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THE FIXED POINT PROPERTY AND UNBOUNDED SETS

IN BANACH SPACES

Wataru Takahashi, Jen-Chih Yao* and Fumiaki Kohsaka

Abstract. Let E be a smooth, strictly convex and reflexive Banach space, let

J be the duality mapping of E and let C be a nonempty closed convex subset

of E. Then, a mapping S : C → C is said to be nonspreading [23] if

φ(Sx, Sy) + φ(Sy, Sx) ≤ φ(Sx, y) + φ(Sy, x)

for all x, y ∈ C, where φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2 for all x, y ∈ E.
In this paper, we prove that every nonspreading mapping of C into itself has

a fixed point in C if and only if C is bounded. This theorem extends Ray’s

theorem [27] in a Hilbert space to that in a Banach space.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖ and let
C be a closed convex subset of H . Let T be a mapping of C into itself. Then

we denote by F (T ) the set of fixed points of T . A mapping T : C → C is called

nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C. A mapping F : C → C
is also said to be firmly nonexpansive if ‖Fx − Fy‖2 ≤ 〈x − y, Fx − Fy〉 for all
x, y ∈ C; see, for instance, Browder [6], Goebel and Kirk [10], Goebel and Reich
[11], and Takahashi [34]. Ray [27] proved the following theorem.

Theorem 1.1. Let H be a Hilbert space and let C be a nonempty closed convex

subset of H . Then, the following are equivalent:

(i) Every nonexpansive mapping of C into itself has a fixed point in C;

(ii) C is bounded.
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Sine [33] gave a simple proof of Ray’s theorem by using that the metric pro-

jection is nonexpansive in a Hilbert space. We know that a nonexpansive mapping

is deduced from a firmly nonexpansive mapping. Recently, the first author [38]

defined the following nonlinear mapping S : C → C called hybrid which is also

deduced from a firmly nonexpansive mapping:

3‖Sx− Sy‖2 ≤ ‖x − y‖2 + ‖x − Sy‖2 + ‖y − Sx‖2

for all x, y ∈ C. Using Ray’s theorem, he proved the following theorem.

Theorem 1.2. Let H be a Hilbert space and let C be a nonempty closed convex

subset of H . Then, the following are equivalent:

(i) Every hybrid mapping of C into itself has a fixed point in C;

(ii) C is bounded.

However, such theorems have not been extended to those of a Banach space.

Recently, Kohsaka and Takahashi [23] introduced the following nonlinear mapping

in a Banach space. Let E be a smooth, strictly convex and reflexive Banach space,

let J be the duality mapping of E and let C be a nonempty closed convex subset

of E. Then, a mapping S : C → C is said to be nonspreading if

φ(Sx, Sy) + φ(Sy, Sx) ≤ φ(Sx, y) + φ(Sy, x)

for all x, y ∈ C, where φ(x, y) = ‖x‖2 − 2〈x, Jy〉 + ‖y‖2 for all x, y ∈ E. They

proved a fixed point theorem for such mappings. In the case when E is a Hilbert

space, we know that φ(x, y) = ‖x − y‖2
for all x, y ∈ E. So, a nonspreading

mapping S in a Hilbert space H is defined as follows:

2 ‖Sx− Sy‖2 ≤ ‖Sx− y‖2 + ‖Sy − x‖2

for all x, y ∈ C.

In this paper, motivated by these results, we try to extend Ray’s theorem to that

in a Banach space by the theory of convex analysis. We prove that if C is a closed

convex subset of a smooth, strictly convex and reflexive Banach space, then every

nonspreading mapping of C into itself has a fixed point in C if and only if C is

bounded.

2. PRELIMINARIES

Let E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual of E. We

denote the value of y∗ ∈ E∗ at x ∈ E by 〈x, y∗〉. When {xn} is a sequence in
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E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak

convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ε) = inf
{

1 − ‖x + y‖
2

: ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}

for every ε with 0 ≤ ε ≤ 2. A Banach space E is said to be uniformly convex

if δ(ε) > 0 for every ε > 0. A uniformly convex Banach space is strictly convex
and reflexive. Let C be a nonempty subset of a Banach space E. A mapping
T : C → C is nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for all x, y ∈ C. A mapping

T : C → C is quasi-nonexpansive if F (T ) 6= ∅ and ‖Tx − y‖ ≤ ‖x − y‖ for all
x ∈ C and y ∈ F (T ), where F (T ) is the set of fixed points of T . If C is a closed

convex subset of E and T : C → C is quasi-nonexpansive, then F (T ) is closed
and convex; see Itoh and Takahashi [15].

Let E be a Banach space. The duality mapping J from E into 2E∗
is defined

by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}

for every x ∈ E. Let U = {x ∈ E : ‖x‖ = 1}. The norm of E is said to be

Gâteaux differentiable if for each x, y ∈ U , the limit

(2.1) lim
t→0

‖x + ty‖ − ‖x‖
t

exists. In the case, E is called smooth. We know that E is smooth if and only if

J ia a single valued mapping of E into E∗. We also know that E is reflexive if

and only if J is surjective, and E is strictly convex if and only if J is one-to-one.
Therefore, if E is a smooth, strictly convex and reflexive Banach space, then J is

a single-valued bijection.

Theorem 2.1. Let E be a smooth Banach space and let J be the duality mapping
on E. Then, 〈x− y, Jx−Jy〉 ≥ 0 for all x, y ∈ E. Further, if E is strictly convex

and 〈x− y, Jx − Jy〉 = 0, then x = y.

Let E be a reflexive, strictly convex and smooth Banach space. The function

φ : E × E → (−∞,∞) is defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2

for x, y ∈ E, where J is the duality mapping of E; see [1] and [19]. We have from

the definition of φ that

(2.2) φ(x, y) = φ(x, z) + φ(z, y) + 2〈x− z, Jz − Jy〉
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for all x, y, z ∈ E. From (‖x‖2−‖y‖2) ≤ φ(x, y) for all x, y ∈ E, we can see that

φ(x, y) ≥ 0. Further, we can obtain the following equality:

(2.3) 2〈x − y, Jz − Jw〉 = φ(x, w) + φ(y, z)− φ(x, z)− φ(y, w)

for x, y, z, w ∈ E. If E is additionally assumed to be strictly convex, then

(2.4) φ(x, y) = 0 ⇐⇒ x = y.

A multi-valued operator A : E → 2E∗
with domainD(A) = {z ∈ E : Az 6= ∅} and

range R(A) =
⋃
{Az : z ∈ D(A)} is said to be monotone if 〈x1−x2, y1− y2〉 ≥ 0

for each xi ∈ D(A) and yi ∈ Axi, i = 1, 2. A monotone operator A is said to be

maximal if its graph G(A) = {(x, y) : y ∈ Ax} is not properly contained in the
graph of any other monotone operator. Let E be a Banach space and let f be a

function of E into (−∞,∞] = R ∪ {∞}. Then, f is proper if f(x) ∈ R for some

x ∈ E. f is convex if for x, y ∈ E and t ∈ (0, 1),

f(tx + (1 − t)y) ≤ tf(x) + (1 − t)f(y).

f is lower semicontinuous if for every α ∈ R, {x ∈ E : f(x) ≤ α} is closed. The
following is Rockafellar’s theorem.

Theorem 2.2. [30, 31]. Let E be a real Banach space and let f : E →
(−∞,∞] be a proper convex lower semicontinuous function. Then the subdiffer-
ential ∂f of f is as follows:

∂f(z) = {v∗ ∈ E∗ : f(y) ≥ f(z) + 〈y − z, v∗〉, ∀y ∈ E}, ∀z ∈ E.

Then, ∂f : E → 2E∗
is a maximal monotone operator.

The following theorem is well known; see Browder [8], Rockafellar [32] and

Takahashi [35].

Theorem 2.3. [8, 32]. Let E be a reflexive, strictly convex and smooth Banach

space and let A : E → 2E∗
be a monotone operator. Then A is maximal if and

only if R(J + rA) = E∗ for all r > 0.

Let E be a reflexive, strictly convex and smooth Banach space and let A ⊂
E × E∗ be a maximal monotone operator. For r > 0 and x ∈ E, consider

Jrx = {z ∈ E : Jx ∈ Jz + rA(z)}.

We know from [35] that Jrx is a singleton. We denote Jr by Jr = (J + rA)−1J .

We call Jr the resolvent of A for r > 0. For all r > 0, the Yosida approximation
Ar is also defined by

Ar =
1
r
(J − JJr).
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3. A GENERALIZATION OF RAY’S THEOREM

In this section, we try to extend Ray’s theorem in a Hilbert space to that in

a Banach space. Let E be a smooth Banach space, let C be a nonempty closed

convex subset of E and let J be the duality mapping from E into E∗. Then, we
say that T : C → C is of firmly nonexpansive type [22] if

〈Tx− Ty, JTx− JTy〉 ≤ 〈Tx − Ty, Jx − Jy〉

for all x, y ∈ C. We have from (2.3) that for any x, y ∈ C,

〈Tx− Ty, JTx− JTy〉 ≤ 〈Tx − Ty, Jx− Jy〉
⇐⇒ 2〈Tx− Ty, JTx− JTy〉 ≤ 2〈Tx − Ty, Jx − Jy〉
⇐⇒ φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Ty, x)− φ(Tx, x)− φ(Ty, y)
=⇒ φ(Tx, Ty) + φ(Ty, Tx) ≤ φ(Tx, y) + φ(Ty, x).

This means that a firmly nonexpansive type mapping is nonspreading. The following

theorem extends Ray’s theorem in a Hilbert space to that of a Banach space.

Theorem 3.1. Let E be a smooth, strictly convex and reflexive Banach space

and let C be a nonempty closed convex subset of E. Then, the following conditions
are equivalent:

(i) Every firmly nonexpansive type mapping of C into itself has a fixed point in

C;

(ii) C is bounded.

Proof. We know from [22] that if C is bounded, then every firmly nonex-

pansive type mapping of C into itself has a fixed point in C. So, we have that
(ii) implies (i). We will show that (i) implies (ii). Suppose that C is not bounded.

Then the uniform boundedness theorem ensures the existence of x∗ ∈ E∗ such that
supx∈C |x∗(x)| = ∞. Since E is a real Banach space, we have

|x∗(x)| = max{x∗(x),−x∗(x)}

≤ max
{

sup
z∈C

x∗(z), sup
z∈C

{
−x∗(z)

}}

for all x ∈ C. Hence we have that supx∈C x∗(x) = ∞ or supx∈C

{
−x∗(x)

}
= ∞

and hence there exists y∗ ∈ E∗ such that

(3.1) sup
x∈C

y∗(x) = ∞.
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Let us define a function g of E into (−∞,∞] as follows:

g(x) =

{
−y∗(x), if x ∈ C,

∞, if x /∈ C.

Then, g is obviously a proper lower semicontinuous convex function of E into

(−∞,∞]. Further, it follows from (3.1) that

inf
x∈E

g(x) = inf
x∈C

{
−y∗(x)

}
= − sup

x∈C
y∗(x) = −∞.

This implies that g does not have a minimizer in E. For the proper lower semicon-
tinuous convex function g : E → (−∞,∞], the subdifferential ∂g of g is defined

as follows:

∂g(x) = {x∗ ∈ E∗ : g(x) + 〈y − x, x∗〉 ≤ g(y), ∀y ∈ E}

for all x ∈ E. We know from Rockafellar’s theorem (Theorem 2.2) that the subd-
ifferential ∂g of g is a maximal monotone operator of E into E∗. Since g does not

have a minimizer in E, we have that (∂g)−10 = ∅. Further, from the definition of
g, we have that

D(∂g) ⊂ C ⊂ J−1R(J + ∂g) = E.

We can also define the resolvent J1 of ∂g as follows:

J1(x) = {z ∈ E : Jx ∈ Jz + ∂g(z)}, ∀x ∈ E.

We know from [34, 35] that J1 is a single-valued mapping of E into C. Further,
for x, y ∈ C, we have (J1x, A1x), (J1y, A1y) ∈ ∂g. Since ∂g is monotone, we

have

〈J1x − J1y, Jx − JJ1x − (Jy − JJ1y)〉 ≥ 0.

Thus, we have

〈J1x − J1y, JJ1x − JJ1y〉 ≤ 〈J1x − J1y, Jx − Jy〉.

Then, J1 is a firmly nonexpansive type mapping of C into itself. We know that J1

is also as follows:

J1(x) = arg min
y∈E

{g(y) +
1
2
(‖y‖2 − 2〈y, Jx〉)}, ∀x ∈ E.

Further, we have that

0 ∈ ∂g(z) ⇐⇒ Jz ∈ Jz + ∂g(z)
⇐⇒ z = J1z.



The Fixed Point Property and Unbounded Sets in Banach Spaces 739

From (∂g)−10 = F (J1) and (∂g)−10 = ∅, we know that J1 does not have a fixed

point. This means that (i) implies (ii).

Using Theorem 3.1 and Kohsaka and Takahashi [23], we obtain the following

theorem.

Theorem 3.2. Let E be a smooth, strictly convex and reflexive Banach space

and let C be a nonempty closed convex subset of E. Then, the following conditions

are equivalent:

(i) Every nonspreading mapping of C into itself has a fixed point in C;

(ii) C is bounded.

Proof. It follows from Kohsaka and Takahashi [23] that (ii) implies (i). Since

a firmly nonexpansive type mapping is nonspreading, we have from Theorem 3.1

that (i) implies (ii).

Using Theorem 3.1, we obtain the following result in a Hilbert space.

Theorem 3.3. Let H be a Hilbert space and let C be a nonempty closed convex

subset of H . Then, the following conditions are equivalent:

(i) Every firmly nonexpansive mapping of C into itself has a fixed point in C;

(ii) C is bounded.

Proof. Since J =I in a Hilbert space, every firmly nonexpansive type mapping
of C into itself is firmly nonexpansive. From Theorem 3.1, we get the desired

result.

Since a nonexpansive mapping and a hybrid mapping in a Hilbert space are

deduced from a firmly nonexpansive mapping, we have Theorems 1.1 and 1.2 from

Theorem 3.3.
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