. We denote by σ(E, F )
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the weak topology on E generated by {fy : y ∈ F}. If X is a l.c.s., we denote
by X ′ the topological dual of X . We also denote by 〈·, ·〉 the canonical bilinear
form between E and E ′, that is, for x ∈ E and x′ ∈ E ′, 〈x, x′〉 is the value
of x′ at x. Let A be a subset of E . We denote by A◦ the polar of A, that is,
A◦={x′ ∈ E ′ : 〈x, x′〉≤ 1 for each x∈A}. We also denote by A the closure of A.

We denote by l∞(S) the Banach space of bounded real-valued functions on S.
For each s ∈ S, we define operators l(s) and r(s) on l∞(S) by

(l(s)f)(t) = f(st) and (r(s)f)(t) = f(ts)

for each t ∈ S and f ∈ l∞(S), respectively. A subspace X of l∞(S) is said to
be translation invariant if l(s)X ⊂ X and r(s)X ⊂ X for each s ∈ S. Let X
be a subspace of l∞(S) which contains constants. A linear functional µ on X is
said to be a mean on X if ‖µ‖ = µ(e) = 1, where e(s) = 1 for each s ∈ S. We
often write µsf(s) instead of µ(f) for each f ∈ X . For s ∈ S, we define a point
evaluation δs by δs(f) = f(s) for each f ∈ X . A convex combination of point
evaluations is called a finite mean on S. As is well known, µ is a mean on X if
and only if

inf
s∈S

f(s) ≤ µ(f) ≤ sup
s∈S

f(s)

for each f ∈ X ; see Day [6] and Takahashi [30] for more details. Let X be also
translation invariant. Then, a mean µ on X is said to be left (or right) invariant
if µ(l(s)f) = µ(f) (or µ(r(s)f) = µ(f)) for each s ∈ S and f ∈ X . A mean
µ on X is said to be invariant if µ is both left and right invariant. If there exists
an invariant mean on X , then X is said to be amenable. We know from Day [6]
that if S is commutative, then X is amenable. Let {µα} be a net of means on X .
Then {µα} is said to be (strongly) asymptotically invariant if for each s ∈ S, both
l(s)′µα − µα and r(s)′µα − µα converge to 0 in the weak topology σ(X′, X) (the
norm topology), where l(s)′ and r(s)′ are the adjoint operators of l(s) and r(s),
respectively. Such nets were first studied by Day [6].

We denote by l∞(S, E) the vector space of vector-valued functions defined on
S that take values in E such that for each f ∈ l∞(S, E), f(S) = {f(s) : s ∈ S}
is bounded in E . Let U be a neighborhood base of 0 in E and let M(V ) =
{f ∈ l∞(S, E) : f(S) ⊂ V } for each V ∈ U. We denote by B the filter base
{M(V ) : V ∈ U}. Then, l∞(S, E) is a l.c.s. with the topology T of uniform
convergence on S that has a neighborhood base B of 0. We also denote by l∞c (S, E)
the subspace of l∞(S, E) such that for each f ∈ l∞c (S, E), f(S) is relatively weakly
compact in E . Let X be a subspace of l∞(S) containing constants such that for
each f ∈ l∞c (S, E) and x′ ∈ E ′, the function s �→ 〈f(s), x′〉 is contained in X .
Such an X is called admissible. Let µ ∈ X ′. Then, for each f ∈ l∞c (S, E), we
define a linear functional τ(µ)f on E ′ by

τ(µ)f : x′ �→ µ〈f(·), x′〉.
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It follows from the bipolar theorem that τ(µ)f is contained in E . We know that
τ(µ) is a continuous linear mapping of l∞c (S, E) into E . If µ is a mean on X , then
τ(µ)f is contained in the closure of convex hull of f(S) for each f ∈ l∞c (S, E).
Such a τ(µ) is called a vector-valued mean (generated by a mean µ on X). If E
is a Banach space, then τ(µ) is also a mean on l∞c (S, E) in the sense of Goldberg
and Irwin [11]. See also Takahashi [27] and Kada and Takahashi [13]. For each
s ∈ S, we define the operators R(s) and L(s) on l∞(S, E) by

(R(s)f)(t) = f(ts) and (L(s)f)(t) = f(st)

for each t ∈ S and f ∈ l∞(S, E), respectively. Note that if µ is a left (or right)
invariant mean on X , then τ(µ)(L(s)f) (or τ(µ)(R(s)f)) = τ(µ)f .

Let C be a closed convex subset of a l.c.s. E and let F be the semigroup of
continuous self-mappings of C under operator multiplication. If T is a semigroup
homomorphism of S into F, then T is said to be a representation of S as continuous
self-mappings of C. Let S = {T (s) : s ∈ S} be a representation of S as continuous
self-mappings of C such that for each x ∈ C, the orbit O(x) = {T (s)x : s ∈ S} of
x is relatively weakly compact in C and let X be a subspace of l∞(S) containing
constants such that for each x ∈ C and x′ ∈ E ′, the function s �→ 〈T (s)x, x′〉 is
contained in X . Such an X is called admissible with respect to S . If no confusion
will occur, then X is simply called admissible. Let µ ∈ X ′. Then, there exists a
unique point x0 of E such that µ〈T (·)x, x′〉 = 〈x0, x

′〉 for each x′ ∈ E ′. We denote
such a point x0 by T (µ)x. Note that if µ is a mean on X , then for each x ∈ C,
T (µ)x is contained in the closure of convex hull of the orbit O(x) of x.

Let f ∈ l∞(S, E). We denote by RO(f) the right orbit of f , that is, the set
{R(s)f ∈ l∞(S, E) : s ∈ S} of right translates of f . Similarly, we also denote
by LO(f) the left orbit of f , that is, the set {L(s)f ∈ l∞(S, E) : s ∈ S} of left
translates of f . A function f ∈ l∞(S, E) is said to be almost periodic if RO(f)
is relatively compact in (l∞(S, E), T); the notion of almost periodicity for real-
valued functions on an abstract group is due to von Neumann [19]. We denote by
AP (S, E) the set of almost periodic functions defined on S which take values in
E . See also Bochner and von Neumann [4]. A function f ∈ l∞(S, E) is said to
be right (or left) weakly almost periodic (in the sense of Eberlein) if RO(f) (or
LO(f)) is relatively weakly compact in (l∞(S, E), T); the notion of weakly almost
periodicity was introduced by Eberlein [8]. If f ∈ l∞(S, E) is both left and right
weakly almost periodic, then f is said to be weakly almost periodic in the sense of
Eberlein. We denote by WR(S, E) (or WL(S, E)) the set of right (or left) weakly
almost periodic functions defined on S which take values in E . See also de Leeuw
and Glicksberg [7], Goldberg and Irwin [11] and Miyake and Takahashi [18]. Let
S = {T (s) : s ∈ S} be a representation of S as continuous mappings of a bounded,
closed and convex subset C of E into itself and define a mapping φS of C into
l∞(S, E) by (φS(x))(s) = T (s)x for each s ∈ S. Then, S is also said to be
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(weakly) almost periodic if, for each x ∈ C, φS(x) ∈ AP (S, E) (WR(S, E)).
Note that every right (or left) weakly almost periodic function f ∈ l∞(S, E) is
contained in l∞c (S, E).

3. MEAN ERGODIC THEOREMS FOR WEAKLY ALMOST PERIODIC FUNCTIONS

In 1934, von Neumann first proved the existence of the mean values for real-
valued almost periodic functions defined on an abstract group. Later, Bochner and
von Neumann [4] extended von Neumann’s result to vector-valued almost periodic
functions defined on a group which take values in a complete locally convex space.

Theorem 1. (von Neumann [19]). Let G be a group, let AP (G) be the Banach
space of real-valued almost periodic functions defined on G and let f ∈ AP (G).
Then, there exists the unique constant function c f in the closure of convex hull of
RO(f). In this case, putting µ(f) = cf , µ is an invariant mean on AP (G) such
that µx(f(x−1)) = µxf(x) for each f ∈ AP (G).

In 1949, Eberlein [8] introduced the notion of weakly almost periodicity for real-
valued bounded functions defined on a locally compact abelian group. Goldberg and
Irwin [11] studied weakly almost periodicities for vector-valued functions defined
on a semigroup whose ranges are relatively compact in a Banach space.

The following lemma is crucial for proving main results of this paper, which
can be obtained as in the proof of Lemma 3.3 in [18].

Lemma 1. Let S be a semigroup with identity, let E be a l.c.s., let f ∈
WR(S, E), let X be a closed, translation invariant and admissible subspace of
l∞(S) containing constants and let µ be a mean on X . Then, the function s �→
τ(l(s)′µ)f = τ(µ)(L(s)f) is contained in the closure of convex hull of RO(f).

Remark 1. Let µ be a mean on X and let f ∈ WR(S, E). Motivated by this
lemma, we call such a τ(l(·)′µ)f an “ergodic mean” of f . In particular, if λ is a
finite mean on S, then τ(l(·)′λ)f is a convex combination of right translates of f .

Using Lemma 1, we can prove the existence of the mean values for vector-
valued weakly almost periodic functions in the sense of Eberlein as in the proof of
Lemma 3.5 in [18].

Theorem 2. Let S be a semigroup with identity, let E be a l.c.s., let f ∈
WR(S, E) and let X be a closed, translation invariant and admissible subspace
of l∞(S) containing constants. If X has an invariant mean µ, then there exists
the unique constant function c f in the closure K of convex hull of RO(f). In this
case, τ(µ)f = cf .
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Proof. Let µ is an invariant mean on X . It is clear from invariance of µ that
τ(l(·)′µ)f = τ(µ)f is a constant function in K.

Let g =
∑n

i=1 λiR(si)f with λi ≥ 0 (i = 1, . . . , n) and
∑n

i=1 λi = 1. Then,
as in the proof of Lemma 3.5 in [18], we have

τ(µ)g = τ

(
n∑

i=1

λir(si)
′µ

)
f = τ(µ)f.

So, since τ(µ) is a continuous linear mapping of l∞c (S, E) into E , it follows that
τ(µ)h = τ(µ)f for each h ∈ K. If c is a constant function in K, then c = τ(µ)c =
τ(µ)f . This completes the proof.

As in the proofs of Theorem 3.7 and Theorem 3.8 in [18], we can also prove
mean ergodic theorems for vector-valued weakly almost periodic functions in the
sense of Eberlein by using Lemma 1 and Theorem 2.

Theorem 3. Let S be a semigroup with identity, let E be a l.c.s., let f ∈
WR(S, E), let X be a closed, translation invariant and admissible subspace of
l∞(S) containing constants and let {µα} be an asymptotically invariant net of
means on X . Then, {τ(l(·)′µα)f} converges weakly to the constant function c f in
the closure K of convex hull of RO(f). In this case, τ(µ)f = c f for each invariant
mean µ on X .

Proof. For each α, we define a vector-valued function µα.f ∈ l∞(S, E) by
(µα.f)(s) = τ(l(s)′µα)f for each s ∈ S. Then, by Lemma 1, a net {µα.f} is
contained in K. Suppose that a subnet {µαβ

.f} of {µα.f} converges weakly to g

in K. Since {µα} is asymptotically invariant, {µαβ
} has a cluster point µ in X ′ in

the topology σ(X′, X). We can assume that {µαβ
} converges to µ without loss of

generality. Then, as in the proof of Theorem 3.7 in [18] (see also [30]), µ is an
invariant mean on X and hence

g = lim
β

µαβ
.f = lim

β
τ(l(·)′µαβ

)f = τ(l(·)′µ)f = τ(µ)f.

It follows from Theorem 2 that g is the unique constant function cf in K. In this
case, cf(·) = τ(µ)f where µ is an invariant mean on X . Hence, {τ(l(·)′µα)f}
converges weakly to the unique constant function cf in K. This completes the
proof.

Theorem 4. Let S be a semigroup with identity, let E be a l.c.s., let f ∈
WR(S, E), let X be a closed, translation invariant and admissible subspace of
l∞(S) containing constants and let {µα} be a strongly asymptotically invariant net
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of means on X . Then, {τ(l(·)′µα)f} converges to the constant function c f in the
closure K of convex hull of RO(f). In this case, τ(µ)f = cf for each invariant
mean µ on X .

Proof. Let U be a neighborhood of 0 and let g ∈ K. Choose a closed, convex
and circled neighborhood V of 0 such that V +V ⊂ U . Then, there exists a convex
combination h =

∑n
i=1 λiR(si)f of right translates of f such that g − h ∈ M(V ),

that is, g(s) − h(s) ∈ V for each s ∈ S, where λi ≥ 0,
∑n

i=1 λi = 1 and si ∈ S

(i = 1, . . . , n). So, we have, for each α and t ∈ S,

τ(l(t)′µα)g − τ(l(t)′µα)h = τ(µα)(L(t)g)− τ(µα)(L(t)h)
= τ(µα)(L(t)(g − h)) ∈ V.

By boundedness of f , there exists a β > 0 such that f(s) ∈ βV for each s ∈ S.
Since, for each s, t ∈ S and x′ ∈ V ◦,

〈τ(l(t)′µα)(R(s)f)− τ(l(t)′µα)f, x′〉
= 〈τ(µα)(L(t)R(s)f)− τ(µα)(L(t)f), x′〉
= 〈τ(µα)(R(s)L(t)f)− τ(µα)(L(t)f), x′〉
= 〈τ(r(s)′µα)(L(t)f)− τ(µα)(L(t)f), x′〉
= (r(s)′µα − µα)〈L(t)f(·), x′〉
≤ ‖r(s)′µα − µα‖ sup

w∈S
〈f(tw), x′〉

≤ β‖r(s)′µα − µα‖,
it follows that for each s ∈ S, there exists an αs such that for each α ≥ αs and
t ∈ S,

〈τ(l(t)′µα)(R(s)f)− τ(l(t)′µα)f, x′〉 ≤ 1

and hence τ(l(t)′µα)(R(s)f)− τ(l(t)′µα)f ∈ V .
Choose an α0 with α0 ≥ αsi (i = 1, . . . , n). Then, we have, for each t ∈ S

and α ≥ α0,
τ(l(t)′µα)g − τ(l(t)′µα)f

= τ(l(t)′µα)g − τ(l(t)′µα)h

+ τ(l(t)′µα)h − τ(l(t)′µα)f

∈ V +
n∑

i=1

λi{τ(l(t)′µα)(R(si)f) − τ(l(t)′µα)f}

⊂ V + V ⊂ U.
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Hence, for each g ∈ K, {τ(l(·)′µα)g − τ(l(·)′µα)f} converges to 0 in l∞(S, E)
with the topology T of uniform convergence on S. We know from Theorem 2 that
there exists the unique constant function p(·) = τ(µ)f , for each invariant mean
µ on X , which is contained in K. So, it follows that {τ(l(·)′µα)f} converges to
p = τ(l(·)′µα)p in (l∞(S, E), T). This completes the proof.

Corollary 1. Let E be a Banach space and let f ∈ WR(R+, E). Then,

1
t

∫ t

0
f(r + h) dr

converges uniformly in h ∈ R+ as t → +∞.

Corollary 2. Let E be a Banach space and let f ∈ WR(R+, E). Then, the
Abel means

r

∫ ∞

0

exp(−rt)f(t + h) dt

converge uniformly in h ∈ R+ as r → +∞.

4. MEAN ERGODIC THEOREMS FOR ALMOST PERIODIC SEMIGROUPS

We can apply mean ergodic theorems for vector-valued weakly almost periodic
functions in the sense of Eberlein in order to obtain new and well-known mean er-
godic theorems for semigroups of linear and non-linear operators in a locally convex
space E . See also Ruess and Summers [22, 23] and Miyake and Takahashi [18].
For example, the following theorem follows from Theorem 4.

Theorem 5. Let S be a semigroup with identity, let E be a Banach space,
let S = {T (s) : s ∈ S} be a weakly almost periodic representation of S as
bounded linear operators on E , that is, S be a representation of S as bounded
linear operators on E such that for each x ∈ E , the orbit O(x) of x is relatively
weakly compact, let X be a closed, translation invariant and admissible subspace
of l∞(S) containing constants and let {µα} be a strongly asymptotically invariant
net of means on X . Then, for each x ∈ E , {T (l(h) ′µα)x} converges to a fixed
point p for S uniformly in h ∈ S. In this case, p = T (µ)x for each invariant mean
µ on X .

Proof. For each x ∈ E , we define a vector-valued function φ(x) ∈ l∞(S, E)
by (φ(x))(s) = T (s)x for each s ∈ S. Since S is a weakly almost periodic
representation of S, φ(x) is right weakly almost periodic for each x ∈ E .

It follows from Theorem 4 that {τ(l(·)′µα)φ(x)} converges to the unique con-
stant function p in the closure of convex hull of RO(φ(x)). In this case, p(·) =
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τ(µ)φ(x) = T (µ)x for each invariant mean µ on X . Hence, for each x ∈ E ,
{T (l(h)′µα)x} converges to a point T (µ)x in C uniformly in h ∈ S where µ is an
invariant mean on X . Since, for each s ∈ S and x′ ∈ E ′,

〈T (s)T (µ)x, x′〉 = 〈T (µ)x, T (s)′x′〉 = µ〈T (·)x, T (s)′x′〉
= µ〈T (s)T (·)x, x′〉 = µ〈T (s·)x, x′〉
= l(s)′µ〈T (·), x′〉 = µ〈T (·), x′〉
= 〈T (µ)x, x′〉

where T (s)′ is the adjoint operator of T (s), we have T (s)T (µ)x = T (µ)x for each
s ∈ S. This completes the proof.

Remark 2. By the uniform boundedness theorem, every weakly almost periodic
representation S = {T (s) : s ∈ S} of S as bounded linear operators on E is
uniformly bounded, that is, there exists a K > 0 such that ‖T (s)‖ ≤ K for each
s∈S.

In 1941, Fréchet proved a mean ergodic theorem for one-parameter equicontin-
uous semigroups of mappings in an Euclidian space.

Theorem 6. (Fréchet [10]). Let C be a bounded, closed and convex subset of
an Euclidian space R

m and let S = {T (t) : t ≥ 0} be a one-parameter semigroup
of continuous mappings of C into itself such that S is equicontinuous. Then, for
each x ∈ C,

1
t

∫ t

0
T (r)x dr

converges to a point of C as t → +∞.

Motivated by Fréchet, we study the relationship between almost periodicity of
semigroups of mappings in a locally convex space and their equicontinuity.

Lemma 2. Let S be a semigroup with identity, let C be a bounded, closed and
convex subset of a l.c.s. E and let S = {T (s) : s ∈ S} be a representation of S as
continuous mappings of C into itself. Then, the following are equivalent:

(i) S is almost periodic;
(ii) for each x ∈ C, O(x) is relatively compact and S is equicontinuous on the

closure of O(x).

Proof. (i) ⇒ (ii): By (i), RO(T (·)x) is relatively compact. For each s∈S,
let ps : f �→ f(s) be a projection of l∞(S, E) into E . Then, each ps is con-
tinuous on l∞(S, E) with the topology T of uniform convergence on S. From
pe(RO(T (·)x)) = O(x), O(x) is relatively compact, where e is the identity of S.
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Let x0 ∈ O(x) and let U be a neighborhood of 0. Choose a closed neighborhood
V of 0 such that V +V +V ⊂ U . Since LO(T (·)x) is totally bounded, there exist
s1, . . . , sn in S such that

LO(T (·)x) ⊂ ∪n
i=1(L(si)T (·)x) + M(V ),

where M(V ) = {f ∈ l∞(S, E) : f(S) ⊂ V }. Then, there exists a neighborhood
W of 0 such that T (si)x0 − T (si)y ∈ V for each y ∈ x0 + W (i = 1, . . . , n).
Let t ∈ S. Choose a sk such that for each s ∈ S, T (t)T (s)x− T (sk)T (s)x ∈ V .
Hence, T (t)y−T (sk)y ∈ V for each y ∈ O(x) from continuity of T (t) and T (sk).
So, we have, for each y ∈ (x0 + W ) ∩ O(x),

T (t)x0 − T (t)y = (T (t)x0 − T (sk)x0) + (T (sk)x0 − T (sk)y)

+ (T (sk)y − T (t)y) ∈ V + V + V ⊂ U.

Since t ∈ S is arbitrary, S is equicontinuous on O(x).
(ii) ⇒ (i): Define a mapping φS : x �→ T (·)x of C into l∞(S, E). Then, from

equicontinuity of S , φS is continuous on O(x). Since, for each s ∈ S,

R(s)T (·)x = T (·s)x = T (·)T (s)x = φS(T (s)x),

we have RO(T (·)x) = φS(O(x)). It follows from continuity of φS that RO(T (·)x)
is relatively compact. This completes the proof.

As in the proof of Theorem 4.1 in [18], we can prove a mean ergodic theorem
for equicontinuous semigroups of mappings of a compact convex subset of a locally
convex space E into itself by using Lemma 2 and Theorem 3.

Theorem 7. Let S be a semigroup with identity, let C be a compact convex
subset of a l.c.s. E , let S = {T (s) : s ∈ S} be a representation of S as contin-
uous mappings of C into itself such that S is equicontinuous, let X be a closed,
translation invariant and admissible subspace of l ∞(S) containing constants and
let {µα} be an asymptotically invariant net of means on X . Then, for each x ∈ C,
{T (l(h)′µα)x} converges to a point p of C uniformly in h ∈ S. In this case,
p = T (µ)x for each invariant mean µ on X .

Proof. For each x ∈ E , we define a vector-valued function φ(x) ∈ l∞(S, E)
by (φ(x))(s) = T (s)x for each s ∈ S. Then, by Lemma 2, φ(x) is almost
periodic. It follows from Theorem 3 that {τ(l(·)′µα)φ(x)} converges to the unique
constant function p in the closure of convex hull of RO(φ(x)). In this case,
p(·) = τ(µ)φ(x) = T (µ)x for each invariant mean µ on X . Hence, for each
x ∈ C, {T (l(h)′µα)x} converges to a point T (µ)x in C uniformly in h ∈ S where
µ is an invariant mean on X . This completes the proof.
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Remark 3. Note that the limit point T (µ)x is not always a common fixed
point for S . In fact, we know that there exists a nonexpansive mapping T of C
into itself such that for some x ∈ C, its Cesàro means {1/n

∑n−1
k=0 T kx} converge,

but its limit point is not a fixed point of T ; see also Suzuki and Takahashi [26] and
Suzuki [25].

The following corollaries are the case when E is a Banach space with the norm
topology.

Corollary 3. Let S be a semigroup with identity, let C be a compact convex
subset of a Banach space E , let S = {T (s) : s ∈ S} be a representation of
S as continuous mappings of C into itself such that S is equicontinuous, let X
be a closed, translation invariant and admissible subspace of l ∞(S) containing
constants and let {µα} be an asymptotically invariant net of means on X . Then,
for each x ∈ C, {T (l(h)′µα)x} converges strongly to a point p of C uniformly in
h ∈ S. In this case, p = T (µ)x for each invariant mean µ on X .

Corollary 4. Let C be a compact convex subset of a Banach space E , let U
and W be continuous mappings of C into itself such that UW = WU and the
families {U n} and {W n} are equicontinuous. Then, for each x ∈ C, the Cesàro
means

1
n2

n−1∑
i=0

n−1∑
j=0

U i+hW j+hx

converge to a point p of C uniformly in h ∈ N +.

Corollary 5. Let C be a compact convex subset of a Banach space and let
S = {T (t) : t ≥ 0} be a one-parameter semigroup of continuous mappings of C
into itself such that S is equicontinuous. Then, for each x ∈ C, the Abel means

r

∫ ∞

0
exp(−rt)T (t + h)x dt

converge to a point p of C uniformly in h ∈ R + as r → +∞.

The following corollary is the case when E is a Banach space with the weak
topology.

Corollary 6. Let S be a semigroup with identity, let C be a weakly compact
convex subset of a Banach space E , let S = {T (s) : s ∈ S} be a representation
of S as weakly continuous mappings of C into itself such that S is weak-to-weak
equicontinuous, let X be a closed, translation invariant and admissible subspace
of l∞(S) containing constants and let {µα} be an asymptotically invariant net of
means on X . Then, for each x ∈ C, {T (l(h)′µα)x} converges weakly to a point p

of C uniformly in h∈S. In this case, p=T (µ)x for each invariant mean µ on X .



1090 Hiromichi Miyake and Wataru Takahashi

REFERENCES

1. S. Atsushiba and W. Takahashi, A nonlinear strong ergodic theorem for nonexpansive
mappings with compact domain, Math. Japonica, 52 (2000), 183-195.

2. S. Atsushiba, A. T. Lau and W. Takahashi, Nonlinear strong ergodic theorems for
commutative nonexpansive semigroups on strictly convex Banach spaces, J. Nonlin-
ear Convex Anal., 1 (2000), 213-231.
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