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ON |N , pn; δ|k SUMMABILITY FACTORS OF INFINITE SERIES

Hüseyin Bor

Abstract. In this paper a general theorem on |N, pn; δ|k summability
factors, which generalizes a theorem of Bor [3] on |N, pn|k summability
factors, is proved.

1. Introduction

Let
∑

an be a given infinite series with partial sums (sn). Let (pn) be a
sequence of positive numbers such that

Pn =
n∑

v=0

pv →∞ as n →∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

un =
1
Pn

n∑

v=0

pvsv

defines the sequence (un) of the (N, pn) means of the sequence (sn), generated
by the sequence of coefficients (pn) (see [5]) .

The series
∑

an is said to be summable |N, pn|k, k ≥ 1, if (see [1])

∞∑

n=1

(Pn/pn)k−1|un − un−1|k < ∞,

and it is said to be summable |N, pn; δ|k, k ≥ 1 and δ ≥ 0, if (see [2])

∞∑

n=1

(Pn/pn)δk+k−1|un − un−1|k < ∞.
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In the special case when δ = 0 (resp. pn = 1 for all values of n) |N, pn; δ|k
summability is the same as |N, pn|k (resp. |C, 1; δ|k) summability.

Quite recently Bor [3] proved the following theorem for |N, pn|k summa-
bility factors of infinite series.

Theorem A. Let (pn) be a sequence of positive numbers such that

Pn = O(npn) as n →∞.(1)

Let (Xn) be a positive non-decreasing sequence and suppose that there exists
sequences (λn) and (βn) such that

|∆λn| ≤ βn;(2)

βn → 0 as n →∞;(3)

∞∑

n=1

n|∆βn|Xn < ∞;(4)

|λn|Xn = O(1) as n →∞.(5)

If

m∑

n=1

pn

Pn
|tn|k = O(Xm) as m →∞,(6)

where

tn =
1

n + 1

n∑

v=1

vav,(7)

then the series
∑

anλn is summable |N, pn|k, k ≥ 1.

The aim of this paper is to generalize Theorem A for |N, pn; δ|k summa-
bility. Now, we shall prove the following theorem.

Theorem. Let (Xn) be a positive non-decreasing sequence and the se-
quences (λn) and (βn) be such that conditions (2)-(5) of Theorem A are sat-
isfied. If (pn) is a sequence such that condition (1) of Theorem A is satisfied
and

∞∑

n=v+1

(
Pn

pn

)δk−1 1
Pn−1

= O

{(
Pv

pv

)δk 1
Pv

}
,(8)
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m∑

n=1

(
Pn

pn

)δk−1

|tn|k = O(Xm) as m →∞,(9)

where (tn) is as in (7), then the series
∑

anλn is summable |N, pn; δ|k for
k ≥ 1 and 0 ≤ δ < 1/k.

Remark: It may be noted that, if we take δ = 0 in this theorem, then
we get Theorem A. In this case condition (9) reduces to condition (6) and
condition (8) reduces to

∞∑

n=v+1

pn

PnPn−1
= O(1/Pv),

which always holds.

We need the following lemma for the proof of our theorem.

Lemma ([4]). If the conditions (2)-(5) on (Xn), (βn) and (λn) are sat-
isfied, then

nβnXn = O(1) as m →∞,(10)

∞∑

n=1

βnXn < ∞.(11)

2. Proof of the Theorem

Let (Tn) be the sequence of (N, pn) means of the series
∑

anλn. Then, by
definition, we have

Tn =
1
Pn

n∑

v=0

pv

v∑

i=0

aiλi =
1
Pn

n∑

v=0

(Pn − Pv−1)avλv.

Then, for n ≥ 1, we have

Tn − Tn−1 =
pn

PnPn−1

n∑

v=1

Pv−1avλv =
pn

PnPn−1

n∑

v=1

Pv−1λv

v
vav.
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Using Abel’s transformation, we get

Tn − Tn−1 =
(n + 1)

nPn
pntnλn − pn

PnPn−1

n−1∑

v=1

pvtvλv
v + 1

v

+
pn

PnPn−1

n−1∑

v=1

Pv∆λvtv
v + 1

v
+

pn

PnPn−1

n−1∑

v=1

Pvtvλv+1
1
v

= Tn,1 + Tn,2 + Tn,3 + Tn,4, say.

Since |Tn,1 + Tn,2 + Tn,3 + Tn,4|k ≤ 4k
(
|Tn,1|k + |Tn,2|k + |Tn,3|k + |Tn,4|k

)
, to

complete the proof of the theorem, it is sufficient to show that

∞∑

n=1

(Pn/pn)δk+k−1|Tn,r|k < ∞, for r = 1, 2, 3, 4.

Since λn = O(1/Xn) = O(1), by (5), we get that

m+1∑

n=2

(Pn/pn)δK+k−1|Tn,1|k = O(1)
m∑

n=1

|λn|k−1|λn|(Pn/pn)δk−1|tn|k

= O(1)
m∑

n=1

|λn|
(

Pn

pn

)δk−1

|tn|k

= O(1)
m−1∑

n=1

∆|λn|
n∑

v=1

(
Pv

pv

)δk−1

|tv|k

+O(1)|λm|
m∑

n=1

(
Pn

pn

)δk−1

|tn|k

= O(1)
m−1∑

n=1

|∆λn|Xn + O(1)|λm|Xm

= O(1)
m−1∑

n=1

βnXn + O(1)|λm|Xm

= O(1) as m →∞, by(2), (9) and (11).

Now, applying Hölder’s inequality with indices k and ḱ, where 1
k + 1

ḱ
= 1, as
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in Tn,1, we have that

m+1∑
n=2

(Pn/pn)δk+k−1|Tn,2|k

= O(1)
m+1∑
n=2

(Pn/pn)δk−1 1
Pn−1

{
n−1∑
v=1

pv|tv|k|λv|k
}
×

{
1

Pn−1

n−1∑
v=1

pv

}k−1

= O(1)
m∑

v=1

pv|λv|k−1|λv| |tv|k
m+1∑

n=v+1

(Pn/pn)δk−1 1
Pn−1

= O(1)
m∑

v=1

|λv|(Pv/pv)δk−1|tv|k = O as m →∞.

Using the fact that Pv = O(vpv), by (1), and nβn = O(1/Xn) = O(1), by (10),
we have that

m+1∑

n=2

(Pn/pn)δk+k−1|Tn,3|k

= O(1)
m+1∑

n=2

(Pn/pn)δk−1 1
Pn−1

{
n−1∑

v=1

(vβv)kpv|tv|k
}
×

{
1

Pn−1

n−1∑

v=1

pv

}k−1

= O(1)
m∑

v=1

(vβv)(vβv)k−1pv|tv|k
∞∑

n=v+1

(Pn/pn)δk−1 1
Pn−1

= O(1)
m∑

v=1

(vβv)
(

Pv

pv

)δk−1

|tv|k

= O(1)
m−1∑

v=1

∆(vβv)
v∑

i=1

(Pi/pi)δk−1|ti|k + O(1)mβm

m∑

v=1

(Pv/pv)δk−1|tv|k

= O(1)
m−1∑

v=1

|∆(vβv)|Xv + O(1)mβmXm

= O(1)
m−1∑

v=1

vXv|∆βv|+ O(1)
m−1∑

v=1

βv+1Xv + O(1)mβmXm

= O(1) as m →∞,

by (2), (4), (8), (9), (10) and (11).
Finally, using the fact that Pv = O(vpv), by (1), as in Tn,1 and Tn,2, we

have that
m∑

n=1

(Pn/pn)δk+k−1|Tn,4|k = O(1)
m∑

v=1

|λv+1|(Pv/pv)δk−1|tv|k

= O(1) as m →∞.
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Therefore, we get that

m∑

n=1

(Pn/pn)δk+k−1|Tn,r|k = O(1) as m →∞, for r = 1, 2, 3, 4.

This completes the proof of the theorem. If we take pn = 1 for all values of
n in this theorem, then we get a result concerning the |C, 1; δ|k summability
methods.
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