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Abstract. In this article, after establishing weighted Plancherel-Pôlya-type in-

equalities, we introduce a new class of weighted Hardy spaces Hp
b,w by using

g-function, where w is a Muckenhoupt’s weight and b is a para-accretive func-
tion. Then we show the atomic decomposition and molecular characterization

of Hp
b,w. As applications, we prove the boundedness of Calderón-Zygmund

operators between Hp
b,w and classical weighted Hardy spaces Hp

w.

1. INTRODUCTION

It is well-known that Calderón-Zygmund operators T are bounded on Hp for

n/(n + ε) < p ≤ 1 provided T ∗1 = 0. In general, however, such operators
are not bounded on Hp even if T satisfies Tb = T ∗b = 0 for a para-accretive
function b. Meyer observed that if b is bounded function and 1 ≤ Re b(x), the
space H1

b and its dual BMOb can be simply defined by coping the classical H1

and BMO, respectively. These spaces have the advantage of a cancellation adapted

to the complex measure b(x)dx and are closely related to the Tb theorem. For more
details about the space H1

b , we refer the reader to [14]. However, the method for

defining space H1
b cannot be extended to Hp

b for p < 1 because, in general, bf does
not make sense when f belongs to classical Hardy spaces Hp for p < 1. Recently,
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by establishing a discrete Calderón-type reproducing formula and Plancherel-Pôlya-

type inequalities associated to a para-accretive function b, a new Hardy space Hp
b

was introduced by Han, Lee, and Lin [9] who also proved that a Calderón-Zygmund

operator T is bounded from Hp to Hp
b provided T ∗b = 0. On the other hand, a

remarkable direction of extending classical function or distribution spaces is to study

the weighted case, where the weight is in Muckenhoupt’s Ap classes. Weighted

Hardy spacesHp
w have been extensively studied by Garc´a-Cuerva [6] and Strom̈berg

and Torchinsky [15].

The main purpose of this article is to develop the theory of the weighted Hardy

spacesH
p
b,w, where b is a para-accretive function and w is a Muckenhoupt’s weight.

We define Hp
b,w by g-function, and get its S-function characterization. Also, we

show the atomic decomposition and molecular characterization of Hp
b,w. These new

weighted Hardy spaces are related to the Calderón-Zygmund operator theory, as T

is bounded from Hp
w to Hp

b,w provided the Calderón-Zygmund operator T satisfies

T ∗b = 0. If we denote Mb the multiplication operator by b, i.e. Mbf = bf , then

TMb is bounded from Hp
b,w toHp

w provided T ∗1 = 0, and TMb is bounded on Hp
b,w

provided T ∗b = 0. The main tool used in this article is the discrete Calderón-type
reproducing formula developed in [9].

This article is organized as follows. In the next section, recalling some well

known results, we establish the weighted Plancherel-Pôlya-type inequalities and

define the weighted Hardy spaces Hp
b,w. The atomic decomposition and molecular

characterizations for Hp
b,w are given in Section 3. In the last section, we establish

the Hp
b,w−Lp

w, H
p
w−Hp

b,w, H
p
b,w−Hp

w, and Hp
b,w−Hp

b,w boundedness of Calderón-

Zygmund operators.

Throughout the article C denotes a positive constant not necessarily the same

at each occurrence. We also use a ≈ b to denote the equivalence of a and b;
that is, there exist two positive constants C1, C2 independent of a, b such that

C1a ≤ b ≤ C2a. For a measurable set E ⊆ R
n, |E| will denote the Lebesgue

measure of E, and w(E) =
∫
E w(x)dx. All cubes mentioned in this article mean

cubes with their sides parallel to the axes. Given a cube Q, λQ will denote the

cube with the same center as Q and with sides parallel to those of Q and λ times

as long.

2. WEIGHTED PLANCHEREL-PÔLYA-TYPE INEQUALITIES AND THE DEFINITION OF Hp
b,w

We begin by recalling some basic results about Calderón-Zygmund operator

theory. As usual, we denote by D the collection of C∞ functions on R
n with

compact support.

Definition 2.1. ([14]). A singular integral operator T is a continuous linear

operator from D into its dual associated to a kernel K(x, y), a continuous function
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defined on Rn × Rn\{x = y}, satisfying the following conditions: there exist a
constant C > 0 and 0 < ε ≤ 1, such that

(2.1) |K(x, y)| ≤ C|x − y|−n for all x �= y,

(2.2) |K(x, y)− K(x′, y)| ≤ C|x − x′|ε|x− y|−n−ε

for all x, x′, and y in R
n with |x− x′| ≤ |x− y|/2, and

(2.3) |K(x, y)− K(x, y′)| ≤ C|y − y′|ε|x − y|−n−ε

for all y, y′, and x in R
n with |y − y′| ≤ |x − y|/2. Moreover, the operator T can

be represented by

〈Tf, g〉 =
∫

Rn

∫
Rn

K(x, y)f(y)g(x)dydx

for all f, g ∈ D with supp(f) ∩ supp(g) = ∅. We say that a singular integral

operator is a Calderón-Zygmund operator if it can be extended to be a bounded

operator on L2(Rn).

Definition 2.2. ([3]). A bounded complex-valued function b defined on Rn is

said to be para-accretive if there exist constants C, γ > 0 such that, for all cubes
Q ⊆ Rn, there is a sub-cube Q′ with γ|Q| ≤ |Q′| satisfying

1
|Q|

∣∣∣∣
∫

Q′
b(x)dx

∣∣∣∣ ≥ C.

If T is a Calderón-Zygmund operator, then T ∗ is a Calderón-Zygmund operator
as well. Thus Tb can be well defined by

〈Tb, f〉 = 〈b, T ∗f〉 for all f ∈ H1,

since T and T ∗ are bounded from H1 into L1, and therefore Tb = 0 means∫
T ∗f(x)b(x)dx = 0 for all f ∈ H1. Similarly, T ∗b = 0 means

∫
Tf(x)b(x)dx =

0 for all f ∈ H1. Suppose that T is an L2 bounded operator with kernel K(x, y)
satisfying (2.1). If K(x, y) satisfies (2.3), then T is bounded from H1 to L1. If

b−1(x)K(x, y) satisfies (2.2), then T ∗b−1 is bounded from H1 to L1. Therefore, for

such an operator T and a para-accretive function b, T ∗1 = 0 means
∫

Tf(x)dx = 0
for all f ∈ H1 and Tb = 0 means

∫
T ∗g(x)b(x)dx = 0 for all g ∈ H1

b , where

g ∈ H1
b if and only if bg ∈ H1. See [9, 14] for more details about the Hardy

space H1
b . Similarly, suppose that T is bounded on L2 such that its kernel K(x, y)

satisfies the conditions (2.1) and (2.2), and K(x, y)b−1(y) satisfies the condition
(2.3). Then T ∗ and Tb−1 are bounded from H1 to L1. Therefore, for such an

operator T and a para-accretive function b, T1 = 0 means
∫

T ∗f(x)dx = 0 for all
f ∈ H1 and T ∗b = 0 means

∫
Tg(x)b(x)dx = 0 for all g ∈ H1

b .
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Definition 2.3. ([8]). Fix two exponents 0 < β ≤ 1 and γ > 0. Suppose that b
is a para-accretive function. A function f defined on R

n is said to be a test function

of type (β, γ, b) centered at x0 ∈ Rn with width d > 0 if

(2.4) |f(x)| ≤ C
dγ

(d + |x − x0|)n+γ
,

(2.5) |f(x)| − |f(x′)| ≤ C
( |x − x′|

d + |x − x0|
)β dγ

(d + |x − x0|)n+γ

for |x− x′| ≤ (d + |x− x0|)/2, and∫
Rn

f(x)b(x)dx = 0.

Remark 2.4. Replacing the condition (2.5) by

(2.6) |f(x)−f(x′)| ≤ C
( |x − x′|

d

)β( dγ

(d + |x − x0|)n+γ
+

dγ

(d + |x′ − x0|)n+γ

)
,

one obtains Meyer’s smooth atoms (see [13]). Obviously, conditions (2.4) and (2.5)

imply (2.6).

Denote by M(β,γ,b)(x0, d) the collection of all test functions of type (β, γ, b)
centered at x0 ∈ R

n with width d > 0. For f ∈ M(β,γ,b)(x0, d), the norm of f in
M(β,γ,b)(x0, d) is defined by

‖f‖M(β,γ,b)(x0,d) = inf{C : (2.4) and (2.5) hold}.
We denote M(β,γ,b)(0, 1) simply by M(β,γ,b). Then M(β,γ,b) is a Banach space

under the norm ‖f‖M(β,γ,b) . The dual space
(M(β,γ,b)

)′
consists of all linear

functionals L from M(β,γ,b) to C satisfying

|L(f)| ≤ C‖f‖M(β,γ,b) for all f ∈ M(β,γ,b).

We denote 〈h, f〉 the natural pairing of elements h ∈ (M(β,γ,b)
)′
and f ∈ M(β,γ,b).

It is easy to check that for any x0 ∈ R
n and d > 0, M(β,γ,b)(x0, d) = M(β,γ,b)

with the equivalent norms. Thus, for all h ∈ (M(β,γ,b)
)′
, 〈h, f〉 is well defined for

all f ∈ M(β,γ,b)(x0, d) with any x0 ∈ Rn and d > 0. As usual, we write

bM(β,γ,b) =
{
f : f = bg for some g ∈ M(β,γ,b)

}
.

If f ∈ bM(β,γ,b) and f = bg for g ∈ M(β,γ,b), then the norm of f is defined by

‖f‖bM(β,γ,b) = ‖g‖M(β,γ,b) .

To state the discrete Calderón reproducing formula, we need an approximation

to the identity associated to a para-accretive function.
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Definition 2.5. ([3, 8]). Let b be a para-accretive function. A sequence of

operators {Sk}k∈Z is called an approximation to the identity associated to b if the
kernels Sk(x, y) of Sk are functions from Rn × Rn into C such that there exist

constant C and some 0 < ε ≤ 1 satisfying, for all x, x′, y, and y′ ∈ R
n,

(i) |Sk(x, y)| ≤ C
2−kε

(2−k + |x − y|)n+ε
;

(ii) |Sk(x, y)− Sk(x′, y)| ≤ C
( |x − x′|

2−k + |x − y|
)ε 2−kε

(2−k + |x − y|)n+ε

for |x − x′| ≤ 1
2
(2−k + |x − y|);

(iii) |Sk(x, y)− Sk(x, y′)| ≤ C
( |y − y′|

2−k + |x − y|
)ε 2−kε

(2−k + |x − y|)n+ε

for |y − y′| ≤ 1
2
(2−k + |x− y|);

(iv)
∣∣[Sk(x, y)− Sk(x, y′)]− [Sk(x′, y)− Sk(x′, y′)]

∣∣
≤ C

( |x − x′|
2−k + |x − y|

)ε( |y − y′|
2−k + |x − y|

)ε 2−kε

(2−k + |x − y|)n+ε

for |x − x′| ≤ 1
2
(2−k + |x − y|) and |y − y′| ≤ 1

2
(2−k + |x − y|);

(v)
∫

Rn

Sk(x, y)b(y)dy = 1 for all k ∈ Z and x ∈ Rn;

(vi)
∫

Rn

Sk(x, y)b(x)dx = 1 for all k ∈ Z and y ∈ Rn.

Remark 2.6. Note that we can regard the ε’s in Definitions 2.1 and 2.5 to be
the same by choosing the smaller one. Coifman constructed an approximation to

the identity {Sk}k∈Z such that Dk(x, y), the kernel of Dk = Sk − Sk−1, satisfies

Dk(x, y) = 0 for |x− y| > C2−k (see [3, p. 16] and [8, p. 63]).

We now recall the definition and properties of Ap weights. We refer readers to

[4, 6] for the details about Ap. For 1 < p < ∞, a locally integrable nonnegative
function w on R

n is said to be in Ap if there exists C > 0 such that

(2.7)

(
1
|Q|

∫
Q
w(x)dx

)(
1
|Q|

∫
Q

w(x)−1/(p−1)dx

)p−1

≤C for any cube Q⊆R
n.

The class w ∈ A1 consists of weights satisfying for some C > 0 that

1
|Q|

∫
Q

w(x)dx ≤ C · ess inf
x∈Q

w(x) for any cube Q ⊆ R
n,
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and A∞ := ∪1≤p<∞ Ap. If w ∈ Ap for 1 < p < ∞, then w ∈ Ar for all r > p

and w ∈ Aq for some 1 < q < p. If w ∈ Ap, p ≥ 1, then there exists an absolute
constant C such that w(λQ) ≤ Cλnpw(Q). A close relation to Ap is the reverse

Hölder condition. If there exist r > 1 and a fixed constant C > 0 such that(
1
|B|

∫
B

w(y)rdy

)1/r

≤ C

|B|
∫

B

w(y)dy for any cube Q ⊆ R
n,

we say that w satisfies the reverse Hölder condition of order r and write w ∈ RHr.

It follows from Hölder’s inequality that w ∈ RHr implies w ∈ RHs for s < r.
It is known that w ∈ A∞ if and only if w ∈ RHr for some r > 1. Moreover,
if w ∈ RHr for r > 1, then w ∈ RHr+ε for some ε > 0. Thus we write
rw = sup{r > 1 : w ∈ RHr} to denote the critical index of w for the reverse

Hölder condition. If w ∈ Ap∩RHr with p ≥ 1 and r > 1, then there exist constants
C1, C2 > 0 such that

(2.8) C1

( |E|
|I |

)p ≤ w(E)
w(I)

≤ C2

( |E|
|I |

)(r−1)/r

for any measurable subset E of a cube I .

To introduce weighted Hardy spaces associated to para-accretive functions, we

need to establish the following weighted Plancherel-Pôlya-type inequalities.

Theorem 2.7. Suppose that {Sk}k∈Z and {Pk}k∈Z are approximations to the

identity associated to b defined in Definition 2.5. Set Dk = Sk − Sk−1 and Ek =
Pk − Pk−1. For n/(n + ε) < p < ∞, if w ∈ A(n+ε)p/n, then

(i)
∥∥∥∥
{ ∑

k

∑
Qk

(
sup
z∈Qk

|Ekbf(z)|
)2

χQk

}1/2∥∥∥∥
Lp

w

≈
∥∥∥∥
{ ∑

k

∑
Qk

(
inf

z∈Qk

|Dkbf(z)|
)2

χQk

}1/2∥∥∥∥
Lp

w

for f ∈ (bM(β,γ,b))′,

(ii)
∥∥∥∥
{ ∑

k

∑
Qk

(
sup
z∈Qk

|Ekf(z)|
)2

χQk

}1/2∥∥∥∥
Lp

w

≈
∥∥∥∥
{ ∑

k

∑
Qk

(
inf

z∈Qk

|Dkf(z)|
)2

χQk

}1/2∥∥∥∥
Lp

w

for f ∈ (M(β,γ,b)
)′

,

where Qk’s are all dyadic cubes with the side length 2−k−N for some fixed positive

large N .

We postpone the proof of Theorem 2.7 and display two discrete Calderón-type

reproducing formulas in the followings, which play a crucial role in the proof of

Theorem 2.7.
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Lemma 2.8. ([9]). Suppose that {Sk} is an approximation to the identity
associated to b defined in Definition 2.5 and Dk = Sk − Sk−1. Then there exists a

family of operators {D̃k} with kernel D̃k(x, y) such that, for all f ∈ (bM(β,γ,b))′,

(2.9) f(x) =
∑

k

∑
Qk

Dkbf(yQk
)
∫

Qk

D̃k(y, x)b(y)dy,

where Qk’s are all dyadic cubes with the side length 2−k−N for some fixed positive

large N , yQk
is any fixed point in Qk, and the series converges in the sense that,

for all g ∈ bM(β′,γ′) with β < β′ and γ < γ ′,

lim
M,J→∞

〈 ∑
|k|≤M

∑
dist(0,Qk)≤J

Dkbf(yQk
)
∫

Qk

D̃k(y, x)b(y)dy, g

〉
= 〈f, g〉.

Moreover, D̃k(x, y)’s satisfy the following estimates: for 0 < ε′ < ε, where ε is
the regularity exponent of Sk, there exists a constant C > 0 such that

|D̃k(x, y)| ≤ C
2−kε′

(2−k + |x− y|)n+ε′ ,

|D̃k(x, y)− D̃k(x, y′)| ≤ C
( |y − y′|

2−k + |x− y|
)ε′ 2−kε′

(2−k + |x− y|)n+ε′

for |y − y′| ≤ (2−k + |x− y|)/2,∫
Rn

D̃k(x, y)b(y) dy = 0 for k ∈ Z and x ∈ R
n,

∫
Rn

D̃k(x, y)b(x) dx = 0 for k ∈ Z and y ∈ R
n.

Lemma 2.9. ([9]). Let Sk, D̃k, D̃k(x, y), Qk, and yQk
be given in Lemma 2.8.

Then, for all f ∈ (M(β,γ,b)
)′
,

f(x) =
∑

k

∑
Qk

Dkf(yQk
)
∫

Qk

b(x)D̃k(y, x)b(y)dy,

where the series converges in the sense that, for all g ∈ M(β′,γ′) with β < β′ and
γ < γ ′,

lim
M,J→∞

〈 ∑
|k|≤M

∑
dist(0,Qk)≤J

Dkf(yQk
)
∫

Qk

b(x)D̃k(y, x)b(y)dy, g

〉
= 〈f, g〉.



1062 Sen-Hua Lan and Chin-Cheng Lin

The following weighted version of Fefferman-Stein vector-valued maximal in-

equality will be used as well.

Lemma 2.10. ([1]). Let f = (f1, f2, · · ·) be a sequence of functions on Rn. If

1 < p, r < ∞, there is a constant Cn,p,r > 0 such that

∥∥∥∥
( ∞∑

k=1

|Mf(·)|r
)1/r∥∥∥∥

L
p
w

≤ Cn,p,r

∥∥∥∥
( ∞∑

k=1

|f(·)|r
)1/r∥∥∥∥

L
p
w

if and only if w ∈ Ap, where M is the Hardy-Littlewood maximal function.

We are ready to demonstrate the weighted Plancherel-Pôlya-type inequalities.

Proof of Theorem 2.7. We prove (i) only and the proof of (ii) is similar. Given

f ∈ (bM(β,γ,b))′, since w ∈ A(n+ε)p/n, there exists q satisfying 1 < q < (n+ε)p/n
such that w ∈ Aq. Set r = p/q. Choose ε′ and ε′′ satisfying 0 < ε′′ < ε′ < ε and

n/(n + ε′′) < r. By Lemma 2.8, f can be written as

f(x) =
∑

k

∑
Qk

Dkbf(yQk
)
∫

Qk

D̃k(y, x)b(y)dy,

where Qk’s are all dyadic cubes with the side length 2−k−N for some fixed positive

large N and yQk
is any fixed point in Qk. Thus,

Ejbf(x) =
∑

k

∑
Qk

Dkbf(yQk
)
∫

Qk

EjbD̃k(y, ·)(x)b(y)dy.

Using the inequality (see [11])

∣∣EjbD̃k(y, ·)(x)
∣∣ =

∣∣∣∣
∫

Ej(x, z)b(z)D̃k(y, z)dz

∣∣∣∣
≤ C2−|j−k|ε′′ 2−(j∧k)ε′

(2−(j∧k) + |x − y|)n+ε′ ,

where j ∧ k denotes min(j, k), we obtain

|Ejbf(x)| ≤ C
∑

k

∑
Qk

Dkbf(yQk
)
∫

Qk

2−|j−k|ε′′ 2−(j∧k)ε′

(2−(j∧k) + |x − y|)n+ε′ dy

≤ C
∑

k

∑
Qk

2−|j−k|ε′′2−kn 2−(j∧k)ε′

(2−(j∧k) + |x− yQk
|)n+ε′ |Dkbf(yQk

)|.
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Thus∣∣∣∣ sup
z∈Qj

Ejbf(z)
∣∣∣∣χQj(x)

≤ C
∑

k

∑
Qk

2−|j−k|ε′′2−kn 2−(j∧k)ε′

(2−(j∧k) + |x − yQk
|)n+ε′ |Dkbf(yQk

)|χQj(x).

By an estimate in [5, p. 147-148], we have

∑
Qk

2−(j∧k)ε′

(2−(j∧k) + |x − yQk
|)n+ε′ |Dkbf(yQk

)|χQj(x)

≤ C2(j∧k)n2[k−(j∧k)]n/r

{
M

( ∑
Qk

|Dkbf(yQk
)|χQk

)r}1/r

(x)

since n/(n + ε′) < n/(n + ε′′) < r. Noticing that

sup
j

∑
k

2−|j−k|ε′′2−kn2(k∧j)n2[k−(k∧j)]n/r < ∞,

and by Hölder’s inequality we obtain

sup
z∈Qj

|Ejbf(z)|2χQj(x) ≤ C
∑

k

2−|j−k|ε′′2−kn2(k∧j)n2[k−(k∧j)]n/r

×
{

M

( ∑
Qk

|Dkbf(yQk
)|χQk

)r}2/r

(x)χQj(x).

This yields { ∑
j

∑
Qj

sup
z∈Qj

|Ejbf(z)|2χQj (x)
}1/2

≤ C

{ ∑
j

∑
k

2−|j−k|ε′′2−kn2(k∧j)n2[k−(k∧j)]n/r

×
[
M

( ∑
Qk

|Dkbf(yQk
)|χQk

)r]2/r

(x)
}1/2

≤ C

{ ∑
k

[
M

( ∑
Qk

|Dkbf(yQk
)|χQk

)r]2/r

(x)
}1/2

,

where the last inequality follows from the fact that

sup
k

∑
j

2−|j−k|ε′′2−kn2(k∧j)n2[k−(k∧j)]n/r < ∞.
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Since yQk
is any point in Qk ,{ ∑

j

∑
Qj

sup
z∈Qj

|Ejbf(z)|2χQj (x)
}1/2

≤ C

{ ∑
k

[
M

( ∑
Qk

inf
z∈Qk

|Dkbf(z)|χQk
(x)

)r]2/r}1/2

.

Therefore, noticing that r = p/q < 2 and using Lemma 2.10, we have∥∥∥∥
{∑

j

∑
Qj

sup
z∈Qj

|Ejbf(z)|2χQj(x)
}1/2∥∥∥∥p

L
p
w

≤ C

∫
Rn

{ ∑
k

[
M

( ∑
Qk

inf
z∈Qk

|Dkbf(z)|χQk
(x)

)r]2/r}p/2

w(x)dx

≤ C

∫
Rn

{ ∑
k

[
M

( ∑
Qk

inf
z∈Qk

|Dkbf(z)|χQk
(x)

)r]2/r}(r/2)q

w(x)dx

≤ C

∫
Rn

{ ∑
k

[( ∑
Qk

inf
z∈Qk

|Dkbf(z)|χQk
(x)

)r]2/r}(r/2)q

w(x)dx

≤ C

∥∥∥∥
{∑

k

∑
Qk

inf
z∈Qk

|Dkbf(z)|2χQk
(x)

}1/2∥∥∥∥p

Lp
w

.

This completes the proof of Theorem 2.7.

We now introduce the g-functions and S-functions associated to a para-accretive

function b.

Definition 2.11. ([9]). Suppose that {Sk}k∈Z is an approximation to the identity

associated to b defined in Definition 2.5 andDk = Sk−Sk−1 . Define the g-functions

and S-functions by

g(f)(x) :=
{ ∑

k

|Dkf(x)|2
}1/2

, f ∈ (M(β,γ,b)
)′

,

gb(f)(x) :=
{ ∑

k

|Dkbf(x)|2
}1/2

, f ∈ (
bM(β,γ,b)

)′
,

S(f)(x) :=
{ ∑

k

∫
|x−y|≤2−k

2kn|Dkf(y)|2dy

}1/2

, f ∈ (M(β,γ,b)
)′

,

Sb(f)(x) :=
{ ∑

k

∫
|x−y|≤2−k

2kn|Dkbf(y)|2dy

}1/2

, f ∈ (
bM(β,γ,b)

)′
.
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Similar to the classical case, we have the equivalent Lp-norms for g-functions

and S-functions as follows.

Theorem 2.12. Let n/(n+ε) < p < ∞ and w ∈ A(n+ε)p/n. Then ‖S(f)‖L
p
w
≈

‖g(f)‖Lp
w
and ‖Sb(f)‖Lp

w
≈ ‖gb(f)‖Lp

w
.

Proof. We show the equivalence of ‖Sb(f)‖L
p
w
and ‖gb(f)‖L

p
w
only, and the

proof of ‖S(f)‖Lp
w
≈ ‖g(f)‖Lp

w
is similar. By Theorem 2.7,

‖Sb(f)‖Lp
w

=
∥∥∥∥
{ ∑

k

∑
Qk

∫
|x−y|≤2−k

2kn|Dkbf(y)|2χQk
(x)dy

}1/2∥∥∥∥
Lp

w

≤ C

∥∥∥∥
{ ∑

k

∑
Qk

sup
z∈cQk

|Dkbf(z)|2χQk
(x)

}1/2∥∥∥∥
Lp

w

≤ C

∥∥∥∥
{ ∑

k

∑
Qk

inf
z∈cQk

|Dkbf(z)|2χQk
(x)

}1/2∥∥∥∥
Lp

w

≤ C

∥∥∥∥
{ ∑

k

|Dkbf(x)|2
}1/2∥∥∥∥

Lp
w

= C ‖gb(f)‖Lp
w

,

where C > 1 is a fixed number depends on N , and on the other hand

‖gb(f)‖L
p
w

=
∥∥∥∥
{ ∑

k

|Dkbf(x)|2
}1/2∥∥∥∥

Lp
w

≤ C

∥∥∥∥
{∑

k

∑
Qk

sup
z∈Qk

|Dkbf(z)|2χQk
(x)

}1/2∥∥∥∥
Lp

w

≤ C

∥∥∥∥
{∑

k

∑
Qk

inf
z∈Qk

|Dkbf(z)|2χQk
(x)

}1/2∥∥∥∥
Lp

w

≤ C

∥∥∥∥
{∑

k

∑
Qk

χQk
(x)

∫
|xy |≤2−k

2kn inf
z∈Qk

|Dkbf(z)|2dy

}1/2∥∥∥∥
L

p
w

≤ C

∥∥∥∥
{∑

k

∑
Qk

χQk
(x)

∫
|xy |≤2−k

2kn|Dkbf(y)|2dy

}1/2∥∥∥∥
L

p
w

= C‖Sb(f)‖Lp
w
.

This completes the proof.

We now may introduce the weighted Hardy spaces associated to para-accretive

functions.
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Definition 2.13. Suppose that {Sk}k∈Z is an approximation to the identity asso-

ciated to b defined in Definition 2.5 and Dk = Sk − Sk−1. For n/(n + ε) < p ≤ 1
and w ∈ A(n+ε)p/n, we define the weighted Hardy space Hp

b,w to be the collection

of f ∈ (bM(β,γ,b))′ such that

‖f‖Hp
b,w

:= ‖gb(f)‖Lp
w

.

Remark 2.14. By Theorem 2.7, we deduce the norm ‖·‖Hp
b,w
to be independent

of the choice of approximation to the identity. Furthermore, we may assume that

Dk(x, y) satisfies the property given in Remark 2.6; that is, Dk(x, y) = 0 for
|x − y| > C2−k .

As a consequence of Theorems 2.7 and 2.12, we have the following result.

Theorem 2.15. Let n/(n + ε) < p ≤ 1 and w ∈ A(n+ε)p/n. Then

∥∥f
∥∥

Hp
b,w

≈ ∥∥Sb(f)
∥∥

Lp
w
≈

∥∥∥∥
{ ∑

k

∑
Qk

|Dkbf(yQk
)|2χQk

(x)
}1/2∥∥∥∥

Lp
w

,

where yQk
is any fixed point in Qk.

3. ATOMIC DECOMPOSITION AND MOLECULAR CHARACTERIZATIONS OF Hp
b,w

In this section, we demonstrate the atomic decomposition and molecular char-

acterizations for H
p
b,w.

Definition 3.1. Let n/(n + ε) < p ≤ 1, w ∈ A(n+ε)p/n, and b be a para-

accretive function. A (p, 2, w) b-atom a is a function on R
n, which is supported on

a cube Q and satisfies

‖a‖Lp
w
≤ w(Q)1/2−1/p and

∫
Rn

a(x)b(x)dx = 0.

Theorem 3.2. Let n/(n+ε) < p ≤ 1, w ∈ A(n+ε)p/n, and b be a para-accretive
function. Then f ∈ Hp

b,w if and only if f can be represented as f =
∑

k λkak,

where ak’s are (p, 2, w) b-atoms and
∑

k |λk|p < ∞, and the series converges in
the norm of Hp

b,w. Moreover, ‖f‖Hp
b,w

≈ inf{∑k |λk|p}1/p, where the infimum is

taken over all decompositions of f into (p, 2, w) b-atoms.

Proof. We first prove the “if ” part. By [10] it suffices to check

‖gb(a)‖Lp
w
≤ C for all (p, 2, w) b-atom a,

where C is a constant independent of a. Let a be a (p, 2, w) b-atom whose support

is contained in a cube Q centered at x0. Write
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‖gb(a)‖p
Lp

w
≤

∫
Rn

gb(a)p(x)w(x)dx=
(∫

2Q
+

∫
(2Q)c

)
gb(a)p(x)w(x)dx := I1+I2.

By [7], S-function is bounded on L2
w for w ∈ A2. It follows from Theorem

2.12 that g-function is also bounded on L2
w. Since function b(x)a(x) ∈ L2

w , we

have ‖gb(a)(·)‖L2
w

= ‖g(ba)(·)‖L2
w
≤ C‖ba‖L2

w
≤ C‖a‖L2

w
. Therefore by Hölder’s

inequality and the size condition of a, we have

I1 ≤
( ∫

2Q
gb(a)2(x)w(x)dx

)p/2

w(2Q)1−p/2 ≤ ‖gb(a)‖p
L2

w
w(2Q)1−p/2 ≤ C.

For x ∈ (2Q)c, using the b-vanishing moment and size condition of a, the smooth-

ness condition of Dk = Sk−Sk−1, and (2.7) (since w ∈ A2), we have the following

pointwise estimate of Dkba

|Dkba(x)| =
∣∣∣ ∫

Q
(Dk(x, y)− Dk(x, x0)) b(y)a(y)dy

∣∣∣
≤ C

∫
Q

|Dk(x, y)− Dk(x, x0)‖a(y)|dy

≤ C
2−kε

(2−k + |x − x0|)n+2ε

∫
Q
|y − x0|ε|a(y)|dy

≤ C
2−kε

(2−k + |x − x0|)n+2ε
|Q|ε/n‖a‖L2

w

( ∫
Q

w−1(y)dy

)1/2

≤ C|Q|1+ε/nw(Q)−1/p 2−kε

(2−k + |x − x0|)n+2ε
.

Therefore,

gb(a)(x) =
{ ∑

k

|Dkba(x)|2
}1/2

≤ C|Q|1+ε/nw(Q)−1/p

×
{( ∑

2−k≤|x−x0 |
+

∑
2−k>|x−x0 |

)
2−2kε

(2−k + |x − x0|)2n+4ε

}1/2

≤ C|Q|1+ε/nw(Q)−1/p|x − x0|−n−ε.

Noticing that w ∈ Aq with 1 < q < (n + ε)p/n, we have
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I2 ≤ C|Q|(1+ε/n)p

∫
(2Q)c

|x− x0|(−n−ε)pw(Q)−1w(x)dx

= C|Q|(1+ε/n)p
∞∑

m=1

∫
2m+1Q\2mQ

|x − x0|(−n−ε)pw(Q)−1w(x)dx

≤ C|Q|(1+ε/n)p
∞∑

m=1

|2m+1Q|(−1−ε/n)p w(2m+1Q)
w(Q)

≤ C|Q|(1+ε/n)p
∞∑

m=1

|Q|(−1−ε/n)p2(m+1)n(−1−ε/n)p
( |2m+1Q|

|Q|
)q

≤ C

∞∑
m=1

2(m+1)n[(−1−ε/n)p+q]

≤ C.

(3.1)

To see the “only if ” part, we will use Chang and Fefferman’s idea in [2].

Applying the same procedure as in developing the discrete Calderón reproducing

formula (see the proof of [9, Theorem 2.11]) to (2.9), we get

f(x) =
∑

k

∑
Qk

|Qk|Dk(x, xQk
)b(xQk

)D̃kb(f)(xQk
)

in distribution sense, where Qk’s are all dyadic cubes with the side length 2−k−N

for some fixed positive large N , xQk
is any fixed point in Qk. For l ∈ Z, set

Ωl =
{
x ∈ R

n : g̃bf(x) > 2l
}
, where

g̃bf(x) =
{ ∑

k

∑
Qk

∣∣D̃kb(f)(xQk
)
∣∣2χQk

(x)
}1/2

,

and

Bl ={Q :Q is dyadic cube such thatw(Q∩Ωl)>
1
2
w(Q) andw(Q∩Ωl+1)≤ 1

2
w(Q)}.

Thus

f(x) =
∑

l

∑
Q̃∈Bl

( ∑
Q⊆Q̃

d(Q)=2−k−N

|Q|Dk(x, xQ)b(xQ)D̃kb(f)(xQ)
)

,

where d(Q) denotes the side length of dyadic cube Q. By Remark 2.14, we have
Dk(x, y) = 0 for |x − y| > C2−k . Thus

supp

( ∑
Q⊆Q̃

d(Q)=2−k−N

|Q|Dk(x, xQ)b(xQ)D̃kb(f)(xQ)
)

⊆ 5nQ̃.

On the other hand, noticing that w and w−1 both belong to A2, we have
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∥∥∥∥∥ ∑
Q⊆Q̃

d(Q)=2−k−N

|Q|Dk(x, xQ)b(xQ)D̃kb(f)(xQ)

∥∥∥∥∥
L2

w

≤ sup
‖h‖

L2
w−1

=1

∣∣∣∣∣
〈 ∑

Q⊆Q̃

d(Q)=2−k−N

|Q|Dk(·, xQ)b(xQ)D̃kb(f)(xQ), h(·)
〉∣∣∣∣∣

≤ sup
‖h‖

L2
w−1

=1

∣∣∣∣∣ ∑
Q⊆Q̃

d(Q)=2−k−N

|Q|D̃kb(f)(xQ)b(xQ)Dk(h)(xQ)

∣∣∣∣∣
≤ C sup

‖h‖
L2

w−1
=1

∫
Rn

∑
Q⊆Q̃

d(Q)=2−k−N

∣∣D̃kb(f)(xQ)Dk(h)(xQ)
∣∣χQ(x)dx

≤ C sup
‖h‖

L2
w−1

=1

∥∥∥∥∥
{ ∑

Q⊆Q̃

d(Q)=2−k−N

∣∣D̃kb(f)(xQ)
∣∣2χQ(x)

}1/2∥∥∥∥∥
L2

w

×
∥∥∥∥∥
{ ∑

Q⊆Q̃

d(Q)=2−k−N

∣∣Dk(h)(xQ)
∣∣2χQ(x)

}1/2∥∥∥∥∥
L2

w−1

≤ C

∥∥∥∥∥
{ ∑

Q⊆Q̃

d(Q)=2−k−N

∣∣D̃kb(f)(xQ)
∣∣2χQ(x)

}1/2∥∥∥∥∥
L2

w

= λ
Q̃
w(5nQ̃)1/2−1/p,

where

(3.2) λ
Q̃

= C

∥∥∥∥∥
{ ∑

Q⊆Q̃

d(Q)=2−k−N

∣∣D̃kb(f)(xQ)
∣∣2χQ(x)

}1/2∥∥∥∥∥
L2

w

w(5nQ̃)1/p−1/2.

Set

a
Q̃

=
1

λQ̃

∑
Q⊆Q̃

d(Q)=2−k−N

|Q|Dk(x, xQ)b(xQ)D̃kb(f)(xQ).

Then we have f =
∑

l

∑
Q̃∈Bl

λ
Q̃
a

Q̃
, where a

Q̃
satisfies (i) supp a

Q̃
⊆ 5nQ̃, (ii)

‖a
Q̃
‖L2

w
≤ w(5nQ̃)1/2−1/p, (iii)

∫
a

Q̃
(x)b(x)dx = 0. This means that a

Q̃
is a

(p, 2, w) b-atom. It follows from (3.2) that
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(3.3)

∑
l

∑
Q̃∈Bl

|λQ̃|p

≤ C
∑

l

∑
Q̃∈Bl

(∥∥∥∥∥
{ ∑

Q⊆Q̃

d(Q)=2−k−N

∣∣D̃kb(f)(xQ)
∣∣2χQ(x)

}1/2∥∥∥∥∥
2

L2
w

)p/2

w(5nQ̃)1−p/2

≤ C
∑

l

( ∑
Q̃∈Bl

w(5nQ̃)
)1−p/2

( ∑
Q̃∈Bl

∑
Q⊆Q̃

d(Q)=2−k−N

w(Q)
∣∣D̃kb(f)(xQ)

∣∣2)p/2

.

We claim that Q̃ ∈ Bl implies that Q̃ ⊆ Ω̃l, where Ω̃l = {x : MχΩl
(x) >

(1/2)r/(r−1)}. In fact, if x ∈ Q̃, then

Mχ
Ω̃l

(x) ≥ |Q̃ ∩ Ω̃l|
|Q̃|

≥
(

w(Q̃∩ Ω̃l)

w(Q̃)

)r/(r−1)

>
(1

2

)r/(r−1)
,

where r > 1 such that w ∈ RHr. Therefore,
∑

Q̃∈Bl
w(CQ̃) ≤ Cw(Ω̃l) ≤ Cw(Ωl)

since M is of weak type (1, 1). Noticing that for Q ∈ Bl, w((Ω̃l \ Ωl+1) ∩ Q) =
w(Ω̃l ∩ Q) − w(Ωl+1 ∩ Q) ≥ w(Q)− 1

2w(Q) = 1
2w(Q), we have∫

Ω̃l\Ωl+1

g̃bf(x)2w(x)dx =
∫

Ω̃l\Ωl+1

∑
k

∑
Q

∣∣D̃kbf(xQ)
∣∣2χQ(x)w(x)dx

≥
∫

Ω̃l\Ωl+1

∑
Q∈Bl

∣∣D̃kbf(xQ)
∣∣2χQ(x)w(x)dx

=
∑
Q∈Bl

∣∣D̃kbf(xQ)
∣∣2w((

Ω̃l \ Ωl+1

) ∩ Q
)

≥
∑
Q∈Bl

1
2
w(Q)

∣∣D̃kbf(xQ)
∣∣2.

Thus ∑
Q̃∈Bl

∑
Q⊆Q̃

∣∣D̃kbf(xQ)
∣∣2w(Q) =

∑
Q∈Bl

∣∣D̃kbf(xQ)
∣∣2w(Q)

≤ 2
∫

Ω̃l\Ωl+1

g̃bf(x)2w(x)dx

≤ (
2l+1

)2
w(Ω̃l)

≤ C22lw(Ωl).

So by (3.3) we have
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∑
l

∑
Q̃∈Bl

∣∣λ
Q̃

∣∣p ≤ C
∑

l

w(Ωl)1−p/2
(
22lw(Ωl)

)p/2

= C
∑

l

2lpw(Ωl)

≤ C ‖g̃bf‖p
Lp

w

≤ C ‖f‖p
Hp

b,w
.

This completes the proof of Theorem 3.2.

We now introduce the weighted b-molecules. The idea of weighted molecules
is duo to [12].

Definition 3.3. Let n/(n + ε) < p ≤ 1 and w ∈ A(n+ε)p/n with critical

index rw for the reverse Hölder condition. Set δ > max{1/(rw − 1), 1/p − 1},
a0 = 1− 1/p + δ, and b0 = 1/2 + δ. A (p, 2, δ, w) b-molecule centered at x0 ∈ R

n

is a function M ∈ L2
w satisfying

(i) M(x)w(Ix0

|x−x0|)
b0 ∈ L2

w, where Ix0

|x−x0| denotes the cube centered at x0 with

side length 2|x − x0|,
(ii) ‖M‖a0/b0

L2
w

· ‖M(·)w(Ix0
|·−x0|)

b0‖1−a0/b0
L2

w
≡ Nw(M) < ∞,

(iii)
∫

Rn

M(x)b(x)dx = 0.

Remark 3.4. Every (p, 2, w) b-atom a is a (p, 2, δ, w) b-molecule for δ >

max{1/(rw − 1), 1/p− 1}, and Nw(a) ≤ C where C is a constant independent of

f . This follows from b-vanishing moment of a and the fact that if supp(a) ⊆ Ix0
R ,

then ‖a‖Lp
w
≤ w(Ix0

R )1/2−1/p and

∥∥a(·)w(
Ix0

|·−x0|
)b0

∥∥
L2

w
=

(∫
I

x0
R

|a(x)|2w(
Ix0

|x−x0|
)2b0w(x)dx

)1/2

≤ w
(
Ix0√

nR

)b0w(Ix0
R )1/2−1/p

≤ Cw(Ix0
R )a0.

Theorem 3.5. Let n/(n + ε) < p ≤ 1 and w ∈ A(n+ε)p/n with critical index

rw for the reverse Hölder condition. If M be a (p, 2, δ, w) b-molecule for δ >

max{1/(rw − 1), 1/p− 1}, then M is in H
p
b,w and ‖M‖Hp

b,w
≤ CNw(M), where

the constant C is independent of the molecule M .

Proof. Set M1(x) = M(x)b(x). Then M1 satisfies
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(i′) M1(x)w(Ix0

|x−x0|)
b0 ∈ L2

w,

(ii′) ‖M1‖a0/b0
L2

w
· ‖M1(·)w(Ix0

|·−x0|)
b0‖1−a0/b0

L2
w

≡ Nw(M1) ≈ Nw(M),

(iii′)
∫

Rn M1(x)dx = 0.

Without loss of generality, we may assume thatM1 is centered at 0 and Nw(M1) =
1. Define σ by setting w(Iσ)1/p−1/2 = ‖M1‖−1

L2
w
, where Iσ = I0

σ . Consider the sets

E0 = {x ∈ R
n : |x| < σ}, Ek = {x ∈ R

n : 2k−1σ ≤ |x| < 2kσ} for k = 1, 2, · · · .

Set M1k = M1χEk
, P1k(x) = 1

|Ek |
∫

Rn M1k(y)dy · χEk
(x) for k = 0, 1, 2, · · · ,

where χEk
is the characteristic function of Ek. Then

M1(x) =
∞∑

k=0

M1k(x) =
∞∑

k=0

(
M1k(x) − P1k(x)

)
+

∞∑
k=0

P1k(x).

Observing that
∑∞

k=0

∫
Ek

M1(x)dx =
∫

Rn M1(x)dx = 0, and using Abel’s sum-
mation formula, we write

∞∑
k=0

P1k(x) =
∞∑

k=0

∫
Ek

M1(y)dy
χEk

(x)
|Ek|

=
∞∑

k=0

( ∞∑
j=k

∫
Ej

M1(y)dy −
∞∑

j=k+1

∫
Ej

M1(y)dy

)
χEk

(x)
|Ek|

=
∞∑

k=0

( ∞∑
j=k+1

∫
Ej

M1(y)dy

)(
χEk+1

(x)
|Ek+1| − χEk

(x)
|Ek|

)

=
∞∑

k=0

∫
|y|≥2kσ

M1(y)dy

(
χEk+1

(x)
|Ek+1| − χEk

(x)
|Ek|

)

:=
∞∑

k=0

Φk(x).

Thus

M1(x) =
∞∑

k=0

(
M1k(x) − P1k(x)

)
+

∞∑
k=0

Φk(x).

Since the above equation holds in L2
w and hence holds in almost everywhere in R

n,

so we have

(3.4) M(x) =
M1(x)
b(x)

=
∞∑

k=0

(
M1k(x)− P1k(x)

)
b(x)

+
∞∑

k=0

Φk(x)
b(x)

.
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By the definition of M1k and P1k , (M1k −P1k)/b has b-vanishing moment, and

is supported at I2kσ. Noticing that w ∈ A2 we have

‖P1k‖L2
w

=
w(Ek)1/2

|Ek|
∣∣∣ ∫

Ek

M1k(y)dy
∣∣∣

≤ ‖M1k‖L2
w

w(Ek)1/2

|Ek|
( ∫

Ek

w(y)−1dy
)1/2

≤ C‖M1k‖L2
w
.

Thus ∥∥∥M1k − P1k

b

∥∥∥
L2

w

≤ C‖M1k‖L2
w
,

where we use the fact that the inverse of a para-accretive function belongs to L∞

in the last estimate. Notice that Nw(M1) = 1 and w(Iσ)1/p−1/2 = ‖M1‖−1
L2

w
imply

‖M1(·)w(I|·|)b0‖L2
w

= w(Iσ)a0 . From the choice of δ, we are able to choose

1 < r < rw such that δ > 1/(r − 1) > 1/(rw − 1). By (2.8), we have, for
k = 1, 2, · · · ,

‖M1k‖L2
w
≤ C

∥∥∥M1k(·)
( w(I|·|)

w(I2kσ)

)b0
∥∥∥

L2
w

≤ Cw(Iσ)a0w(I2kσ)−b0

≤ C2−kna0(r−1)/rw(I2kσ)1/2−1/p,

(3.5)

and for k = 0,
‖M10‖L2

w
≤ ‖M1‖L2

w
≤ Cw(I2kσ)1/2−1/p.

Hence, for k = 0, 1, 2, · · · ,∥∥∥M1k − P1k

b

∥∥∥
L2

w

≤ C2−kna0(r−1)/rw(I2kσ)1/2−1/p.

It follows that, for k = 0, 1, 2, · · · ,

C−12kna0(r−1)/r M1k(x) − P1k(x)
b(x)

:= αk(x)

ia a (p, 2, w) b-atom supported at I2kσ . In other words,

M1k(x)− P1k(x)
b(x)

= λkαk(x),

where αk is a (p, 2, w) b-atom supported at I2kσ and λk = C2−kna0(r−1)/r. Since

na0p(r − 1)/r > 0,
∑∞

k=0 |λ|p ≤ C
∑∞

k=0 2−kna0p(r−1)/r < ∞. By Theorem 3.2,
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∞∑
k=0

M1k(x)− P1k(x)
b(x)

∈ Hp
b,w

with its Hp
b,w norm no more than (

∑∞
k=0 |λk|p)1/p ≤ C < ∞.

Let us treat
∑∞

k=0
Φk(x)
b(x)

. First, obviously
Φk(x)
b(x)

has b-vanishing moment. Notic-

ing that w ∈ A2, by Hölder’s inequality and (3.5), we have∣∣∣∣ ∫
|x|≥2kσ

M1(y)dy

∣∣∣∣ =
∣∣∣∣ ∞∑

j=k+1

∫
Ej

M1j(y)dy

∣∣∣∣
≤

∞∑
j=k+1

‖M1j‖L2
w

(
w−1(I2jσ)

)−1/2

≤ C

∞∑
j=k+1

2−na0j(r−1)/rw(I2jσ)−1/p|I2jσ |

= Cσnw(I2k+1σ)−1/p
∞∑

j=k+1

2−nj
(
a0(r−1)/r−1

)(w(I2k+1σ)
w(I2jσ)

)1/p

≤ Cσnw(I2j+1σ)−1/p2(k+1)np−1(r−1)/r

×
∞∑

j=k+1

2−nj
(
a0(r−1)/r−1+p−1(r−1)/r

)
≤ C(2k+1σ)nw(I2j+1σ)−1/p2−(k+1)na0(r−1)/r,

since a0(r − 1)/r − 1 + p−1(r − 1)/r = (1 + δ)(r − 1)/r − 1 > 0 by the choice
of δ. Thus ∣∣∣Φk(x)

b(x)

∣∣∣ ≤ Cw(I2j+1σ)−1/p2−(k+1)na0(r−1)/r.

Since supp
Φk(x)
b(x)

⊆ I2k+1σ , we have∥∥∥Φk(·)
b(·)

∥∥∥
L2

w

≤ C2−(k+1)na0(r−1)/rw(I2j+1σ)1/2−1/p.

It yields
Φk(x)
b(x)

= µkβk(x), where µk = C2−(k+1)na0(r−1)/r and βk(x) is (p, 2, w)

b-atom supported at I2k+1σ. Since
∑∞

k=0 |µk|p ≤ C
∑∞

k=0 2−(k+1)na0p(r−1)/r ≤
C < ∞, by Theorem 3.2,

Φk(x)
b(x)

∈ Hp
b,w

with its Hp
b,w norm no more than

( ∑∞
k=0 |µk|p

)1/p ≤ C < ∞. So by (3.4),
M ∈ Hp

b,w and ‖M‖Hp
b,w

≤ C < ∞. This completes the proof of Theorem 3.5.
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4. BOUNDEDNESS OF CALDERÓN-ZYGMUND OPERATORS ON Lp
w AND Hp

b,w

We give applications to the boundedness of Calderón-Zygmund operators.

Theorem 4.1. Let T be a Calderón-Zygmund operator given in Definition 2.1.
For n/(n + ε) < p ≤ 1 and w ∈ A(n+ε)p/n, define the operator Tb by

Tb(f)(x) =
∫

Rn

K(x, y)b(y)f(y)dy.

Then Tb is bounded from Hp
b,w to Lp

w.

Proof. By atomic decomposition of Hp
b,w, it suffices to show for any (p, 2, w)

b-atom a, we have ‖Tb(a)‖L
p
w

≤ C, where C is a constant independent of a.

Suppose a is supported on a cube Q with center xQ. We write∥∥Tb(a)
∥∥p

Lp
w

=
∫

Rn

∣∣Tb(a)(x)
∣∣pw(x)dx =

∫
2Q

+
∫

(2Q)c

:= I1 + I2.

For I1, by Hölder’s inequality, the L2
w boundedness of Tb (since w ∈ A2, see

[4]), and the size condition of a, we obtain

I1 ≤
(∫

2Q

∣∣Tb(a)(x)
∣∣2w(x)dx

)p/2( ∫
2Q

w(x)dx
)1−p/2 ≤ C‖a‖p

L2
w
w(Q)1−p/2 ≤ C.

Let us treat I2. If x ∈ (2Q)c, by the b-vanishing moment of a and condition

(2.3), we have

∣∣Tb(a)(x)
∣∣ =

∣∣∣∣ ∫
Rn

(
K(x, y)− K(x, xQ)

)
b(y)a(y)dy

∣∣∣∣
≤ C

∫
Q

∣∣(K(x, y)− K(x, xQ)
∣∣|a(y)|dy

≤ C

∫
Q

|y − xQ|ε
|x − xQ|n+ε

|a(y)|dy

≤ C
|Q|ε/n

|x − xQ|n+ε
‖a‖L2

w

(
w−1(Q)

)1/2

≤ C
|Q|ε/n+1

|x − xQ|n+ε
w(Q)−1/2‖a‖L2

w

≤ C
|Q|ε/n+1

|x − xQ|n+ε
w(Q)−1/p,

(4.1)

where the next to last inequality is obtained since w ∈ A2. Thus by (3.1)
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I2 =
∫

(2Q)c

∣∣Tb(a)(x)
∣∣pw(x)dx

≤ C|Q|εp/n+pw(Q)−1

∫
(2Q)c

1
|x− xQ|(n+ε)p

w(x)dx

≤ C.

This completes the proof of Theorem 4.1.

Theorem 4.2. Suppose that T is a Calderón-Zygmund operator given in Def-

inition 2.1. Let n/(n + ε) < p ≤ 1 and w ∈ A(n+ε)p/n with critical index rw for

the reverse Hölder condition such that rw > (n + ε)/(n + ε − nq).

(i) If T ∗b = 0, then T is bounded from Hp
w to Hp

b,w.

(ii) If T ∗1 = 0, then Tb is bounded from Hp
b,w to Hp

w.

(iii) If T ∗b = 0, then Tb is bounded on Hp
b,w.

Proof. We only prove (i), since the proof of (ii) and (iii) are similar. Observe

that 1 < q < (n+ε)p/n implies 1/p−1 < n+ε
nq −1, and rw > (n+ε)/(n+ε−nq)

implies (rw−1)−1 < n+ε
nq −1. So we can choose δ such thatmax{(rw−1)−1, 1/p−

1} < δ < n+ε
nq − 1. By the atomic and molecular decomposition theory established

in the above section, it suffices to verify that, for every (p, 2, w) atom in Hp
w, Ta

is a (p, 2, δ, w) b-molecule and Nw(Ta) ≤ C with C independent of a.
Assume supp a ⊆ Q, where Q is a cube centered at xQ. Set a0 = 1 − 1/p + δ

and b0 = 1/2+δ. Since T ∗b = 0 implies
∫

Rn Ta(x)b(x)dx = 0, so we need only to
check Ta satisfies Nw(Ta) = ‖Ta‖a0/b0

L2
w

· ‖Ta(·)w(IxQ

|·−xQ|)
b0‖1−a0/b0

L2
w

≤ C < ∞.
We write ∥∥∥Ta(·)w(IxQ

|·−xQ|)
b0

∥∥∥2

L2
w

=
∫

Rn

∣∣Ta(x)
∣∣2w(

I
xQ

|x−xQ|
)2b0w(x)dx

=
∫

2Q
+

∫
(2Q)c

:= I1 + I2.

By the L2
w boundedness of T and the size condition of a, we have

I1 ≤ Cw(2Q)2+δ‖Ta‖2
L2

w
≤ Cw(Q)2+δ‖Ta‖2

L2
w
≤ Cw(Q)2a0.

For x ∈ (I2R)c, same estimate to (4.1) leads

∣∣T (a)(x)
∣∣ ≤ C

|Q|ε/n+1

|x − xQ|n+ε
w(Q)−1/p.
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Observe that it follows from the choice of δ that

2(n + ε) − (2b0 + 1)nq = 2(n + ε) − (2 + 2δ)nq > 0.

Thus, by the fact that w ∈ Aq, we get

I2 =
∫

(2Q)c

∣∣Ta(x)
∣∣2w(

I
xQ

|x−xQ|
)2b0w(x)dx

≤ C|Q|2(ε/n+1)w(Q)−2/p

∫
(2Q)c

1
|x − xQ|2(n+ε)

w
(
I

xQ

|x−xQ|
)2b0w(x)dx

≤ C|Q|2(ε/n+1)w(Q)−2/p
∞∑

m=1

∫
2m+1Q\2mQ

1
|x−xQ|2(n+ε)

w
(
I

xQ

|x−xQ|
)2b0w(x)dx

≤ Cw(Q)−2/p
∞∑

m=1

2−2m(n+ε)w(2m+1Q)2b0+1

≤ Cw(Q)−2/pw(Q)2b0+1
∞∑

m=1

2−2m(n+ε)
(w(2m+1Q)

w(Q)

)2b0+1

≤ Cw(Q)2a0

∞∑
m=1

2−m
(
2(n+ε)−(2b0+1)nq

)
≤ Cw(Q)2a0 .

By the L2
w boundedness of T and the size condition of atom a, we have

Nw(Ta) = ‖Ta‖a0/b0
L2

w
· ‖Ta(·)w(

I
xQ

|·−xQ|
)b0‖1−a0/b0

L2
w

≤ C‖a‖a0/b0
L2

w
w(Q)a0(1−a0/b0)

≤ C.

This completes the proof of Theorem 4.2.
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