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Abstract. Let E be a smooth, strictly convex and reflexive Banach space,
let C∗ be a closed convex subset of the dual space E∗ of E and let ΠC∗ be
the generalized projection of E∗ onto C∗. Then the mapping RC∗ defined by
RC∗ = J−1ΠC∗J is a sunny generalized nonexpansive retraction of E onto
J−1C∗, where J is the normalized duality mapping on E. In this paper, we
first prove that if K is a closed convex cone in E and P is the nonexpansive
retaction of E onto K, then P a sunny generalized nonexpansive retraction of
E onto K. Using this result, we obtain an equivalent condition for a closed
half-space of E to be a nonexpansive retract of E.

1. INTRODUCTION

Let E be a smooth, Banach space and let E∗ be the dual space of E . The
function φ : E × E → R is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for each x, y ∈ E , where J is the normalized duality mapping from E into E∗. Let
C be a nonempty closed convex subset of E and let T be a mapping from C into
itself. Then, T is called generalized nonexpansive if the set F (T ) of fixed points
of T is nonempty and

φ(Tx, y) ≤ φ(x, y)

for all x ∈ C and y ∈ F (T ); see Ibaraki and Takahashi [22]. Such nonlinear oper-
ators are connected with the resolvents of maximal monotone operators in Banach
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spaces. When E is a smooth, strictly convex and reflexive Banach space and C

is a nonempty closed convex subset of E , Alber [1] also defined a nonlinear pro-
jection ΠC of E onto C called the generalized projection. Motivated by Alber [1]
and Ibaraki and Takahashi [22], Kohsaka and Takahashi [29] proved the following
result: Let E be a smooth, strictly convex and reflexive Banach space, let C∗ be a
nonempty closed convex subset of E∗ and let ΠC∗ be the generalized projection of
E∗ onto C∗. Then the mapping R defined by R = J−1ΠC∗J is a sunny generalized
nonexpansive retraction of E onto J−1C∗.

When E is a Hilbert space and C is a closed convex subset of E , the met-
ric projection (the nearest point projection) of E onto C, a sunny nonexpansive
retraction of E onto C, the generalized projection of E onto C and a sunny gener-
alized nonexpansive retraction of E onto C are all same; see [36]. However, it is
known [32] that if the metric projections are nonexpansive whenever they exist for
closed convex subsets C of a Banach space E with dim(E) ≥ 3, then E must be
a Hilbert space. Moreover, it is also known [34] that if every closed convex subset
of a Banach space E with dim(E) ≥ 3 is a nonexpansive retract of E , then E is
necessarily a Hilbert space; see also [30].

Motivated by Ibaraki and Takahashi [22], Honda and Takahashi [18, 19] ob-
tained the relation between nonexpansive retractions and sunny generalized nonex-
pansive retractions in a Banach space when their retracts of E are closed linear
subspaces.

In this paper, we study the relation between nonexpansive retractions and sunny
generalized nonexpansive retractions in a Banach space when their retarcts of E are
closed convex cones. Furthermore, we obtain an equivalent condition for a closed
half space of a Banach space E to be a nonexpansive retract of E .

2. PRELIMINARIES

Throughout this paper, E is a real Banach space with the dual E ∗. For any
subset A of E , A denotes the closure of A with respect to the norm topology,
IntA denotes the set of interior points of A with respect to the norm topology and
∂A denotes the set of boundary points of A with respect to the norm topology. We
denote by N and R the sets of all positive integers and all real numbers, respectively.
We also denote by 〈x, x∗〉 the dual pair of x ∈ E and x∗ ∈ E∗. A Banach space
E is said to be strictly convex if ‖x + y‖ < 2 for x, y ∈ E with ‖x‖ ≤ 1, ‖y‖ ≤ 1
and x �= y. A Banach space E is said to be smooth provided

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for each x, y ∈ E with ‖x‖ = ‖y‖ = 1. Let E be a Banach space. With
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each x ∈ E , we associate the set

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}.

The multivalued operator J : E → E∗ is called the normalized duality mapping of
E . From the Hahn-Banach theorem, Jx �= ∅ for each x ∈ E . We know that E is
smooth if and only if J is single-valued. If E is strictly convex, then J is one-to-
one, i.e., x �= y ⇒ J(x) ∩ J(y) = ∅. If E is reflexive, then J is a mapping of E
onto E∗. So, if E is reflexive, strictly convex and smooth, then J is single-valued,
one-to-one and onto. In this case, the normalized duality mapping J∗ from E∗ into
E is the inverse of J , that is, J∗ = J−1; see [36] for more details. Let E be a
smooth Banach space and let J be the normalized duality mapping of E . We define
the function φ : E × E → R by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for all x, y ∈ E . We also define the function φ∗ : E∗ × E∗ → R by

φ∗(x∗, y∗) = ‖x∗‖2 − 2〈x∗, J−1y∗〉 + ‖y∗‖2

for all x∗, y∗ ∈ E∗. It is easy to see that (‖x‖ − ‖y‖)2 ≤ φ(x, y) ≤ (‖x‖+ ‖y‖)2
for all x, y ∈ E . Thus, in particular, φ(x, y) ≥ 0 for all x, y ∈ E . We also know
the following:

φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉(2.1)

for all x, y, z ∈ E . Further, we have

2〈x− y, Jz − Jw〉 = φ(x, w) + φ(y, z)− φ(x, z)− φ(y, w)(2.2)

for all x, y, z, w ∈ E . It is easy to see that

φ(x, y) = φ∗(Jy, Jx)(2.3)

for all x, y ∈ E . If E is additionally assumed to be strictly convex, then

φ(x, y) = 0 ⇔ x = y.(2.4)

The following lemma is well-known.

Lemma 2.1. ([28]). Let E be a smooth and uniformly convex Banach space
and let {xn} and {yn} be sequences in E such that either {xn} or {yn} is bounded.
If limn→∞ φ(xn, yn) = 0, then limn→∞ ‖xn − yn‖ = 0.
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Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E . For an arbitrary point x of E , the set

{z ∈ C : φ(z, x) = min
y∈C

φ(y, x)}

is always nonempty and a singleton. Let us define the mapping ΠC of E onto C

by z = ΠCx for every x ∈ E , i.e.,

φ(ΠCx, x) = min
y∈C

φ(y, x)

for every x ∈ E . Such ΠC is called the generalized projection of E onto C; see
Alber [1]. The following lemma is due to Alber [1] and Kamimura and Takahashi
[28].

Lemma 2.2. ([1, 28]). Let C be a nonempty closed convex subset of a smooth,
strictly convex and reflexive Banach space E and let (x, z) ∈ E × C. Then, the
following hold:

(a) z = ΠCx if and only if 〈y − z, Jx − Jz〉 ≤ 0 for all y ∈ C;
(b) φ(z, ΠCx) + φ(ΠCx, x) ≤ φ(z, x).

Let D be a nonempty closed convex subset of a smooth Banach space E , let
T be a mapping from D into itself and let F (T ) be the set of fixed points of
T . Then, T is said to be generalized nonexpansive [22] if F (T ) is nonempty and
φ(Tx, u) ≤ φ(x, u) for all x ∈ D and u ∈ F (T ). Let C be a nonempty subset of
E and let R be a mapping from E onto C. Then R is said to be a retraction, or
a projection if Rx = x for all x ∈ C. It is known that if a mapping P of E into
E satisfies P 2 = P , then P is a projection of E onto {Px : x ∈ E}. A mapping
T : E → E with F (T ) �= ∅ is a retraction if and only if F (T ) = r(T ), where r(T )
is the range of T . When a mapping T is a retraction, the subset r(T ) is said to be
a retract. The mapping R is also said to be sunny if R(Rx + t(x − Rx)) = Rx

whenever x ∈ E and t ≥ 0. A nonempty subset C of a smooth Banach space E is
said to be a generalized nonexpansive retract (resp. sunny generalized nonexpansive
retract) of E if there exists a generalized nonexpansive retraction (resp. sunny
generalized nonexpansive retraction) R from E onto C. The following lemmas
were proved by Ibaraki and Takahashi [22].

Lemma 2.3. ([22]). Let C be a nonempty closed subset of a smooth, strictly
convex and reflexisve Banach space E and let R be a retraction from E onto C.
Then, the following are equivalent:

(a) R is sunny and generalized nonexpansive;
(b) 〈x − Rx, Jy − JRx〉 ≤ 0 for all (x, y) ∈ E × C.
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Lemma 2.4. ([22]). Let C be a nonempty closed sunny and generalized nonex-
pansive retract of a smooth and strictly convex Banach space E . Then, the sunny
generalized nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.5. ([22]). Let C be a nonempty closed subset of a smooth and strictly
convex Banach space E such that there exists a sunny generalized nonexpansive
retraction R from E onto C and let (x, z) ∈ E × C. Then, the following hold:

(a) z = Rx if and only if 〈x − z, Jy − Jz〉 ≤ 0 for all y ∈ C;
(b) φ(Rx, z) + φ(x, Rx) ≤ φ(x, z).

Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E . For an arbitrary point x of E , the set

{z ∈ C : ‖z − x‖ = min
y∈C

‖y − x‖}

is always nonempty and a singleton. Let us define the mapping PC of E onto C
by z = PCx for every x ∈ E , i.e.,

‖PCx − x‖ = min
y∈C

‖y − x‖

for every x ∈ E . Such PC is called the metric projection of E onto C; see [36].
The following lemma is in [36].

Lemma 2.6. ([36]). Let C be a nonempty closed convex subset of a smooth,
strictly convex and reflexive Banach space E and let (x, z) ∈ E × C. Then,
z = PCx if and only if 〈y − z, J(x− z)〉 ≤ 0 for all y ∈ C.

An operator A : E → 2E∗ with domain D(A) = {x ∈ E : Ax �= ∅} and
range r(A) = ∪{Ax : x ∈ D(A)} is said to be monotone if 〈x − y, x∗ − y∗〉 ≥ 0
for any (x, x∗), (y, y∗) ∈ A. The operator A is said to be strictly monotone if
〈x − y, x∗ − y∗〉 > 0 for any x, y ∈ E , x∗ ∈ Ax, y∗ ∈ Ay. A monotone operator
A is said to be maximal if its graph G(A) = {(x, x∗) : x∗ ∈ Ax} is not properly
contained in the graph of any other monotone operator. If A is maximal monotone,
then the set A−10 = {u ∈ E : 0 ∈ Au} is closed and convex (see [37] for more
details). Let J be the normalized duality mapping from E into E∗. Then, J is
monotone. If E is strictly convex, then J is one to one and strictly monotone. The
following theorem is well-known; for instance, see [36].

Theorem 2.1. Let E be a reflexive, strictly convex and smooth Banach space
and let A : E → 2E∗ be a monotone operator. Then A is maximal if and only if
r(J + rA) = E∗ for all r > 0. Further, if r(J + A) = E ∗, then r(J + rA) = E∗

for all r > 0.
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3. NONEXPANSIVE RETRACTIONS ONTO CLOSED CONVEX CONES

In this section, we discuss some relations between a nonexpansive retraction
onto a closed convex cone and sunny generalized nonexpansive retraction. We start
with two theorems proved by Kohsaka and Takahashi [29].

Theorem 3.1. ([29]). Let E be a smooth, strictly convex and reflexive Banach
space, let C∗ be a nonempty closed convex subset of E ∗ and let ΠC∗ be the
generalized projection of E ∗ onto C∗. Then the mapping R defined by R =
J−1ΠC∗J is a sunny generalized nonexpansive retraction of E onto J −1C∗.

Theorem 3.2. ([29]). Let E be a smooth, reflexive and strictly convex Banach
space and let D be a nonempty subset of E . Then, the following conditions are
equivalent.

(1) D is a sunny generalized nonexpansive retract of E;
(2) D is a generalized nonexpansive retract of E;
(3) JD is closed and convex.

In this case, D is closed.

From these theorems, we can represent sunny generalized nonexpansive retrac-
tion by using generalized projections. Let E be a reflexive, strictly convex and
smooth Banach space and let J be the normalized duality mapping from E onto
E∗. Let C∗ be a closed convex subset of the dual space E∗ of E . Then, the sunny
generalized nonexpansive retraction RC∗ with respect to C∗ is defined as follows:

RC∗ := J−1ΠC∗J,

where ΠC∗ is the generalized projection from E∗ onto C∗.
Let Y be a nonempty subset of a Banach space E and let Y ∗ be a nonempty

subset of the dual space E∗. Then, we define the annihilator Y ∗
⊥ of Y ∗ and the

annihilator Y ⊥ of Y as follows:

Y ∗
⊥ = {x ∈ E : f(x) = 0 for all f ∈ Y ∗}

and
Y ⊥ = {f ∈ E∗ : f(x) = 0 for all x ∈ Y }.

In a reflexive Banach space, both concepts coincide with each other.
Let E be a Banach space and let C be a nonempty closed convex subset of

E . Then, a mapping T of C into itself is nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖
for all x, y ∈ C. A mapping T of C into itself with F (T ) �= ∅ is said to be
quasi-nonexpansive if ‖Tx − m‖ ≤ ‖x − m‖ for all m ∈ F (T ) and x ∈ C. It is
clear that any nonexpansive mapping with fixed points is quasi-nonexpansive.

Motivated by previous theorems, the authors obtained following theorems.
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Theorem 3.3. ([3, 18]). Let E be a reflexive, strictly convex and smooth Banach
space and let I be the identity operator of E into itself. Let Y ∗ be a closed linear
subspace of the dual space E ∗ and let RY ∗ be the sunny generalized nonexpansive
retraction with respect to Y ∗. Then, the mapping I −RY ∗ is the metric projection
of E onto Y ∗

⊥. Conversely, let Y be a closed linear subspace of E and let P Y be
the metric projection of E onto Y . Then, the mapping I − P Y is the generalized
conditional expectation RY ⊥ with respect to Y ⊥, i.e., I − PY = RY ⊥ .

Theorem 3.4. ([19]). Let E be a strictly convex, reflexive and smooth Banach
space and let Y ∗ be a closed linear subspace of the dual space E ∗ of E . If the
sunny generalized nonexpansive retraction R Y ∗ is a quasi-nonexpansive projection
of E onto J−1Y ∗, then it is a norm one linear projection and J −1Y ∗ is a closed
linear subspace in E . Conversely, any norm one linear projection is a quasi-
nonexpansive sunny generalized nonexpansive retraction with respect some closed
linear subspace in E ∗.

We shall generalize these theorems and obtain a nonlinear retraction which is
both “nonexpansive” and “sunny generalized nonexpansive”.

A subset K of a Banach space is called a cone if it satisfies that λx ∈ K when
x ∈ K and λ ≥ 0. Any cone contains the origin. When a cone contains a non-zero
element, we call it nontrivial.

Theorem 3.5. Let E be a reflexive and smooth Banach space and let K be a
closed convex cone in E If T : K → K is a quasi-nonexpansive mapping such that
F (T ) is a cone, then T is generalized nonexpansive.

Proof. We first show that for any x ∈ K and m ∈ F (T ),

〈x − Tx, Jm〉 ≤ 0,(3.1)

where J is the normalized duality mapping of E .
For the case of m = 0, it is obvious that 〈x − Tx, Jm〉 = 0.
Fix x ∈ K \F (T ) and m ∈ F (T ) such that m �= 0. We have that for all α ∈ R

with α > 0,
x ∈ F (T ) ⇔ αx ∈ F (T ).

So, we have that x
k −m �= 0 for any k > 0. We have from the Hahn-Banach theorem

that there exists ξk ∈ E∗ such that
〈x

k
− m, ξk

〉
=

∥∥∥x

k
− m

∥∥∥ and ‖ξk‖ = 1. Then,
we have that 〈

Tx

k
− m, ξk

〉
≤

∥∥∥∥Tx

k
− m

∥∥∥∥ =
1
k
‖Tx − km‖
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≤ 1
k
‖x − km‖ =

∥∥∥x

k
− m

∥∥∥
=

〈x

k
− m, ξk

〉
.

So, we have
〈

x
k − Tx

k , ξk

〉 ≥ 0 and hence

〈x − Tx, ξk〉 ≥ 0.

Take a positive sequence {kn} with kn → ∞. Put xn = x
kn

− m and ξn = ξkn .

Then, we have
x

kn
− m → −m. Since E is a reflexive Banach space and {ξn} is

bounded, there exists a subsequence {ξni} of {ξn} converging to some ξ ∈ E∗ in
weak topology.

We may show that ξ satisfies 〈m,−ξ〉 = ‖m‖ and ‖ξ‖ = 1. Since the norm of
E∗ is lower semicontinuous in the weak topology, we have

‖ξ‖ ≤ lim inf
i→∞

‖ξni‖ = 1.

On the other hand, we have that

|〈−m, ξ〉 − ‖xni‖| = |〈−m, ξ〉 − 〈xni , ξni〉|
≤ |〈−m, ξ − ξni〉| + |〈−m − xni , ξni〉|.

Since 〈−m, ξ − ξni〉 → 0 and 〈−m − xni , ξni〉 → 0, we have

‖xni‖ → −〈m, ξ〉 = 〈m,−ξ〉.

Since ‖xni‖ → ‖m‖, we have 〈m,−ξ〉 = ‖m‖. So we have

‖m‖ = 〈m,−ξ〉 ≤ ‖m‖‖ξ‖

and hence ‖ξ‖ ≥ 1. Therefore, we have ‖ξ‖ = 1 and 〈m,−ξ〉 = ‖m‖. Then,
without loss of generality, there exists a positive sequence {kn} such that

kn → ∞,
x

kn
− m → −m

and
ξkn ⇀ ξ

in weak topology, where ξ is an element of E∗ such that 〈m,−ξ〉 = ‖m‖ and
‖ξ‖ = 1.

Putting ξ0 = −ξ, we have 〈m, ξ0〉 = ‖m‖, ‖ξ0‖ = 1 and

〈x − Tx, ξ0〉 ≤ 0.
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Since E∗ is smooth and∥∥‖m‖ξ0

∥∥2 = ‖m‖2 = ‖m‖〈m, ξ0〉 = 〈m, ‖m‖ξ0〉,

we know that ‖m‖ξ0 = Jm, where J is the normalized duality mapping on E .
Then for any x ∈ K \ F (T ) and m ∈ F (T ) \ {0}, we have ‖m‖〈x − Tx, ξ0〉 ≤ 0
and hence

〈x − Tx, Jm〉 ≤ 0.

We also have for x ∈ F (T ) and m ∈ F (T ) with m �= 0, 〈x − Tx, Jm〉 = 0.
So, the inequality (3.1) holds for any x ∈ K and m ∈ F (T ). This implies that

for any x ∈ K and m ∈ F (T ),

〈x, Jm〉 ≤ 〈Tx, Jm〉.

Since T is quasi-nonexpansive and 0 ∈ F (T ), we have ‖Tx‖ ≤ ‖x‖. Then for any
x ∈ E and m ∈ K, we have ‖Tx‖2−2〈Tx, Jm〉+‖m‖2 ≤ ‖x‖2−2〈x, Jm〉+‖m‖2

and hence
φ(Tx, m) ≤ φ(x, m).

This means that T is a generalized nonexpansive mapping.

From this theorem, we obtain following corollaries.

Corollary 3.1. Let E be a smooth and reflexive Banach space and let T : E →
E be a norm one linear operator. Then, T is generalized nonexpansive.

Corollary 3.2. Let E be a strictly convex, smooth and reflexive Banach space
and let K be a cone in E . If K is a nonexpansive retract of E , then K is a closed
convex cone in E , K is a sunny generalized nonexpansive retract and JK is a
closed convex cone in E∗.

Proof. Since K is a nonexpansive retract of E , there exists a nonexpansive
retraction T with T (E) = F (T ) = K. So, from [24], F (T ) = K must be closed
and convex. From Theorem 3.5, we also know that T is a generalized nonexpansive
retraction of E onto K. From Theorem 3.2, K is a sunny generalized nonexpansive
retract and JK is a closed convex subset in E∗. Since for any x ∈ E and α ∈ R

we have J(αx) = αJx from [36], JK is a cone.

We shall extend Theorem 3.3; see also Alber [2], Hudzik, Wang and Sha [21].
First we shall introduce two new nonlinear operators. We call a mapping T : E → E

a firmly generalized nonexpansive type [23], if it satisfies

φ(Tx, Ty) + φ(Ty, Tx) + φ(x, Tx) + φ(y, Ty) ≤ φ(x, Ty) + φ(y, Tx)
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for all x, y ∈ E . We call a mapping S : E → E a firmly metric operator [38], if
it satisfies

φ(x − Sx, y − Sy) + φ(y − Sy, x− Sx)
≤ φ(x, y − Sy) + φ(y, x− Sx)− φ(x, x− Sx) − φ(y, y − Sy)

for all x, y ∈ E .
Let C be a nonempty subset of a Banach space E and let C∗ be a nonempty

subset of the dual space E∗. Then, we define the dual cone (or the polar cone) C∗◦
of C∗ and the dual cone (or the polar cone) C◦ of C as follows:

C∗
◦ = {x ∈ E : f(x) ≤ 0 for all f ∈ C∗}

and
C◦ = {f ∈ E∗ : f(x) ≤ 0 for all x ∈ C}.

Both of them are closed convex cones. In a reflexive Banach space, both concepts
coincide with each other.

Lemma 3.1. Let E be a strictly convex, smooth and reflexive Banach space,
let C be a nonempty closed convex subset of E and let PC be the metric projection
of E onto C. Then the mapping T = I −PC is a firmly generalized nonexpansive
type of E into E . In particular, if 0 ∈ C, then F (T ) = P −1

C 0 = J−1C◦ and
JF (T ) is a closed convex cone in E ∗.

Proof. From Lemma 2.6, we have that for any x, y ∈ E ,

〈J(x − PCx), PCx − PCy〉 ≥ 0

and
〈J(y − PCy), PCy − PCx〉 ≥ 0.

Then we have

〈J(x − PCx) − J(y − PCy), PCx − PCy〉 ≥ 0.

Since Tx = x − PCx and Ty = y − PCy, we obtain

〈JTx − JTy, x− Tx − (y − Ty)〉 ≥ 0.

From (2.2), we have

(3.2)
0 ≤ 2〈JTx − JTy, x − Tx− (y − Ty)〉

= 2〈JTx − JTy, x − y〉 − 2〈JTx − JTy, Tx − Ty〉
= φ(x, Ty)+φ(y, Tx)−φ(x, Tx)−φ(y, Ty)−φ(Tx,Ty)−φ(Ty, Tx).
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So, T is a firmly generalized nonexpansive type on E . If 0 ∈ C, we have that

PCx = 0
⇔x − PCx = x

⇔Tx = x.

Then F (T ) = P−1
C 0. From Lemma 2.6, we have

x ∈ F (T ) ⇔ x ∈ P−1
C 0

⇔ 〈J(x − 0), 0− y〉 ≥ 0 for any y ∈ C

⇔ 〈J(x), y〉 ≤ 0 for any y ∈ C

⇔ Jx ∈ C◦.

Then we obtain

JF (T ) = C◦ = ∩y∈C{x∗ ∈ E∗ : 〈x∗, y〉 ≤ 0}.
This is the intersection of closed convex cones of E∗. So, JF (T ) is a closed convex
cone in E∗.

Lemma 3.2. Let E be a strictly convex, smooth and reflexive Banach space
and let T : E → E be a firmly generalized nonexpansive type such that JF (T ) is
a nonempty closed convex subset in E ∗ and T (E) = F (T ). Then, T is a sunny
generalized nonexpansive retraction of E onto F (T ).

Proof. From (3.2), we know that a mapping T : E → E satisfies that

〈JTx − JTy, x − Tx − (y − Ty)〉 ≥ 0.

From assumptions of T , F (T ) �= ∅. For any x ∈ E and m ∈ F (T ), we have

〈JTx − Jm, x − Tx〉 ≥ 0.

Since Tx ∈ F (T ) and JF (T ) is closed and convex in E∗, we have, from Lemma
2.3, that T is a sunny generalized nonexpansive retraction of E onto F (T ).

Lemma 3.3. Let E be a strictly convex, smooth and reflexive Banach space
and let T : E → E be a firmly metric operator such that F (T ) is a nonempty
closed convex subset in E and T (E) = F (T ). Then T is the metric projection of
E onto F (T ).

Proof. From (3.2), for any x, y ∈ E , we have

〈J(x − Tx) − J(y − Ty), Tx− Ty〉 ≥ 0.
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Then for any x ∈ E and m ∈ F (T ), we have

〈J(x − Tx), Tx− m〉 ≥ 0.

Since F (T ) is closed and convex and Tx ∈ F (T ), the mapping T is the metric
projection of E onto F (T ).

Theorem 3.6. Let E be a strictly convex, smooth and reflexive Banach space.
Let K be a closed convex cone of E and let PK be the metric projection of E onto
K. Then the mapping T = I −PK is a sunny generalized nonexpansive retraction
of E onto J−1K◦, where K◦ is the dual cone of K.

Proof. From Lemma 2.6, we have

〈J(x − PKx), PKx − m〉 ≥ 0

for any x ∈ E and m ∈ K. From 0 ∈ K , we have

〈J(x − PKx), PKx〉 ≥ 0.

From 2PKx ∈ K, we also have

〈J(x − PKx), PKx〉 ≤ 0.

From these inequalities, we have

〈J(x − PKx), PKx〉 = 0.

So, we have, for any x ∈ E and m ∈ K,

〈J(x − PKx), PKx − m〉 ≥ 0
⇒〈J(x − PKx), PKx〉 − 〈J(x − PKx), m〉 ≥ 0
⇒〈J(x − PKx), m〉 ≤ 0
⇒〈JTx, m〉 ≤ 0.

Then for any x ∈ E , we have JTx ∈ K◦. We have T (E) ⊂ J−1K◦ and hence

F (T ) ⊂ T (E) ⊂ J−1K◦.

From Lemma 3.1, we have that T is a firmly generalized nonexpansive type, JF (T )
is a closed convex cone in E∗ and F (T ) = J−1K◦. Since T (E) = F (T ) =
J−1K◦, from Lemma 3.2, T is a sunny generalized nonexpansive retraction of E

onto F (T ) = J−1K◦.
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Theorem 3.7. Let E be a strictly convex, smooth and reflexive Banach space.
Let K∗ be a closed convex cone of E ∗ and let RK∗ = J−1ΠK∗J be the sunny
generalized nonexpansive retraction of E onto J −1K∗, where ΠK∗ is the gener-
alized projection of E ∗ onto K∗. Then, the mapping T = I − RK∗ is the metric
projection of E onto the dual cone K ∗◦ of K∗.

Proof. Since 0 ∈ J−1K∗, from Lemma 2.3, we have

x ∈ R−1
K∗0 ⇔ RK∗x = 0

⇔ 〈x − 0, J0 − JJ−1m∗〉 ≥ 0 for any m∗ ∈ K∗

⇔ 〈x, m∗〉 ≤ 0 for any m∗ ∈ K∗

⇔ x ∈ K∗
◦ .

Then we have that
R−1

K∗0 = K∗
◦ .

From assumptions, we have

RK∗x = 0
⇔x − RK∗x = x

⇔Tx = x.

Then we have that
F (T ) = R−1

K∗0.

So, we obtain that
F (T ) = K∗

◦ .

Since a sunny generalized nonexpansive retraction is a firmly generalized nonex-
pansive type, T is a firmly metric operator such that F (T ) = K∗◦ . To obtain the
desired result, from Lemma 3.3, it is sufficient to show that T (E) ⊂ F (T ) = K ∗◦ .
From 0, 2RK∗x ∈ J−1K∗ and Lemma 2.3, we have

〈x − RK∗x, JRK∗x〉 = 0.

So, we have for any x ∈ E and m∗ ∈ K∗, 〈x − RK∗x, JRK∗x − JJ−1m∗〉 ≥ 0
and hence

〈x − RK∗x, m∗〉 ≤ 0.

Then we have that for any x ∈ E and m∗ ∈ K∗,

〈Tx, m∗〉 ≤ 0.

Then we obtain that Tx ∈ K∗◦ for any x ∈ E . This implies T (E) ⊂ K∗◦ . Therefore,
T = PK∗◦ . This completes the proof.
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Remark 3.1. In a Hilbert space, Theorem 3.3 is called the Riesz decomposition
and Theorems 3.6 and 3.7 are called the Moreau decomposition; see Hudzik, Wang
and Sha [21].

From Corollary 3.2and Theorem 3.7, we have the following corollary.

Corollary 3.3. Let E be a strictly convex, reflexive and smooth Banach space
and let K be a closed convex cone of E . If there exists a sunny nonexpansive
retraction R of E onto K, then I − R is the metric projection of E onto {JK} ◦,
where I is the identity mapping on E .

4. NONEXPANSIVE RETRACTIONS ONTO CLOSED HALF-SPACES

Let E be a strictly convex, reflexive and smooth Banach space. Calvert [10]
showed that a closed linear subspace Y in E is a 1-complemented subspace (i.e. the
range of a norm one linear projection) if and only if JY is a closed linear subspace
in E∗; see also [18]. Using our theorems in the preivious section, we can extend
this result.

Let E be a Banach space. A subset V ⊂ E is called a linear manifold if it is of
the form V = {x0 + g : g ∈ G}, where x0 is some element of E and G is a linear
subspace of E . We call a closed linear manifold M a closed hyperplane if there
exists no closed linear manifold M1 ⊂ E such that M ⊂ M1 and M �= M1 �= E .
We know that M is a closed hyperplane if and only if there exist a nonzero bounded
linear functional f ∈ E∗ and α ∈ R such that M = {x ∈ E : f(x) = α}; see
Singer [35]. A subset H ⊂ E is called a closed half-space if it is of the form
H = {x ∈ E : f(x) ≤ α}, where f is a nonzero bounded linear functional f ∈ E∗

and α ∈ R. In particular, in this paper, a closed half-space means only the case
α = 0.

Theorem 4.1. Let E be a strictly convex, smooth and reflexive Banach space
and let H be a closed half-space of E such that for some z ∗ ∈ E∗ \ {0}

H = {x ∈ E : 〈x, z∗〉 ≤ 0}.
Then, H is a nonexpansive retract of E if and only if JH is a closed half-space
in E∗.

To prove this theorem, we need some definitions and lemmas. Let E be a real
Banach space. The definition of orthogonality that we use is that of Birkhoff [7]
and James [25, 26, 27]; for x, y ∈ E , x is said to be orthogonal to y, denoted by
x ⊥ y, if

‖x + λy‖ ≥ ‖x‖(4.1)
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for all λ ∈ R. x is said to be acute to y if (4.1) holds for all λ ≥ 0. When E is
smooth, we know that

x is orthogonal to y ⇔ 〈Jx, y〉 = 0

and
x is acute to y ⇔ 〈Jx, y〉 ≥ 0;

see [36]. Let F be a closed subset of E . A retraction R of E onto F is orthogonal;
see Bruck [9], if for each x ∈ E and m ∈ F , Rx − m is acute to x − Rx;

‖(1− λ)Rx + λx − m‖ ≥ ‖Rx− m‖

for all λ ≥ 0.
Using this orthogonal retraction, we show a following lemma.

Lemma 4.1. Let E be a strictly convex, smooth and reflexive Banach space
and let H be a closed half-space of E such that for some z ∗ ∈ E∗ \ {0}

H = {x ∈ E : 〈x, z∗〉 ≤ 0}.

Then, H is a nonexpansive retract of E if and only if JH is a closed convex cone
in E∗.

Proof. A closed half-space H is a closed convex cone. If H is a nonexpansive
retract of E , from Corollary 3.2, JH is a closed convex cone in E∗.

Conversely, if JH is a closed convex cone in E∗, from Theorem 3.2, there
exists the sunny generalized nonexpansive retraction RJH = J−1ΠJHJ of E onto
H , where ΠJH is the generalized projection of E∗ onto JH . We shall show that
RJH is nonexpansive. Since RJH is sunny, we have for any x ∈ E ,

RJH (RJHx + λ (x − RJHx)) = RJHx,

for λ ≥ 0. When z ∈ E \ H = {x ∈ E : 〈x, z∗〉 > 0}, we have that RJHz ∈
{x ∈ E : 〈x, z∗〉 = 0}. In fact, if RJHz ∈ {x ∈ E : 〈x, z∗〉 < 0}, then
z − RJHz ∈ {x ∈ E : 〈x, z∗〉 > 0}. For a sufficiently small λ > 0, we have

RJHz + λ (z − RJHz) ∈ {x ∈ E : 〈x, z∗〉 < 0} ⊂ H.

Then we have that

RJHz = RJH (RJHz + λ (z − RJHz)) = RJHz + λ (z − RJHz)

and hence λ (z − RJHz) = 0. From λ > 0, we have z − RJHz = 0 and hence
z ∈ H = {x ∈ E : 〈x, z∗〉 ≤ 0}. This contradicts to z ∈ {x ∈ E : 〈x, z∗〉 > 0}.



1038 Takashi Honda, Wataru Takahashi and Jen-Chih Yao

So, for any m ∈ H and z �∈ H , we have

m − RJHz ∈ {x ∈ E : 〈x, z∗〉 ≤ 0} = H.

Then J(m− RJHz) ∈ JH . From Theorem 3.7, the mapping P = I − RJH is the
metric projection of E onto (JH)◦. Then we have, for any m ∈ H and z �∈ H ,

〈J(m − RJHz), Pz〉 ≤ 0
⇒〈J(m − RJHz), z − RJHz〉 ≤ 0
⇒〈J(RJHz − m), z − RJHz〉 ≥ 0.

From this, we obtain that RJHz − m is acute to z − RJHz. When z ∈ H ,
z − RJHz = 0 and RJHz − m is acute to z − RJHz obviously. This means that
RJH is an orthogonal retraction of E onto H . Since RJH is an orthogonal retraction
of E onto H , for any x, y ∈ E , we have

〈J(RJHx − RJHy), x− RJHx〉 ≥ 0

and
〈J(RJHy − RJHx), y − RJHy〉 ≥ 0.

Then for any x, y ∈ E , we have

〈J(RJHx − RJHy), x− RJHx〉 − 〈J(RJHx − RJHy), y − RJHy〉 ≥ 0
⇒〈J(RJHx − RJHy), x− y − (RJHx − RJHy)〉 ≥ 0

⇒〈J(RJHx − RJHy), x− y〉 ≥ ‖RJHx − RJHy‖2

⇒‖RJHx − RJHy‖ · ‖x − y‖ ≥ ‖RJHx − RJHy‖2

⇒‖x − y‖ ≥ ‖RJHx − RJHy‖.

Then RJH is nonexpansive. So, H is a nonexpansive retract of E .
Using an idea of Beauzamy [5] and Davis and Enflo [12], we obtain the fol-

lowing lemma.

Lemma 4.2. Let E be a strictly convex, smooth and reflexive Banach space
and let H be a closed half-space of E such that for some z ∗ ∈ E∗ \ {0}

H = {x ∈ E : 〈x, z∗〉 ≤ 0}.

Let M = {x ∈ E : 〈x, z∗〉 = 0}. Then, H is a nonexpansive retract of E if and
only if JM is a closed linear subspace of E ∗.
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Proof. Assume that H is a nonexpansive retract of E . Then, from Corollary
3.2, JH is a closed convex cone in E∗. As in the proof of Lemma 4.1, we may
assume that there exists a sunny nonexpasnsive retraction R of E onto H . In this
case, we have R(E) = F (R) = H . Define a mapping R̂ : E → E by R̂(x) =
−R(−x) for all x ∈ E . For any x ∈ E , we have R(−x) ∈ H and R̂x ∈ −H .
When x ∈ −H , we have −x ∈ F (R) and R̂x = −R(−x) = −(−x) = x. Then
we have that R̂(E) = F (R̂) = −H . For any x, y ∈ E ,

‖R̂x − R̂y‖ = ‖ − R(−x) + R(−y)‖
≤ ‖x − y‖.

Then R̂ is a nonexpansive retraction of E onto −H . As in the proof of Lemma 4.1,
R (resp. R̂) maps any point x �∈ H (resp. x �∈ −H) to the boundary (−H) ∩H =
M . Then R̂ ◦R is a nonexpansive retraction onto (−H)∩H = M . Indeed, R̂ ◦R
is a nonexpansive mapping. So we shall show that it is a retraction of E onto M .
If x ∈ M , then R̂ ◦ Rx = x ∈ M . If x ∈ H \ M , then Rx = x ∈ H \ M and
R̂ ◦ Rx ∈ M . If x ∈ (−H) \ M , then Rx ∈ M and R̂ ◦ Rx ∈ M . Then, we have
that F (R̂ ◦ R) = R̂ ◦ R(E) = M .

From Theorem 3.5, JM is a closed convex cone in E∗. Since M is a closed
linear subspace of E , for any x∗ ∈ J and α ∈ R, we have αx∗ ∈ JM . Then JM
is a closed linear subspace in E ∗.

When JM is a closed linear subspace of E∗, there exists a norm one linear
projection P of E onto M ; see [10, 18]. We define the new operator Q : E → E

such that

Qx =

{
Px if x �∈ H ,
x if x ∈ H .

(4.2)

Q is a nonlinear retraction of E onto H . We shall show that Q is nonexpansive.
When x, y ∈ H or x, y ∈ E \H , we have ‖Qx−Qy‖ ≤ ‖x−y‖, obviously. When
x ∈ H and y ∈ E \H , let z be an element of the segument [x, y] such that z ∈ M .
We have that

‖Qx − Qy‖ = ‖x − Py‖ ≤ ‖x − z‖+ ‖z − Py‖
= ‖x − z‖+ ‖Pz − Py‖ ≤ ‖x− z‖ + ‖z − y‖
= ‖x − y‖.

Then, Q is a nonexpansive retraction of E onto H . So, H is a nonexpansive retract
of E .

To prove Theorem 4.1, we need more lemmas;
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Lemma 4.3. Let E be a Banach space and let K be a closed convex cone in
E such that for some z ∗ ∈ E∗ \ {0}

K ⊃ M := {x ∈ E : 〈x, z∗〉 = 0}.

Then K is one of the following four;

(1) the closed hyperplane M ;
(2) the closed half-space H+ = {x ∈ E : 〈x, z∗〉 ≥ 0};
(3) the closed half-sapce H− = {x ∈ E : 〈x, z∗〉 ≤ 0};
(4) the whole space E .

Proof. Suppose that K contains an element ξ ∈ E such that 〈ξ, z ∗〉 = a > 0.
For any y ∈ E such that 0 < 〈y, z∗〉 < a, we define yα as follows:

yα = α(y − ξ) + ξ, α ≥ 0.

When α = 0, we have 〈yα, z∗〉 = a > 0. As α → ∞, 〈yα, z∗〉 decreases strictly
and continuously. Furthermore, it tends to −∞. Then there exists α0 > 0 such that
〈yα0, z

∗〉 = 0. This means that there exist x ∈ M and α > 0 such that

x = α(y − ξ) + ξ.

So, we have

y =
1
α

x +
(

1− 1
α

)
ξ.

We can show 1 < α. In fact, if α = 1, then 〈y, z∗〉 = 〈x, z∗〉 = 0. This
is a contradiction. If 0 < α < 1, then 〈y, z∗〉 = 1

α 〈x, z∗〉 +
(
1 − 1

α

) 〈ξ, z∗〉 =(
1 − 1

α

)
a < 0. This is a contradiction. So, we have 1 < α.

Then y is an element of the convex hull of M ∪ {ξ}. So, we have

K ⊃ {x ∈ E : 0 ≤ 〈x, z∗〉 < a}.

Since K is a closed convex cone, we have K ⊃ H+.
Similarly, when K contains an element ζ such that 〈ζ, z∗〉 < 0, we have K ⊃

H−. Then if K �= M , then K ⊃ H+ or K ⊃ H−. The proof is completed.

Lemma 4.4. Let E be a Banach space and let M be a hyperplane in E such
that for some z∗ ∈ E∗ \ {0},

M = {x ∈ E : 〈x, z∗〉 = 0}.

Then M⊥ = span{z∗}, where span{z∗} = {x∗ ∈ E∗ : x∗ = αz∗, α ∈ R}.
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Proof. It is clear that M⊥ ⊃ span{z∗}. It is sufficient to show that there
exists a unique non-zero element in E∗ up to a scalar multiple, such that it vanishes
in M .

Since M is a hyperplane, for x0 ∈ E \ M , we have

E = span{M ∪ {x0}},
where spanA is a closed linear span generated by A. For any x ∈ span{M ∪{x0}},
we can say x = αx0 + m, where α and m are some real value and some element
of M , respectively. Then, we have taht for any x ∈ span{M ∪ {x0}}, 〈x, z∗〉 =
α〈x0, z

∗〉 and 〈x0, z
∗〉 �= 0. If w∗ ∈ M⊥, then for any x ∈ span{M ∪ {x0}},

〈x, w∗〉 = α〈x0, w
∗〉. This means that 〈x, w∗〉 = 〈x0,w∗〉

〈x0,z∗〉 〈x, z∗〉. Since w∗ and z∗

are continuous, we have 〈x, w∗〉 = 〈x0,w∗〉
〈x0,z∗〉 〈x, z∗〉 for any x ∈ E . So, we have

w∗ = 〈x0,w∗〉
〈x0,z∗〉 z

∗ and hence w∗ ∈ {x∗ ∈ E∗ : x∗ = αz∗, α ∈ R}.

Let E be a Banach space and let Y1, Y2 ⊂ E be closed linear subspaces. If
Y1 ∩ Y2 = {0} and for any x ∈ E there exists a unique pair y1 ∈ Y1, y2 ∈ Y2 such
that

x = y1 + y2,

then, we represent the space E as

E = Y1 ⊕ Y2.

Lemma 4.5. Let E be a strictly convex, reflexive and smooth Banach space
and let Y ∗ be a closed linear subspace of the dual space E ∗ of E such that for
any y1, y2 ∈ J−1Y ∗, y1 + y2 ∈ J−1Y ∗. Then, J−1Y ∗ is a closed linear subspace
of E and the sunny generalized nonexpansive retraction R Y ∗ = J−1ΠY ∗J of E
onto J−1Y ∗, where ΠY ∗ is the generalized projection of E ∗ onto Y ∗, is a norm
one linear projection of E onto J −1Y ∗. Further, the following holds:

E = J−1Y ∗ ⊕ Y ∗
⊥.

Proof. By the assumption, for any y1, y2 ∈ J−1Y ∗, we have y1 +y2 ∈ J−1Y ∗.
Further, for y ∈ J−1Y ∗ and α ∈ R, we have from J(αy) = αJy ∈ Y ∗ that
αy ∈ J−1Y ∗. So, J−1Y ∗ is a linear subspace of E . Since J is norm to weak
continuous and Y ∗ is weakly closed subset in E∗, J−1Y ∗ is closed. Therefore,
J−1Y ∗ is a closed linear subspace of E . For any x, y ∈ E , from Theorem 3.1,
we have RY ∗x, RY ∗y ∈ J−1Y ∗. Since J−1Y ∗ is a linear subspace of E , we have
RY ∗x+RY ∗y ∈ J−1Y ∗. Since Y ∗ is a closed linear subspace of E∗, from Lemma
2.3, for any x ∈ E , an element y ∈ J−1Y ∗ satisfies y = RY ∗x if and only if

〈x− y, m∗〉 = 0, ∀m∗ ∈ Y ∗.(4.3)
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For x ∈ E and α ∈ R, let y = RY ∗x. We have that

〈αx − αy, m∗〉 = 0, ∀m∗ ∈ Y ∗.

Since αy ∈ J−1Y ∗, we have that

αy = RY ∗(αx).

For x1, x2 ∈ E , let y1 = RY ∗x1 and y2 = RY ∗x2. Then, we have that

〈x1 + x2 − (y1 + y2), m∗〉 = 〈x1 − y1, m
∗〉 + 〈x2 − y2, m

∗〉 = 0, ∀m∗ ∈ Y ∗.

Since y1 + y2 ∈ J−1Y ∗, we obtain that

RY ∗(x1 + x2) = y1 + y2 = RY ∗x1 + RY ∗x2.

So, the retraction RY ∗ is linear. Since φ(RY ∗x, m) ≤ φ(x, m) for any x ∈ E and
m ∈ J−1Y ∗, putting m = 0 ∈ J−1Y ∗, we have that

‖RY ∗x‖ ≤ ‖x‖.
Then, RY ∗ is a norm one linear projection of E onto J−1Y ∗.

From this, we have that

E = J−1Y ∗ ⊕ R−1
Y ∗0,

where R−1
Y ∗0 = {x ∈ E : RY ∗x = 0}. It is sufficient to show that R−1

Y ∗0 = Y ∗
⊥.

From (4.3), we have that

x ∈ R−1
Y ∗0 ⇔ 〈x, m∗〉 = 0, ∀m∗ ∈ Y ∗.

This means that

R−1
Y ∗0 = Y ∗

⊥.

Proof of Theorem 4.1. Let H be a closed half-space of E such that for some
z∗ ∈ E∗ \ {0},

H = {x ∈ E : 〈x, z∗〉 ≤ 0}.
When JH is a closed half-space in E∗, JH is a closed convex cone in E∗. So,
from Lemma 4.1, H is a nonexpansive retract of E . It is sufficient to show that if
H is a nonexpansive retract of E , then JH is a closed half-space in E∗.

Assume H is a nonexpansive retract of E . From Lemma 4.1, JH is closed
convex cone in E∗. From Lemma 4.2, JM is a closed linear subspace in E∗,
where M = {x ∈ E : 〈x, z∗〉 = 0}. Since M ⊂ E = E∗∗ and J−1∗ M = JM is a
closed linear subspace in E ∗, from Lemma 4.5, we have that

E∗ = J−1
∗ M ⊕ M⊥,
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where M⊥ = {x∗ ∈ E∗ : 〈x∗, m〉 = 0 ∀m ∈ M}. Then, from Lemma 4.4, we
have that

E∗ = JM ⊕ span{z∗}.
This means that the co-dimension of the closed linear subspace JM in E ∗ is one.
Then, JM is a closed hyperplane in E∗.

Since the closed conve cone JH contains the hyperplane JM , the duality map-
ping J is bijective and both sets H \M and E \H are nonempty, from Lemma 4.3,
we obtain that JH is a closed half-space in E ∗. This completes the proof.

From this theorem, we obtain the following corollary.

Corollary 4.1. Let E be a strictly convex, smooth and reflexive Banach space
and let H be a closed half-space of E such that for some z ∗ ∈ E∗

H = {x ∈ E : 〈x, z∗〉 ≤ 0}.

Then, JH is a closed convex cone in E ∗ if and only if JH is a closed half-space
in E∗.

Remark 4.1. In a Hilbert space, the normalized duality mapping J is the identity
mapping. The image of a closed convex cone by J is always a closed convex cone
and the image of a closed half-space by J is always a closed half-space. In this
case, any closed convex cone is a nonexpansive retract; see [36].

Remark 4.2. Let E be a strictly convex, smooth and reflexive Banach space,
let z ∈ E and let M ∗ = {span{z}}⊥. When Pspan{z} is linear, RM∗ is a norm one
linear projection onto J−1M∗; see [10, 18]. Then M ∗ is a closed hyperplane such
that J−1M∗ = J∗M∗ is a closed linear subspace of E .

In [13, 14], Deutsch showed an equivalent condition for the metric projection
Pspan{z} to be linear in Lp spaces; see also [6, 16].
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30. E. Kopecká and S. Reich, Nonexpansive retracts in Banach spaces, Banach Center
Publications, 77 (2007), 161-174.

31. R. E. Megginson, An introduction to Banach space theory, Springer-Verlag, Berlin-
Heidelberg-New York, 1998.

32. R. R. Phelps, Convex sets and nearest points, Proc. Amer. Math. Soc., 8 (1957),
790-797.

33. B. Randrianantoanina, Norm one projections in Banach spaces, Taiwanese J. Math.,
5 (2001), 35-95.

34. S. Reich, Extension problems for accretive sets in Banach spaces, J. Funct. Anal.,
26 (1977), 378-395.

35. I. Singer, Best approximation in normed linear spaces by elements of linear sub-
spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1970.

36. W. Takahashi, Nonlinear Functional Analysis-Fixed Point Theory and Its Applica-
tions, Yokohama Publishers, 2000.

37. W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Pub-
lishers, 2000, (in Japanese).

38. W. Takahashi and J.-C. Yao, Nonlinear operators of monotone type and convergence
theorems with equilibrium problems in Banach spaces, Taiwanese J. Math., to appear.

39. R. Wittmann, Hopfs ergodic theorem for nonlinear operators, Mathematische An-
nalen, 289 (1991), 239-253.



1046 Takashi Honda, Wataru Takahashi and Jen-Chih Yao

Takashi Honda
Department of Applied Mathematics,
National Sun Yat-sen University,
Kaohsiung 80424, Taiwan
E-mail: honda@mail.math.nsysu.edu.jp

Wataru Takahashi
Department of Applied Mathematics,
National Sun Yat-sen University,
Kaohsiung 80424, Taiwan
E-mail: wataru@is.titech.ac.jp

Jen-Chih Yao
Department of Applied Mathematics,
National Sun Yat-sen University,
Kaohsiung 80424, Taiwan
E-mail: yaojc@math.nsysu.edu.tw


