TAIWANESE JOURNAL OF MATHEMATICS Vol. 14, No. 3B, pp. 1023-1046, June 2010 This paper is available online at http://www.tjm.nsysu.edu.tw/

NONEXPANSIVE RETRACTIONS ONTO CLOSED CONVEX CONES IN BANACH SPACES

Takashi Honda, Wataru Takahashi and Jen-Chih Yao*

Dedicated to the Memory of Professor Sen-Yen Shaw

Abstract. Let E be a smooth, strictly convex and reflexive Banach space, let C^* be a closed convex subset of the dual space E^* of E and let Π_{C^*} be the generalized projection of E^* onto C^* . Then the mapping R_{C^*} defined by $R_{C^*} = J^{-1}\Pi_{C^*}J$ is a sunny generalized nonexpansive retraction of E onto $J^{-1}C^*$, where J is the normalized duality mapping on E. In this paper, we first prove that if K is a closed convex cone in E and P is the nonexpansive retaction of E onto K, then P a sunny generalized nonexpansive retraction of E onto K. Using this result, we obtain an equivalent condition for a closed half-space of E to be a nonexpansive retract of E.

1. INTRODUCTION

Let E be a smooth, Banach space and let E^* be the dual space of E. The function $\phi: E \times E \to \mathbb{R}$ is defined by

$$\phi(x, y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2$$

for each $x, y \in E$, where J is the normalized duality mapping from E into E^* . Let C be a nonempty closed convex subset of E and let T be a mapping from C into itself. Then, T is called generalized nonexpansive if the set F(T) of fixed points of T is nonempty and

$$\phi(Tx, y) \le \phi(x, y)$$

for all $x \in C$ and $y \in F(T)$; see Ibaraki and Takahashi [22]. Such nonlinear operators are connected with the resolvents of maximal monotone operators in Banach

Received November 5, 2009.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47H09; Secondary 47H10, 60G05.

Key words and phrases: Relatively nonexpansive mapping, Generalized nonexpansive mapping, Generalized projection, Sunny generalized nonexpansive retraction, Fixed point, Conditional expectation. *Corresponding author.

spaces. When E is a smooth, strictly convex and reflexive Banach space and C is a nonempty closed convex subset of E, Alber [1] also defined a nonlinear projection Π_C of E onto C called the generalized projection. Motivated by Alber [1] and Ibaraki and Takahashi [22], Kohsaka and Takahashi [29] proved the following result: Let E be a smooth, strictly convex and reflexive Banach space, let C^* be a nonempty closed convex subset of E^* and let Π_{C^*} be the generalized projection of E^* onto C^* . Then the mapping R defined by $R = J^{-1}\Pi_{C^*}J$ is a sunny generalized nonexpansive retraction of E onto $J^{-1}C^*$.

When E is a Hilbert space and C is a closed convex subset of E, the metric projection (the nearest point projection) of E onto C, a sunny nonexpansive retraction of E onto C, the generalized projection of E onto C and a sunny generalized nonexpansive retraction of E onto C are all same; see [36]. However, it is known [32] that if the metric projections are nonexpansive whenever they exist for closed convex subsets C of a Banach space E with $\dim(E) \ge 3$, then E must be a Hilbert space. Moreover, it is also known [34] that if every closed convex subset of a Banach space E with $\dim(E) \ge 3$ is a nonexpansive retract of E, then E is necessarily a Hilbert space; see also [30].

Motivated by Ibaraki and Takahashi [22], Honda and Takahashi [18, 19] obtained the relation between nonexpansive retractions and sunny generalized nonexpansive retractions in a Banach space when their retracts of E are closed linear subspaces.

In this paper, we study the relation between nonexpansive retractions and sunny generalized nonexpansive retractions in a Banach space when their retarcts of E are closed convex cones. Furthermore, we obtain an equivalent condition for a closed half space of a Banach space E to be a nonexpansive retract of E.

2. Preliminaries

Throughout this paper, E is a real Banach space with the dual E^* . For any subset A of E, \overline{A} denotes the closure of A with respect to the norm topology, IntA denotes the set of interior points of A with respect to the norm topology and ∂A denotes the set of boundary points of A with respect to the norm topology. We denote by \mathbb{N} and \mathbb{R} the sets of all positive integers and all real numbers, respectively. We also denote by $\langle x, x^* \rangle$ the dual pair of $x \in E$ and $x^* \in E^*$. A Banach space E is said to be strictly convex if ||x + y|| < 2 for $x, y \in E$ with $||x|| \leq 1$, $||y|| \leq 1$ and $x \neq y$. A Banach space E is said to be smooth provided

$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists for each $x, y \in E$ with ||x|| = ||y|| = 1. Let E be a Banach space. With

each $x \in E$, we associate the set

$$J(x) = \{x^* \in E^* : \langle x, x^* \rangle = \|x\|^2 = \|x^*\|^2\}.$$

The multivalued operator $J: E \to E^*$ is called the normalized duality mapping of E. From the Hahn-Banach theorem, $Jx \neq \emptyset$ for each $x \in E$. We know that E is smooth if and only if J is single-valued. If E is strictly convex, then J is one-to-one, i.e., $x \neq y \Rightarrow J(x) \cap J(y) = \emptyset$. If E is reflexive, then J is a mapping of E onto E^* . So, if E is reflexive, strictly convex and smooth, then J is single-valued, one-to-one and onto. In this case, the normalized duality mapping J_* from E^* into E is the inverse of J, that is, $J_* = J^{-1}$; see [36] for more details. Let E be a smooth Banach space and let J be the normalized duality mapping of E. We define the function $\phi: E \times E \to \mathbb{R}$ by

$$\phi(x, y) = \|x\|^2 - 2\langle x, Jy \rangle + \|y\|^2$$

for all $x, y \in E$. We also define the function $\phi_* : E^* \times E^* \to \mathbb{R}$ by

$$\phi_*(x^*, y^*) = \|x^*\|^2 - 2\langle x^*, J^{-1}y^* \rangle + \|y^*\|^2$$

for all $x^*, y^* \in E^*$. It is easy to see that $(||x|| - ||y||)^2 \le \phi(x, y) \le (||x|| + ||y||)^2$ for all $x, y \in E$. Thus, in particular, $\phi(x, y) \ge 0$ for all $x, y \in E$. We also know the following:

(2.1)
$$\phi(x,y) = \phi(x,z) + \phi(z,y) + 2\langle x-z, Jz - Jy \rangle$$

for all $x, y, z \in E$. Further, we have

(2.2)
$$2\langle x-y, Jz-Jw \rangle = \phi(x,w) + \phi(y,z) - \phi(x,z) - \phi(y,w)$$

for all $x, y, z, w \in E$. It is easy to see that

(2.3)
$$\phi(x,y) = \phi_*(Jy,Jx)$$

for all $x, y \in E$. If E is additionally assumed to be strictly convex, then

(2.4)
$$\phi(x,y) = 0 \Leftrightarrow x = y.$$

The following lemma is well-known.

Lemma 2.1. ([28]). Let E be a smooth and uniformly convex Banach space and let $\{x_n\}$ and $\{y_n\}$ be sequences in E such that either $\{x_n\}$ or $\{y_n\}$ is bounded. If $\lim_{n\to\infty} \phi(x_n, y_n) = 0$, then $\lim_{n\to\infty} ||x_n - y_n|| = 0$. Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space E. For an arbitrary point x of E, the set

$$\{z \in C : \phi(z, x) = \min_{y \in C} \phi(y, x)\}$$

is always nonempty and a singleton. Let us define the mapping Π_C of E onto C by $z = \Pi_C x$ for every $x \in E$, i.e.,

$$\phi(\Pi_C x, x) = \min_{y \in C} \phi(y, x)$$

for every $x \in E$. Such Π_C is called the generalized projection of E onto C; see Alber [1]. The following lemma is due to Alber [1] and Kamimura and Takahashi [28].

Lemma 2.2. ([1, 28]). Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space E and let $(x, z) \in E \times C$. Then, the following hold:

- (a) $z = \prod_C x$ if and only if $\langle y z, Jx Jz \rangle \leq 0$ for all $y \in C$;
- (b) $\phi(z, \Pi_C x) + \phi(\Pi_C x, x) \le \phi(z, x).$

Let D be a nonempty closed convex subset of a smooth Banach space E, let T be a mapping from D into itself and let F(T) be the set of fixed points of T. Then, T is said to be generalized nonexpansive [22] if F(T) is nonempty and $\phi(Tx, u) \leq \phi(x, u)$ for all $x \in D$ and $u \in F(T)$. Let C be a nonempty subset of E and let R be a mapping from E onto C. Then R is said to be a retraction, or a projection if Rx = x for all $x \in C$. It is known that if a mapping P of E into E satisfies $P^2 = P$, then P is a projection of E onto $\{Px : x \in E\}$. A mapping $T : E \to E$ with $F(T) \neq \emptyset$ is a retraction if and only if F(T) = r(T), where r(T) is the range of T. When a mapping T is a retraction, the subset r(T) is said to be a retract. The mapping R is also said to be sunny if R(Rx + t(x - Rx)) = Rx whenever $x \in E$ and $t \ge 0$. A nonempty subset C of a smooth Banach space E is said to be a generalized nonexpansive retract (resp. sunny generalized nonexpansive retraction (resp. sunny generalized nonexpansive retraction) R from E onto C. The following lemmas were proved by Ibaraki and Takahashi [22].

Lemma 2.3. ([22]). Let C be a nonempty closed subset of a smooth, strictly convex and reflexisve Banach space E and let R be a retraction from E onto C. Then, the following are equivalent:

- (a) R is sunny and generalized nonexpansive;
- (b) $\langle x Rx, Jy JRx \rangle \leq 0$ for all $(x, y) \in E \times C$.

Lemma 2.4. ([22]). Let C be a nonempty closed sunny and generalized nonexpansive retract of a smooth and strictly convex Banach space E. Then, the sunny generalized nonexpansive retraction from E onto C is uniquely determined.

Lemma 2.5. ([22]). Let C be a nonempty closed subset of a smooth and strictly convex Banach space E such that there exists a sunny generalized nonexpansive retraction R from E onto C and let $(x, z) \in E \times C$. Then, the following hold:

- (a) z = Rx if and only if $\langle x z, Jy Jz \rangle \leq 0$ for all $y \in C$;
- (b) $\phi(Rx, z) + \phi(x, Rx) \le \phi(x, z).$

Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space E. For an arbitrary point x of E, the set

$$\{z \in C : \|z - x\| = \min_{y \in C} \|y - x\|\}$$

is always nonempty and a singleton. Let us define the mapping P_C of E onto C by $z = P_C x$ for every $x \in E$, i.e.,

$$||P_C x - x|| = \min_{y \in C} ||y - x||$$

for every $x \in E$. Such P_C is called the metric projection of E onto C; see [36]. The following lemma is in [36].

Lemma 2.6. ([36]). Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive Banach space E and let $(x, z) \in E \times C$. Then, $z = P_C x$ if and only if $\langle y - z, J(x - z) \rangle \leq 0$ for all $y \in C$.

An operator $A : E \to 2^{E^*}$ with domain $D(A) = \{x \in E : Ax \neq \emptyset\}$ and range $r(A) = \bigcup \{Ax : x \in D(A)\}$ is said to be monotone if $\langle x - y, x^* - y^* \rangle \ge 0$ for any $(x, x^*), (y, y^*) \in A$. The operator A is said to be strictly monotone if $\langle x - y, x^* - y^* \rangle > 0$ for any $x, y \in E, x^* \in Ax, y^* \in Ay$. A monotone operator A is said to be maximal if its graph $G(A) = \{(x, x^*) : x^* \in Ax\}$ is not properly contained in the graph of any other monotone operator. If A is maximal monotone, then the set $A^{-1}0 = \{u \in E : 0 \in Au\}$ is closed and convex (see [37] for more details). Let J be the normalized duality mapping from E into E^* . Then, J is monotone. If E is strictly convex, then J is one to one and strictly monotone. The following theorem is well-known; for instance, see [36].

Theorem 2.1. Let E be a reflexive, strictly convex and smooth Banach space and let $A: E \to 2^{E^*}$ be a monotone operator. Then A is maximal if and only if $r(J+rA) = E^*$ for all r > 0. Further, if $r(J+A) = E^*$, then $r(J+rA) = E^*$ for all r > 0. 3. NONEXPANSIVE RETRACTIONS ONTO CLOSED CONVEX CONES

In this section, we discuss some relations between a nonexpansive retraction onto a closed convex cone and sunny generalized nonexpansive retraction. We start with two theorems proved by Kohsaka and Takahashi [29].

Theorem 3.1. ([29]). Let E be a smooth, strictly convex and reflexive Banach space, let C^* be a nonempty closed convex subset of E^* and let Π_{C^*} be the generalized projection of E^* onto C^* . Then the mapping R defined by $R = J^{-1}\Pi_{C^*}J$ is a sunny generalized nonexpansive retraction of E onto $J^{-1}C^*$.

Theorem 3.2. ([29]). Let E be a smooth, reflexive and strictly convex Banach space and let D be a nonempty subset of E. Then, the following conditions are equivalent.

- (1) D is a sunny generalized nonexpansive retract of E;
- (2) D is a generalized nonexpansive retract of E;
- (3) JD is closed and convex.

In this case, D is closed.

From these theorems, we can represent sunny generalized nonexpansive retraction by using generalized projections. Let E be a reflexive, strictly convex and smooth Banach space and let J be the normalized duality mapping from E onto E^* . Let C^* be a closed convex subset of the dual space E^* of E. Then, the sunny generalized nonexpansive retraction R_{C^*} with respect to C^* is defined as follows:

$$R_{C^*} := J^{-1} \prod_{C^*} J,$$

where Π_{C^*} is the generalized projection from E^* onto C^* .

Let Y be a nonempty subset of a Banach space E and let Y^* be a nonempty subset of the dual space E^* . Then, we define the annihilator Y^*_{\perp} of Y^* and the annihilator Y^{\perp}_{\perp} of Y as follows:

$$Y_{\perp}^{*} = \{ x \in E : f(x) = 0 \text{ for all } f \in Y^{*} \}$$

and

$$Y^{\perp} = \{ f \in E^* : f(x) = 0 \text{ for all } x \in Y \}.$$

In a reflexive Banach space, both concepts coincide with each other.

Let E be a Banach space and let C be a nonempty closed convex subset of E. Then, a mapping T of C into itself is nonexpansive if $||Tx - Ty|| \le ||x - y||$ for all $x, y \in C$. A mapping T of C into itself with $F(T) \neq \emptyset$ is said to be quasi-nonexpansive if $||Tx - m|| \le ||x - m||$ for all $m \in F(T)$ and $x \in C$. It is clear that any nonexpansive mapping with fixed points is quasi-nonexpansive.

Motivated by previous theorems, the authors obtained following theorems.

Theorem 3.3. ([3, 18]). Let E be a reflexive, strictly convex and smooth Banach space and let I be the identity operator of E into itself. Let Y^* be a closed linear subspace of the dual space E^* and let R_{Y^*} be the sunny generalized nonexpansive retraction with respect to Y^* . Then, the mapping $I - R_{Y^*}$ is the metric projection of E onto Y^*_{\perp} . Conversely, let Y be a closed linear subspace of E and let P_Y be the metric projection of E onto Y. Then, the mapping $I - P_Y$ is the generalized conditional expectation $R_{Y^{\perp}}$ with respect to Y^{\perp} , i.e., $I - P_Y = R_{Y^{\perp}}$.

Theorem 3.4. ([19]). Let E be a strictly convex, reflexive and smooth Banach space and let Y^* be a closed linear subspace of the dual space E^* of E. If the sunny generalized nonexpansive retraction R_{Y^*} is a quasi-nonexpansive projection of E onto $J^{-1}Y^*$, then it is a norm one linear projection and $J^{-1}Y^*$ is a closed linear subspace in E. Conversely, any norm one linear projection is a quasinonexpansive sunny generalized nonexpansive retraction with respect some closed linear subspace in E^* .

We shall generalize these theorems and obtain a nonlinear retraction which is both "nonexpansive" and "sunny generalized nonexpansive".

A subset K of a Banach space is called a cone if it satisfies that $\lambda x \in K$ when $x \in K$ and $\lambda \ge 0$. Any cone contains the origin. When a cone contains a non-zero element, we call it nontrivial.

Theorem 3.5. Let E be a reflexive and smooth Banach space and let K be a closed convex cone in E If $T : K \to K$ is a quasi-nonexpansive mapping such that F(T) is a cone, then T is generalized nonexpansive.

Proof. We first show that for any $x \in K$ and $m \in F(T)$,

$$(3.1) \qquad \langle x - Tx, Jm \rangle \le 0,$$

where J is the normalized duality mapping of E.

For the case of m = 0, it is obvious that $\langle x - Tx, Jm \rangle = 0$.

Fix $x \in K \setminus F(T)$ and $m \in F(T)$ such that $m \neq 0$. We have that for all $\alpha \in \mathbb{R}$ with $\alpha > 0$,

$$x \in F(T) \Leftrightarrow \alpha x \in F(T).$$

So, we have that $\frac{x}{k} - m \neq 0$ for any k > 0. We have from the Hahn-Banach theorem that there exists $\xi_k \in E^*$ such that $\left\langle \frac{x}{k} - m, \xi_k \right\rangle = \left\| \frac{x}{k} - m \right\|$ and $\|\xi_k\| = 1$. Then, we have that

$$\left\langle \frac{Tx}{k} - m, \xi_k \right\rangle \le \left\| \frac{Tx}{k} - m \right\| = \frac{1}{k} \left\| Tx - km \right\|$$

$$\leq \frac{1}{k} \|x - km\| = \left\|\frac{x}{k} - m\right\|$$
$$= \left\langle \frac{x}{k} - m, \xi_k \right\rangle.$$

So, we have $\left\langle \frac{x}{k} - \frac{Tx}{k}, \xi_k \right\rangle \ge 0$ and hence

$$\langle x - Tx, \xi_k \rangle \ge 0.$$

Take a positive sequence $\{k_n\}$ with $k_n \to \infty$. Put $x_n = \frac{x}{k_n} - m$ and $\xi_n = \xi_{k_n}$. Then, we have $\frac{x}{k_n} - m \to -m$. Since E is a reflexive Banach space and $\{\xi_n\}$ is bounded, there exists a subsequence $\{\xi_{n_i}\}$ of $\{\xi_n\}$ converging to some $\xi \in E^*$ in weak topology.

We may show that ξ satisfies $\langle m, -\xi \rangle = ||m||$ and $||\xi|| = 1$. Since the norm of E^* is lower semicontinuous in the weak topology, we have

$$\|\xi\| \le \liminf_{i \to \infty} \|\xi_{n_i}\| = 1.$$

On the other hand, we have that

$$\begin{aligned} |\langle -m, \xi \rangle - ||x_{n_i}||| &= |\langle -m, \xi \rangle - \langle x_{n_i}, \xi_{n_i} \rangle| \\ &\leq |\langle -m, \xi - \xi_{n_i} \rangle| + |\langle -m - x_{n_i}, \xi_{n_i} \rangle|. \end{aligned}$$

Since $\langle -m, \xi - \xi_{n_i} \rangle \to 0$ and $\langle -m - x_{n_i}, \xi_{n_i} \rangle \to 0$, we have

 $||x_{n_i}|| \to -\langle m, \xi \rangle = \langle m, -\xi \rangle.$

Since $||x_{n_i}|| \to ||m||$, we have $\langle m, -\xi \rangle = ||m||$. So we have

$$||m|| = \langle m, -\xi \rangle \le ||m|| ||\xi||$$

and hence $\|\xi\| \ge 1$. Therefore, we have $\|\xi\| = 1$ and $\langle m, -\xi \rangle = \|m\|$. Then, without loss of generality, there exists a positive sequence $\{k_n\}$ such that

$$\frac{k_n \to \infty,}{k_n - m \to -m}$$

and

$$\xi_{k_n} \rightharpoonup \xi$$

in weak topology, where ξ is an element of E^* such that $\langle m, -\xi \rangle = ||m||$ and $||\xi|| = 1$.

Putting $\xi_0 = -\xi$, we have $\langle m, \xi_0 \rangle = ||m||, ||\xi_0|| = 1$ and

$$\langle x - Tx, \xi_0 \rangle \le 0.$$

Since E^* is smooth and

$$\left\| \|m\|\xi_0\|^2 = \|m\|^2 = \|m\|\langle m, \xi_0 \rangle = \langle m, \|m\|\xi_0 \rangle,$$

we know that $||m||\xi_0 = Jm$, where J is the normalized duality mapping on E. Then for any $x \in K \setminus F(T)$ and $m \in F(T) \setminus \{0\}$, we have $||m||\langle x - Tx, \xi_0 \rangle \leq 0$ and hence

$$\langle x - Tx, Jm \rangle \le 0.$$

We also have for $x \in F(T)$ and $m \in F(T)$ with $m \neq 0$, $\langle x - Tx, Jm \rangle = 0$. So, the inequality (3.1) holds for any $x \in K$ and $m \in F(T)$. This implies that for any $x \in K$ and $m \in F(T)$,

$$\langle x, Jm \rangle \le \langle Tx, Jm \rangle.$$

Since T is quasi-nonexpansive and $0 \in F(T)$, we have $||Tx|| \le ||x||$. Then for any $x \in E$ and $m \in K$, we have $||Tx||^2 - 2\langle Tx, Jm \rangle + ||m||^2 \le ||x||^2 - 2\langle x, Jm \rangle + ||m||^2$ and hence

$$\phi(Tx,m) \le \phi(x,m).$$

This means that T is a generalized nonexpansive mapping.

From this theorem, we obtain following corollaries.

Corollary 3.1. Let E be a smooth and reflexive Banach space and let $T : E \rightarrow E$ be a norm one linear operator. Then, T is generalized nonexpansive.

Corollary 3.2. Let E be a strictly convex, smooth and reflexive Banach space and let K be a cone in E. If K is a nonexpansive retract of E, then K is a closed convex cone in E, K is a sunny generalized nonexpansive retract and JK is a closed convex cone in E^* .

Proof. Since K is a nonexpansive retract of E, there exists a nonexpansive retraction T with T(E) = F(T) = K. So, from [24], F(T) = K must be closed and convex. From Theorem 3.5, we also know that T is a generalized nonexpansive retraction of E onto K. From Theorem 3.2, K is a sunny generalized nonexpansive retract and JK is a closed convex subset in E^* . Since for any $x \in E$ and $\alpha \in \mathbb{R}$ we have $J(\alpha x) = \alpha J x$ from [36], JK is a cone.

We shall extend Theorem 3.3; see also Alber [2], Hudzik, Wang and Sha [21]. First we shall introduce two new nonlinear operators. We call a mapping $T : E \to E$ a *firmly generalized nonexpansive type* [23], if it satisfies

$$\phi(Tx,Ty) + \phi(Ty,Tx) + \phi(x,Tx) + \phi(y,Ty) \le \phi(x,Ty) + \phi(y,Tx)$$

for all $x, y \in E$. We call a mapping $S : E \to E$ a *firmly metric operator* [38], if it satisfies

$$\begin{aligned} \phi(x - Sx, y - Sy) + \phi(y - Sy, x - Sx) \\ \leq \phi(x, y - Sy) + \phi(y, x - Sx) - \phi(x, x - Sx) - \phi(y, y - Sy) \end{aligned}$$

for all $x, y \in E$.

Let C be a nonempty subset of a Banach space E and let C^* be a nonempty subset of the dual space E^* . Then, we define the dual cone (or the polar cone) C_{\circ}^* of C^* and the dual cone (or the polar cone) C° of C as follows:

$$C_{\circ}^{*} = \{x \in E : f(x) \le 0 \text{ for all } f \in C^{*}\}$$

and

$$C^{\circ} = \{ f \in E^* : f(x) \le 0 \text{ for all } x \in C \}.$$

Both of them are closed convex cones. In a reflexive Banach space, both concepts coincide with each other.

Lemma 3.1. Let E be a strictly convex, smooth and reflexive Banach space, let C be a nonempty closed convex subset of E and let P_C be the metric projection of E onto C. Then the mapping $T = I - P_C$ is a firmly generalized nonexpansive type of E into E. In particular, if $0 \in C$, then $F(T) = P_C^{-1}0 = J^{-1}C^\circ$ and JF(T) is a closed convex cone in E^* .

Proof. From Lemma 2.6, we have that for any $x, y \in E$,

$$\langle J(x - P_C x), P_C x - P_C y \rangle \ge 0$$

and

$$\langle J(y - P_C y), P_C y - P_C x \rangle \ge 0.$$

Then we have

$$\langle J(x - P_C x) - J(y - P_C y), P_C x - P_C y \rangle \ge 0$$

Since $Tx = x - P_C x$ and $Ty = y - P_C y$, we obtain

$$\langle JTx - JTy, x - Tx - (y - Ty) \rangle \ge 0.$$

From (2.2), we have

$$0 \leq 2\langle JTx - JTy, x - Tx - (y - Ty) \rangle$$

(3.2)
$$= 2\langle JTx - JTy, x - y \rangle - 2\langle JTx - JTy, Tx - Ty \rangle$$
$$= \phi(x, Ty) + \phi(y, Tx) - \phi(x, Tx) - \phi(y, Ty) - \phi(Tx, Ty) - \phi(Ty, Tx).$$

So, T is a firmly generalized nonexpansive type on E. If $0 \in C$, we have that

$$P_C x = 0$$

$$\Leftrightarrow x - P_C x = x$$

$$\Leftrightarrow T x = x.$$

Then $F(T) = P_C^{-1}0$. From Lemma 2.6, we have

$$\begin{split} x \in F(T) \Leftrightarrow x \in P_C^{-1} 0 \\ \Leftrightarrow \langle J(x-0), 0-y \rangle \geq 0 \text{ for any } y \in C \\ \Leftrightarrow \langle J(x), y \rangle \leq 0 \text{ for any } y \in C \\ \Leftrightarrow Jx \in C^{\circ}. \end{split}$$

Then we obtain

$$JF(T) = C^{\circ} = \bigcap_{y \in C} \{ x^* \in E^* : \langle x^*, y \rangle \le 0 \}.$$

This is the intersection of closed convex cones of E^* . So, JF(T) is a closed convex cone in E^* .

Lemma 3.2. Let E be a strictly convex, smooth and reflexive Banach space and let $T : E \to E$ be a firmly generalized nonexpansive type such that JF(T) is a nonempty closed convex subset in E^* and T(E) = F(T). Then, T is a sunny generalized nonexpansive retraction of E onto F(T).

Proof. From (3.2), we know that a mapping $T: E \to E$ satisfies that

$$\langle JTx - JTy, x - Tx - (y - Ty) \rangle \ge 0.$$

From assumptions of T, $F(T) \neq \emptyset$. For any $x \in E$ and $m \in F(T)$, we have

$$\langle JTx - Jm, x - Tx \rangle \ge 0.$$

Since $Tx \in F(T)$ and JF(T) is closed and convex in E^* , we have, from Lemma 2.3, that T is a sunny generalized nonexpansive retraction of E onto F(T).

Lemma 3.3. Let E be a strictly convex, smooth and reflexive Banach space and let $T : E \to E$ be a firmly metric operator such that F(T) is a nonempty closed convex subset in E and T(E) = F(T). Then T is the metric projection of E onto F(T).

Proof. From (3.2), for any $x, y \in E$, we have

$$\langle J(x-Tx) - J(y-Ty), Tx - Ty \rangle \ge 0.$$

Then for any $x \in E$ and $m \in F(T)$, we have

$$\langle J(x - Tx), Tx - m \rangle \ge 0.$$

Since F(T) is closed and convex and $Tx \in F(T)$, the mapping T is the metric projection of E onto F(T).

Theorem 3.6. Let E be a strictly convex, smooth and reflexive Banach space. Let K be a closed convex cone of E and let P_K be the metric projection of E onto K. Then the mapping $T = I - P_K$ is a sunny generalized nonexpansive retraction of E onto $J^{-1}K^\circ$, where K° is the dual cone of K.

Proof. From Lemma 2.6, we have

$$\langle J(x - P_K x), P_K x - m \rangle \ge 0$$

for any $x \in E$ and $m \in K$. From $0 \in K$, we have

$$\langle J(x - P_K x), P_K x \rangle \ge 0.$$

From $2P_K x \in K$, we also have

$$\langle J(x - P_K x), P_K x \rangle \le 0.$$

From these inequalities, we have

$$\langle J(x - P_K x), P_K x \rangle = 0.$$

So, we have, for any $x \in E$ and $m \in K$,

$$\langle J(x - P_K x), P_K x - m \rangle \ge 0 \Rightarrow \langle J(x - P_K x), P_K x \rangle - \langle J(x - P_K x), m \rangle \ge 0 \Rightarrow \langle J(x - P_K x), m \rangle \le 0 \Rightarrow \langle JT x, m \rangle \le 0.$$

Then for any $x \in E$, we have $JTx \in K^{\circ}$. We have $T(E) \subset J^{-1}K^{\circ}$ and hence

$$F(T) \subset T(E) \subset J^{-1}K^{\circ}.$$

From Lemma 3.1, we have that T is a firmly generalized nonexpansive type, JF(T) is a closed convex cone in E^* and $F(T) = J^{-1}K^\circ$. Since $T(E) = F(T) = J^{-1}K^\circ$, from Lemma 3.2, T is a sunny generalized nonexpansive retraction of E onto $F(T) = J^{-1}K^\circ$.

Theorem 3.7. Let E be a strictly convex, smooth and reflexive Banach space. Let K^* be a closed convex cone of E^* and let $R_{K^*} = J^{-1}\Pi_{K^*}J$ be the sunny generalized nonexpansive retraction of E onto $J^{-1}K^*$, where Π_{K^*} is the generalized projection of E^* onto K^* . Then, the mapping $T = I - R_{K^*}$ is the metric projection of E onto the dual cone K^*_{\circ} of K^* .

Proof. Since $0 \in J^{-1}K^*$, from Lemma 2.3, we have

$$\begin{aligned} x \in R_{K^*}^{-1} 0 \Leftrightarrow R_{K^*} x &= 0 \\ \Leftrightarrow \langle x - 0, J0 - JJ^{-1}m^* \rangle \geq 0 \text{ for any } m^* \in K^* \\ \Leftrightarrow \langle x, m^* \rangle \leq 0 \text{ for any } m^* \in K^* \\ \Leftrightarrow x \in K_{\alpha}^*. \end{aligned}$$

Then we have that

$$R_{K^*}^{-1}0 = K_{\circ}^*.$$

From assumptions, we have

$$R_{K^*}x = 0$$

$$\Leftrightarrow x - R_{K^*}x = x$$

$$\Leftrightarrow Tx = x.$$

Then we have that

$$F(T) = R_{K^*}^{-1}0.$$

So, we obtain that

$$F(T) = K_{\circ}^{*}$$

Since a sunny generalized nonexpansive retraction is a firmly generalized nonexpansive type, T is a firmly metric operator such that $F(T) = K_{\circ}^*$. To obtain the desired result, from Lemma 3.3, it is sufficient to show that $T(E) \subset F(T) = K_{\circ}^*$. From $0, 2R_{K^*}x \in J^{-1}K^*$ and Lemma 2.3, we have

$$\langle x - R_{K^*} x, J R_{K^*} x \rangle = 0.$$

So, we have for any $x \in E$ and $m^* \in K^*$, $\langle x - R_{K^*}x, JR_{K^*}x - JJ^{-1}m^* \rangle \geq 0$ and hence

$$\langle x - R_{K^*}x, m^* \rangle \le 0.$$

Then we have that for any $x \in E$ and $m^* \in K^*$,

$$\langle Tx, m^* \rangle \le 0.$$

Then we obtain that $Tx \in K_{\circ}^{*}$ for any $x \in E$. This implies $T(E) \subset K_{\circ}^{*}$. Therefore, $T = P_{K_{\circ}^{*}}$. This completes the proof.

Remark 3.1. In a Hilbert space, Theorem 3.3 is called the Riesz decomposition and Theorems 3.6 and 3.7 are called the Moreau decomposition; see Hudzik, Wang and Sha [21].

From Corollary 3.2and Theorem 3.7, we have the following corollary.

Corollary 3.3. Let *E* be a strictly convex, reflexive and smooth Banach space and let *K* be a closed convex cone of *E*. If there exists a sunny nonexpansive retraction *R* of *E* onto *K*, then I - R is the metric projection of *E* onto $\{JK\}_{\circ}$, where *I* is the identity mapping on *E*.

4. NONEXPANSIVE RETRACTIONS ONTO CLOSED HALF-SPACES

Let E be a strictly convex, reflexive and smooth Banach space. Calvert [10] showed that a closed linear subspace Y in E is a 1-complemented subspace (i.e. the range of a norm one linear projection) if and only if JY is a closed linear subspace in E^* ; see also [18]. Using our theorems in the preivious section, we can extend this result.

Let E be a Banach space. A subset $V \subset E$ is called a linear manifold if it is of the form $V = \{x_0 + g : g \in G\}$, where x_0 is some element of E and G is a linear subspace of E. We call a closed linear manifold M a closed hyperplane if there exists no closed linear manifold $M_1 \subset E$ such that $M \subset M_1$ and $M \neq M_1 \neq E$. We know that M is a closed hyperplane if and only if there exist a nonzero bounded linear functional $f \in E^*$ and $\alpha \in \mathbb{R}$ such that $M = \{x \in E : f(x) = \alpha\}$; see Singer [35]. A subset $H \subset E$ is called a closed half-space if it is of the form $H = \{x \in E : f(x) \leq \alpha\}$, where f is a nonzero bounded linear functional $f \in E^*$ and $\alpha \in \mathbb{R}$. In particular, in this paper, a closed half-space means only the case $\alpha = 0$.

Theorem 4.1. Let E be a strictly convex, smooth and reflexive Banach space and let H be a closed half-space of E such that for some $z^* \in E^* \setminus \{0\}$

$$H = \{ x \in E : \langle x, z^* \rangle \le 0 \}.$$

Then, H is a nonexpansive retract of E if and only if JH is a closed half-space in E^* .

To prove this theorem, we need some definitions and lemmas. Let E be a real Banach space. The definition of orthogonality that we use is that of Birkhoff [7] and James [25, 26, 27]; for $x, y \in E$, x is said to be *orthogonal* to y, denoted by $x \perp y$, if

$$(4.1) ||x + \lambda y|| \ge ||x||$$

for all $\lambda \in \mathbb{R}$. x is said to be *acute* to y if (4.1) holds for all $\lambda \ge 0$. When E is smooth, we know that

x is orthogonal to
$$y \Leftrightarrow \langle Jx, y \rangle = 0$$

and

x is acute to
$$y \Leftrightarrow \langle Jx, y \rangle \ge 0$$
;

see [36]. Let F be a closed subset of E. A retraction R of E onto F is *orthogonal*; see Bruck [9], if for each $x \in E$ and $m \in F$, Rx - m is acute to x - Rx;

$$\|(1-\lambda)Rx + \lambda x - m\| \ge \|Rx - m\|$$

for all $\lambda \geq 0$.

Using this orthogonal retraction, we show a following lemma.

Lemma 4.1. Let E be a strictly convex, smooth and reflexive Banach space and let H be a closed half-space of E such that for some $z^* \in E^* \setminus \{0\}$

$$H = \{ x \in E : \langle x, z^* \rangle \le 0 \}.$$

Then, H is a nonexpansive retract of E if and only if JH is a closed convex cone in E^* .

Proof. A closed half-space H is a closed convex cone. If H is a nonexpansive retract of E, from Corollary 3.2, JH is a closed convex cone in E^* .

Conversely, if JH is a closed convex cone in E^* , from Theorem 3.2, there exists the sunny generalized nonexpansive retraction $R_{JH} = J^{-1}\Pi_{JH}J$ of E onto H, where Π_{JH} is the generalized projection of E^* onto JH. We shall show that R_{JH} is nonexpansive. Since R_{JH} is sunny, we have for any $x \in E$,

$$R_{JH}\left(R_{JH}x + \lambda\left(x - R_{JH}x\right)\right) = R_{JH}x,$$

for $\lambda \ge 0$. When $z \in E \setminus H = \{x \in E : \langle x, z^* \rangle > 0\}$, we have that $R_{JH}z \in \{x \in E : \langle x, z^* \rangle = 0\}$. In fact, if $R_{JH}z \in \{x \in E : \langle x, z^* \rangle < 0\}$, then $z - R_{JH}z \in \{x \in E : \langle x, z^* \rangle > 0\}$. For a sufficiently small $\lambda > 0$, we have

$$R_{JH}z + \lambda \left(z - R_{JH}z \right) \in \left\{ x \in E : \left\langle x, z^* \right\rangle < 0 \right\} \subset H.$$

Then we have that

$$R_{JH}z = R_{JH} \left(R_{JH}z + \lambda \left(z - R_{JH}z \right) \right) = R_{JH}z + \lambda \left(z - R_{JH}z \right)$$

and hence $\lambda (z - R_{JH}z) = 0$. From $\lambda > 0$, we have $z - R_{JH}z = 0$ and hence $z \in H = \{x \in E : \langle x, z^* \rangle \le 0\}$. This contradicts to $z \in \{x \in E : \langle x, z^* \rangle > 0\}$.

So, for any $m \in H$ and $z \notin H$, we have

$$m - R_{JH}z \in \{x \in E : \langle x, z^* \rangle \le 0\} = H.$$

Then $J(m - R_{JH}z) \in JH$. From Theorem 3.7, the mapping $P = I - R_{JH}$ is the metric projection of E onto $(JH)_{\circ}$. Then we have, for any $m \in H$ and $z \notin H$,

$$\langle J(m - R_{JH}z), Pz \rangle \le 0$$

$$\Rightarrow \langle J(m - R_{JH}z), z - R_{JH}z \rangle \le 0$$

$$\Rightarrow \langle J(R_{JH}z - m), z - R_{JH}z \rangle \ge 0.$$

From this, we obtain that $R_{JH}z - m$ is acute to $z - R_{JH}z$. When $z \in H$, $z - R_{JH}z = 0$ and $R_{JH}z - m$ is acute to $z - R_{JH}z$ obviously. This means that R_{JH} is an orthogonal retraction of E onto H. Since R_{JH} is an orthogonal retraction of E onto H, for any $x, y \in E$, we have

$$\langle J(R_{JH}x - R_{JH}y), x - R_{JH}x \rangle \ge 0$$

and

$$\langle J(R_{JH}y - R_{JH}x), y - R_{JH}y \rangle \ge 0.$$

Then for any $x, y \in E$, we have

$$\langle J(R_{JH}x - R_{JH}y), x - R_{JH}x \rangle - \langle J(R_{JH}x - R_{JH}y), y - R_{JH}y \rangle \ge 0 \Rightarrow \langle J(R_{JH}x - R_{JH}y), x - y - (R_{JH}x - R_{JH}y) \rangle \ge 0 \Rightarrow \langle J(R_{JH}x - R_{JH}y), x - y \rangle \ge ||R_{JH}x - R_{JH}y||^2 \Rightarrow ||R_{JH}x - R_{JH}y|| \cdot ||x - y|| \ge ||R_{JH}x - R_{JH}y||^2 \Rightarrow ||x - y|| \ge ||R_{JH}x - R_{JH}y||.$$

Then R_{JH} is nonexpansive. So, H is a nonexpansive retract of E.

Using an idea of Beauzamy [5] and Davis and Enflo [12], we obtain the following lemma.

Lemma 4.2. Let E be a strictly convex, smooth and reflexive Banach space and let H be a closed half-space of E such that for some $z^* \in E^* \setminus \{0\}$

$$H = \{ x \in E : \langle x, z^* \rangle \le 0 \}.$$

Let $M = \{x \in E : \langle x, z^* \rangle = 0\}$. Then, H is a nonexpansive retract of E if and only if JM is a closed linear subspace of E^* .

Proof. Assume that H is a nonexpansive retract of E. Then, from Corollary 3.2, JH is a closed convex cone in E^* . As in the proof of Lemma 4.1, we may assume that there exists a sunny nonexpansive retraction R of E onto H. In this case, we have R(E) = F(R) = H. Define a mapping $\hat{R} : E \to E$ by $\hat{R}(x) = -R(-x)$ for all $x \in E$. For any $x \in E$, we have $R(-x) \in H$ and $\hat{R}x \in -H$. When $x \in -H$, we have $-x \in F(R)$ and $\hat{R}x = -R(-x) = -(-x) = x$. Then we have that $\hat{R}(E) = F(\hat{R}) = -H$. For any $x, y \in E$,

$$\|\hat{R}x - \hat{R}y\| = \| - R(-x) + R(-y)\|$$

$$\leq \|x - y\|.$$

Then \hat{R} is a nonexpansive retraction of E onto -H. As in the proof of Lemma 4.1, R (resp. \hat{R}) maps any point $x \notin H$ (resp. $x \notin -H$) to the boundary $(-H) \cap H =$ M. Then $\hat{R} \circ R$ is a nonexpansive retraction onto $(-H) \cap H = M$. Indeed, $\hat{R} \circ R$ is a nonexpansive mapping. So we shall show that it is a retraction of E onto M. If $x \in M$, then $\hat{R} \circ Rx = x \in M$. If $x \in H \setminus M$, then $Rx = x \in H \setminus M$ and $\hat{R} \circ Rx \in M$. If $x \in (-H) \setminus M$, then $Rx \in M$ and $\hat{R} \circ Rx \in M$. Then, we have that $F(\hat{R} \circ R) = \hat{R} \circ R(E) = M$.

From Theorem 3.5, JM is a closed convex cone in E^* . Since M is a closed linear subspace of E, for any $x^* \in J$ and $\alpha \in \mathbb{R}$, we have $\alpha x^* \in JM$. Then JM is a closed linear subspace in E^* .

When JM is a closed linear subspace of E^* , there exists a norm one linear projection P of E onto M; see [10, 18]. We define the new operator $Q: E \to E$ such that

(4.2)
$$Qx = \begin{cases} Px & \text{if } x \notin H, \\ x & \text{if } x \in H. \end{cases}$$

Q is a nonlinear retraction of E onto H. We shall show that Q is nonexpansive. When $x, y \in H$ or $x, y \in E \setminus H$, we have $||Qx - Qy|| \le ||x - y||$, obviously. When $x \in H$ and $y \in E \setminus H$, let z be an element of the segument [x, y] such that $z \in M$. We have that

$$\begin{aligned} \|Qx - Qy\| &= \|x - Py\| \le \|x - z\| + \|z - Py\| \\ &= \|x - z\| + \|Pz - Py\| \le \|x - z\| + \|z - y\| \\ &= \|x - y\|. \end{aligned}$$

Then, Q is a nonexpansive retraction of E onto H. So, H is a nonexpansive retract of E.

To prove Theorem 4.1, we need more lemmas;

Lemma 4.3. Let E be a Banach space and let K be a closed convex cone in E such that for some $z^* \in E^* \setminus \{0\}$

$$K \supset M := \{ x \in E : \langle x, z^* \rangle = 0 \}.$$

Then K is one of the following four;

- (1) the closed hyperplane M;
- (2) the closed half-space $H_+ = \{x \in E : \langle x, z^* \rangle \ge 0\}$;
- (3) the closed half-sapce $H_{-} = \{x \in E : \langle x, z^* \rangle \leq 0\};$
- (4) the whole space E.

Proof. Suppose that K contains an element $\xi \in E$ such that $\langle \xi, z^* \rangle = a > 0$. For any $y \in E$ such that $0 < \langle y, z^* \rangle < a$, we define y_α as follows:

$$y_{\alpha} = \alpha(y - \xi) + \xi, \quad \alpha \ge 0$$

When $\alpha = 0$, we have $\langle y_{\alpha}, z^* \rangle = a > 0$. As $\alpha \to \infty$, $\langle y_{\alpha}, z^* \rangle$ decreases strictly and continuously. Furthermore, it tends to $-\infty$. Then there exists $\alpha_0 > 0$ such that $\langle y_{\alpha_0}, z^* \rangle = 0$. This means that there exist $x \in M$ and $\alpha > 0$ such that

$$x = \alpha(y - \xi) + \xi.$$

So, we have

$$y = \frac{1}{\alpha}x + \left(1 - \frac{1}{\alpha}\right)\xi.$$

We can show $1 < \alpha$. In fact, if $\alpha = 1$, then $\langle y, z^* \rangle = \langle x, z^* \rangle = 0$. This is a contradiction. If $0 < \alpha < 1$, then $\langle y, z^* \rangle = \frac{1}{\alpha} \langle x, z^* \rangle + (1 - \frac{1}{\alpha}) \langle \xi, z^* \rangle = (1 - \frac{1}{\alpha}) a < 0$. This is a contradiction. So, we have $1 < \alpha$.

Then y is an element of the convex hull of $M \cup \{\xi\}$. So, we have

$$K \supset \{ x \in E : 0 \le \langle x, z^* \rangle < a \}.$$

Since K is a closed convex cone, we have $K \supset H_+$.

Similarly, when K contains an element ζ such that $\langle \zeta, z^* \rangle < 0$, we have $K \supset H_-$. Then if $K \neq M$, then $K \supset H_+$ or $K \supset H_-$. The proof is completed.

Lemma 4.4. Let E be a Banach space and let M be a hyperplane in E such that for some $z^* \in E^* \setminus \{0\}$,

$$M = \{ x \in E : \langle x, z^* \rangle = 0 \}.$$

Then $M^{\perp} = \overline{\operatorname{span}}\{z^*\}$, where $\overline{\operatorname{span}}\{z^*\} = \{x^* \in E^* : x^* = \alpha z^*, \alpha \in \mathbb{R}\}.$

Proof. It is clear that $M^{\perp} \supset \overline{\text{span}}\{z^*\}$. It is sufficient to show that there exists a unique non-zero element in E^* up to a scalar multiple, such that it vanishes in M.

Since M is a hyperplane, for $x_0 \in E \setminus M$, we have

$$E = \overline{\operatorname{span}}\{M \cup \{x_0\}\},\$$

where $\overline{\operatorname{span}}A$ is a closed linear span generated by A. For any $x \in \operatorname{span}\{M \cup \{x_0\}\}$, we can say $x = \alpha x_0 + m$, where α and m are some real value and some element of M, respectively. Then, we have taht for any $x \in \operatorname{span}\{M \cup \{x_0\}\}, \langle x, z^* \rangle = \alpha \langle x_0, z^* \rangle$ and $\langle x_0, z^* \rangle \neq 0$. If $w^* \in M^{\perp}$, then for any $x \in \operatorname{span}\{M \cup \{x_0\}\}, \langle x, z^* \rangle = \alpha \langle x_0, w^* \rangle$. This means that $\langle x, w^* \rangle = \frac{\langle x_0, w^* \rangle}{\langle x_0, z^* \rangle} \langle x, z^* \rangle$. Since w^* and z^* are continuous, we have $\langle x, w^* \rangle = \frac{\langle x_0, w^* \rangle}{\langle x_0, z^* \rangle} \langle x, z^* \rangle$ for any $x \in E$. So, we have $w^* = \frac{\langle x_0, w^* \rangle}{\langle x_0, z^* \rangle} z^*$ and hence $w^* \in \{x^* \in E^* : x^* = \alpha z^*, \alpha \in \mathbb{R}\}$.

Let E be a Banach space and let $Y_1, Y_2 \subset E$ be closed linear subspaces. If $Y_1 \cap Y_2 = \{0\}$ and for any $x \in E$ there exists a unique pair $y_1 \in Y_1, y_2 \in Y_2$ such that

$$x = y_1 + y_2$$

then, we represent the space E as

$$E = Y_1 \oplus Y_2.$$

Lemma 4.5. Let E be a strictly convex, reflexive and smooth Banach space and let Y^* be a closed linear subspace of the dual space E^* of E such that for any $y_1, y_2 \in J^{-1}Y^*$, $y_1 + y_2 \in J^{-1}Y^*$. Then, $J^{-1}Y^*$ is a closed linear subspace of E and the sunny generalized nonexpansive retraction $R_{Y^*} = J^{-1}\Pi_{Y^*}J$ of Eonto $J^{-1}Y^*$, where Π_{Y^*} is the generalized projection of E^* onto Y^* , is a norm one linear projection of E onto $J^{-1}Y^*$. Further, the following holds:

$$E = J^{-1}Y^* \oplus Y^*_{\perp}.$$

Proof. By the assumption, for any $y_1, y_2 \in J^{-1}Y^*$, we have $y_1 + y_2 \in J^{-1}Y^*$. Further, for $y \in J^{-1}Y^*$ and $\alpha \in \mathbb{R}$, we have from $J(\alpha y) = \alpha Jy \in Y^*$ that $\alpha y \in J^{-1}Y^*$. So, $J^{-1}Y^*$ is a linear subspace of E. Since J is norm to weak continuous and Y^* is weakly closed subset in E^* , $J^{-1}Y^*$ is closed. Therefore, $J^{-1}Y^*$ is a closed linear subspace of E. For any $x, y \in E$, from Theorem 3.1, we have $R_{Y^*}x, R_{Y^*}y \in J^{-1}Y^*$. Since $J^{-1}Y^*$ is a linear subspace of E, we have $R_{Y^*}x + R_{Y^*}y \in J^{-1}Y^*$. Since Y^* is a closed linear subspace of E^* , from Lemma 2.3, for any $x \in E$, an element $y \in J^{-1}Y^*$ satisfies $y = R_{Y^*}x$ if and only if

(4.3)
$$\langle x - y, m^* \rangle = 0, \quad \forall m^* \in Y^*.$$

For $x \in E$ and $\alpha \in \mathbb{R}$, let $y = R_{Y^*}x$. We have that

$$\langle \alpha x - \alpha y, m^* \rangle = 0, \quad \forall m^* \in Y^*.$$

Since $\alpha y \in J^{-1}Y^*$, we have that

$$\alpha y = R_{Y^*}(\alpha x).$$

For $x_1, x_2 \in E$, let $y_1 = R_{Y^*} x_1$ and $y_2 = R_{Y^*} x_2$. Then, we have that

$$\langle x_1 + x_2 - (y_1 + y_2), m^* \rangle = \langle x_1 - y_1, m^* \rangle + \langle x_2 - y_2, m^* \rangle = 0, \quad \forall m^* \in Y^*.$$

Since $y_1 + y_2 \in J^{-1}Y^*$, we obtain that

$$R_{Y^*}(x_1 + x_2) = y_1 + y_2 = R_{Y^*}x_1 + R_{Y^*}x_2.$$

So, the retraction R_{Y^*} is linear. Since $\phi(R_{Y^*}x, m) \leq \phi(x, m)$ for any $x \in E$ and $m \in J^{-1}Y^*$, putting $m = 0 \in J^{-1}Y^*$, we have that

$$||R_{Y^*}x|| \le ||x||.$$

Then, R_{Y^*} is a norm one linear projection of E onto $J^{-1}Y^*$.

From this, we have that

$$E = J^{-1}Y^* \oplus R_{V^*}^{-1}0,$$

where $R_{Y^*}^{-1}0 = \{x \in E : R_{Y^*}x = 0\}$. It is sufficient to show that $R_{Y^*}^{-1}0 = Y_{\perp}^*$. From (4.3), we have that

$$x\in R_{Y^*}^{-1}0\Leftrightarrow \langle x,m^*\rangle=0,\quad \forall m^*\in Y^*.$$

This means that

$$R_{V^*}^{-1}0 = Y_{\perp}^*.$$

Proof of Theorem 4.1. Let H be a closed half-space of E such that for some $z^* \in E^* \setminus \{0\},\$

$$H = \{ x \in E : \langle x, z^* \rangle \le 0 \}.$$

When JH is a closed half-space in E^* , JH is a closed convex cone in E^* . So, from Lemma 4.1, H is a nonexpansive retract of E. It is sufficient to show that if H is a nonexpansive retract of E, then JH is a closed half-space in E^* .

Assume *H* is a nonexpansive retract of *E*. From Lemma 4.1, *JH* is closed convex cone in E^* . From Lemma 4.2, *JM* is a closed linear subspace in E^* , where $M = \{x \in E : \langle x, z^* \rangle = 0\}$. Since $M \subset E = E^{**}$ and $J_*^{-1}M = JM$ is a closed linear subspace in E^* , from Lemma 4.5, we have that

$$E^* = J_*^{-1}M \oplus M^\perp,$$

where $M^{\perp} = \{x^* \in E^* : \langle x^*, m \rangle = 0 \quad \forall m \in M\}$. Then, from Lemma 4.4, we have that

$$E^* = JM \oplus \overline{\operatorname{span}}\{z^*\}.$$

This means that the co-dimension of the closed linear subspace JM in E^* is one. Then, JM is a closed hyperplane in E^* .

Since the closed conve cone JH contains the hyperplane JM, the duality mapping J is bijective and both sets $H \setminus M$ and $E \setminus H$ are nonempty, from Lemma 4.3, we obtain that JH is a closed half-space in E^* . This completes the proof.

From this theorem, we obtain the following corollary.

Corollary 4.1. Let E be a strictly convex, smooth and reflexive Banach space and let H be a closed half-space of E such that for some $z^* \in E^*$

$$H = \{ x \in E : \langle x, z^* \rangle \le 0 \}$$

Then, JH is a closed convex cone in E^* if and only if JH is a closed half-space in E^* .

Remark 4.1. In a Hilbert space, the normalized duality mapping J is the identity mapping. The image of a closed convex cone by J is always a closed convex cone and the image of a closed half-space by J is always a closed half-space. In this case, any closed convex cone is a nonexpansive retract; see [36].

Remark 4.2. Let E be a strictly convex, smooth and reflexive Banach space, let $z \in E$ and let $M^* = \{\overline{\text{span}}\{z\}\}^{\perp}$. When $P_{\overline{\text{span}}\{z\}}$ is linear, R_{M^*} is a norm one linear projection onto $J^{-1}M^*$; see [10, 18]. Then M^* is a closed hyperplane such that $J^{-1}M^* = J_*M^*$ is a closed linear subspace of E.

In [13, 14], Deutsch showed an equivalent condition for the metric projection $P_{\overline{\text{span}}\{z\}}$ to be linear in L^p spaces; see also [6, 16].

ACKNOWLEDGMENT

This work was supported by the Grant NSC 98-2115-M-110-001.

REFERENCES

1. Ya. I. Alber, *Metric and generalized projection operators in Banach spaces: properties and applications*, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Dekker, New York, 1996, pp. 15-50.

- 2. Ya. I. Alber, Generalized Projections, Decompositions and the Pythagorean-Type Theorem in Banach Spaces, *Appl. Math. Lett.*, **11** (1998), 115-121.
- 3. Ya. I. Alber, James orthogonality and orthogonal decompositions of Banach spaces, *J. Math. Anal. Appl.*, **312** (2005), 330-342.
- 4. G. Ascoli, Sugli spazi lineari metrici e le loro varieta lineari, *Ann. Mat. Pura. Appl.*, **10** (1932), 33-81, 203-232.
- 5. B. Beauzamy, Projections contractantes dans les espaces de Banach, *Bull. Sci. Math.*, **102** (1978), 43-47.
- 6. B. Beauzamy and B. Maurey, Points minimaux et ensembles optimaux dans les espaces de Banach, J. Functional Anal., 24 (1977), 107-139.
- 7. G. Birkhoff, Orthogonality in linear metric spaces, Duke Math. J., 1 (1935), 169-172.
- 8. N. Bourbaki, *Espaces vectoriels topologiques*, Ch. I-II, Hermann et Cie, Paris, 1952; Ch. III-V, Hermann et Cie, Paris, 1955.
- R. E. Bruck, Nonexpansive projections on subsets of Banach spaces, *Paciffic J. Math.*, 47 (1973), 341-355.
- B. Calvert, Convergence sets in reflexive Banach spaces, *Proc. Amer. Math. Soc.*, 47 (1975), 423-428.
- 11. I. Cioranescu, Geometry of Banach spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordecht, 1990.
- W. Davis and P. Enflo, Contractive projections on l^p-spaces, London Math. Soc. Lecture Note Series, 137 (1989), 162-184.
- 13. F. Deutsch, Linear selections for the metric projection, J. Funct. Anal., 49 (1982), 269-292.
- 14. F. Deutsch, A survey of metric selections, Contemp. Math., 18 (1983), 49-71.
- 15. P. Enflo, Contractive projections onto subsets of $L^1(0, 1)$, London Math. Soc. Lecture Notes Series, 137 (1989), 151-161.
- 16. P. Enflo, Contractive projections onto subsets of L^p-spaces, Lecture Notes in Pure and Applied Mathematics, **136** (1992), 79-94.
- 17. M. J. Fabian, P. Habala, P. Hajek and J. Pelant, *Functional analysis and infinitedimensional geometry*, Springer Verlag, 2001.
- 18. T. Honda and W. Takahashi, Nonlinear projections and generalized conditional expectations in Banach spaces, *Taiwanese J. Math.*, to appear.
- 19. T. Honda and W. Takahashi, Norm One Projections and Generalized Conditional Expectations, *Scientiae Mathematicae Japonicae*, **69** (2009), 303-313.
- 20. H. Honda, T. Ibaraki and W. Takahashi, Duality theorems and convergence theorems for nonlinear mappings in Banach spaces and applications, *Int. J. Math. Stat.*, **6** (2010), 46-64.

- 21. H. Hudzik, Y. Wang and R. Sha, Orthogonally complemented subspaces in Banach spaces, *Nonlinear Analysis, Mumer. Funct. Anal. Optim.*, **29** (2008), 779-790.
- 22. T. Ibaraki and W. Takahashi, A new projection and convergence theorems for the projections in Banach spaces, J. Approx. Theory, **149** (2007), 1-14.
- 23. T. Ibaraki and W. Takahashi, Fixed point theorems for nonlinear mappings of nonexpansive type in Banach spaces, *J. Nonlinear Convex Anal.*, **10** (2009), 21-32.
- 24. S. Itoh and W. Takahashi, The common fixed point theory of singlevalued mappings and multivalued mappings, *Pacific J. Math.*, **79** (1978), 493-508.
- 25. R. C. James, Orthogonality in normed linear spaces, *Duke Math. J.*, **12** (1945), 291-302.
- 26. R. C. James, Orthogonality and linear functionals in normed linear spaces, *Trans. Amer. Math. Soc.*, **61** (1947), 265-292.
- 27. R. C. James, Inner products in normed linear spaces, *Bull. Amer. Math. Soc.*, 53 (1947), 559-566.
- 28. S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, *SIAM J. Optim.*, **13** (2002), 938-945.
- 29. F. Kohsaka and W. Takahashi, Generalized nonexpansive retractions and a proximaltype algorithm in Banach spaces, *J. Nonlinear Convex Anal.*, **8** (2007), 197-209.
- 30. E. Kopecká and S. Reich, Nonexpansive retracts in Banach spaces, *Banach Center Publications*, **77** (2007), 161-174.
- R. E. Megginson, An introduction to Banach space theory, Springer-Verlag, Berlin-Heidelberg-New York, 1998.
- 32. R. R. Phelps, Convex sets and nearest points, Proc. Amer. Math. Soc., 8 (1957), 790-797.
- B. Randrianantoanina, Norm one projections in Banach spaces, *Taiwanese J. Math.*, 5 (2001), 35-95.
- 34. S. Reich, Extension problems for accretive sets in Banach spaces, J. Funct. Anal., 26 (1977), 378-395.
- 35. I. Singer, Best approximation in normed linear spaces by elements of linear subspaces, Springer-Verlag, Berlin-Heidelberg-New York, 1970.
- 36. W. Takahashi, Nonlinear Functional Analysis-Fixed Point Theory and Its Applications, Yokohama Publishers, 2000.
- 37. W. Takahashi, *Convex Analysis and Approximation of Fixed Points*, Yokohama Publishers, 2000, (in Japanese).
- 38. W. Takahashi and J.-C. Yao, Nonlinear operators of monotone type and convergence theorems with equilibrium problems in Banach spaces, *Taiwanese J. Math.*, to appear.
- 39. R. Wittmann, Hopfs ergodic theorem for nonlinear operators, *Mathematische An*nalen, **289** (1991), 239-253.

Takashi Honda Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan E-mail: honda@mail.math.nsysu.edu.jp

Wataru Takahashi Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan E-mail: wataru@is.titech.ac.jp

Jen-Chih Yao Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan E-mail: yaojc@math.nsysu.edu.tw