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EXISTENCE AND NONEXISTENCE OF GLOBAL SOLUTIONS
FOR A NONLINEAR WAVE EQUATION

Shun-Tang Wu and Long-Yi Tsai

Abstract. The initial boundary value problem for a Kirchhoff type plate
equation in a bounded domain is considered. We prove the existence of global
solutions by the similar arguments as in [11]. We derive the blow-up properties
of solutions by energy method. Moreover, the estimates of the lifespan of
solutions are also given.

1. INTRODUCTION

In this paper we consider the initial boundary value problem for the following
nonlinear wave equation :

(1.1) utt + α∆2u − M(‖∇u‖2
2)∆u = f(u),

with initial conditions

(1.2) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

and boundary condition

(1.3) u(x, t) =
∂

∂ν
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

where ∆ =
N∑

j=1

∂2

∂x2
j

and Ω ⊂ R
N , N ≥ 1, is a bounded domain with a smooth

boundary ∂Ω so that Divergence theorem can be applied. Here α > 0, f is a
nonlinear function like f(u) = |u|p−2 u, p > 2, M(s) is a positive locally Lipschitz
function like M(s) = m0 + bsγ , m0 > 0, b ≥ 0, γ ≥ 1 and s ≥ 0, ν is the normal
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unit vector pointing toward the exterior of Ω and ∂
∂ν denotes the normal derivative

on ∂Ω.
First, we mention some of the known results related to the problem (1.1). When

f ≡ 0, Woinowsky-Krieger [26] first proposed the problem (1.1) − (1.3) in the
one-dimensional case as a model to describe the dynamic buckling of a hinged
extensible beam under an axial force. The derivation of this model also can be
found in [10, 9, 23]. Dickey [9] considered (1.1) with hinged boundary condition
and the existence of solution was established. Later, Ball [2] extended the work of
Dickey to both the cases of hinged ends and that of clamped ends, and he obtained
the existence of weak solutions for (1.1) by using the technique of Lions [18].
For the general space dimension N , Mederiors [20] considered the problem (1.1)
with f ≡ 0 in abstract framework. When the influence of the internal damping is
considered, the problem (1.1) was treated by Brito [3] and Biler [5] for the linear
damping case. On the other hand, for the nonlinear damping case, Komémou-
Patcheu [17], Vasconcellos [24] and Aassila [1] investigated the problem (1.1) with
f ≡ 0. Recently, Cavalcanti et. al. [7] considered the problem (1.1) with nonlinear
damping and internal force for general domains, and obtain the global existence
of weak solutions. Concerning the nonexistence of global solutions, Kirane et. al.
[15] and Can [6] studied the blow-up properties of (1.1) with a dynamic boundary
condition in the case that M ≡ 0. Later, Guedda and Labani [12] discussed the
nonexistence result of the problem (1.1) for the nontrival function M .

When α ≡ 0 in the equation (1.1), it is Kirchhoff equation which has been
modeled in describing the nonlinear vibrations of an elastic string. Kirchhoff [16]
was the first one to study the oscillations of stretched strings and plates. In this
direction, there has been a large literatures concerning the existence and nonexistence
of global solutions and some properties of solutions with initial and null Dirchlet
boundary conditions [13, 14, 21, 27].

In this paper, we shall discuss the existence, uniqueness, global existence and
blow-up properties of solutions for the problem (1.1)− (1.3) in a bounded domain
Ω in R

N . The content of this paper is organized as follows. In section 2, we
give some lemmas and assumptions which will be used later. In section 3, we first
use Galerkin approximation method to study the existence of the linear problem
(3.1) − (3.3). Then, we obtain the local existence of regular solutions for the
problem (1.1)− (1.3) by using contraction mapping principle, and the uniqueness
of solution is also given. By using density arguments, we derive the local existence
of weak solution in Theorem 3.3. In section 4, we first define an energy function
E(t) in (4.7) and show that it is a constant function of t. Then, we obtain Theorem
4.4, which shows global existence of solutions under some restrictions on the initial
data. In the last section, the blow-up properties of local solution for the problem
(1.1) − (1.3) with small positive initial energy are obtained by using the direct
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method [19]. Moreover, the estimates for the blow-up time T ∗ are also given. In
this way, we can extend the result of [2] to nonzero external force term f(u) and
to more general M(s), and the result of [20] to nonzero external force term f(u).

2. PRELIMINARY RESULTS

In this section, we shall give some lemmas and assumptions which will be used
throughout this work.

Lemma 2.1. (Sobolev-Poincaré inequality [22]). If 2 ≤ p ≤ 2N
[N−2m]+

, then

‖u‖p ≤ B1

∥∥∥(−∆)
m
2 u

∥∥∥
2
, for u ∈ D

(
(−∆)

m
2

)
,

holds with some constant B1, where we put [a]+ = max{0, a}, 1
[a]+

= ∞ if

[a]+ = 0 and denote ‖·‖p to be the norm of Lp(Ω).

Lemma 2.2. [19]. Let δ > 0 and B(t) ∈ C2(0,∞) be a nonnegative function
satisfying

(2.1) B′′(t) − 4(δ + 1)B′(t) + 4(δ + 1)B(t) ≥ 0.

If

(2.2) B′(0) > r2B(0),

with r2 = 2(δ + 1)− 2
√

(δ + 1)δ, then

B′(t) > 0,

for t > 0.

Lemma 2.3. [19]. If J(t) is a nonincreasing function on [t 0,∞), t0 ≥ 0 and
satisfies the differential inequality

(2.3) J ′(t)2 ≥ a + bJ(t)2+ 1
δ for t ≥ t0,

where a > 0 and b ∈ R, then there exists a finite time T ∗ such that

lim
t→T ∗−

J(t) = 0

and the upper bound of T ∗ is estimated respectively by the following cases :

(i) If b < 0 and J (t0) < min
{
1,

√
a
−b

}
then

T ∗ ≤ t0 +
1√−b

ln

√
a
−b√

a
−b − J(t0)

.
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(ii) If b = 0, then

T ∗ ≤ t0 +
J(t0)√

a
.

(iii) If b > 0, then

T ∗ ≤ J(t0)√
a

or
T ∗ ≤ t0 + 2

3δ+1
2δ

δc√
a
{1 − [1 + cJ(t0)]

−1
2δ },

where c = ( b
a)

δ
2+δ .

Now, we state the hypothesis on f :
(A1) f(0) = 0 and there is a positive constant k1 such that

|f(u) − f(υ)| ≤ k1 |u − υ|
(
|u|p−2 + |υ|p−2

)
,

for u, υ ∈ R and 2 < p ≤ 2(N−3)
N−4 ; (2 < p, if N ≤ 4) .

3. LOCAL EXISTENCE

In this section, we shall discuss the local existence of solutions for wave equa-
tions (1.1)− (1.3) by using contraction mapping principle.

An important tool in the proof of local existence Theorem 3.2 is based on
studying the following linear problem :

(3.1) utt + α∆2u − µ(t)∆u = f1(x, t) on Ω × (0, T ),

with initial conditions

(3.2) u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ Ω,

and Dirichlet boundary condition

(3.3) u (x, t) =
∂

∂ν
u(x, t) = 0, x ∈ ∂Ω, t > 0.

Here, T > 0, f1 is some fixed forcing term on Ω×(0, T ), and µ is a positive locally
Lipschitz function on [0,∞) with µ(t) ≥ m0 > 0 for t ≥ 0.

Lemma 3.1. Suppose that u0 ∈ U, u1 ∈ H1
0 (Ω)∩H2(Ω) and f1 ∈ W 1,2(0, T ;

L2(Ω)). Then the problem (3.1)− (3.3) admits a unique solution u such that
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u ∈ L∞(0, T ; U), ut ∈ L∞(0, T ; H1
0(Ω) ∩ H2(Ω))

and
utt ∈ L∞(0, T ; L2(Ω)),

where
U =

{
u ∈ H2

0 (Ω); ∆2u ∈ L2(Ω)
}

.

Proof. Let (wn)n∈N be a basis in U and let Vn be the space generated by
w1,· · · , wn, n = 1, 2, · · · . Let us consider

un(t) =
n∑

i=1

rin(t)wi

to be the solution of the following approximate problem corresponding to (3.1)−
(3.3)

(3.4)

∫
Ω

u′′
n(t)wdx + α

∫
Ω

∆un(t)∆wdx + µ(t)
∫

Ω
∇un(t) · ∇wdx

=
∫

Ω

f1(x, t)wdx for w ∈ Vn,

with initial conditions

(3.5) un(0) = u0n ≡
n∑

i=1

pinwi → u0 in U,

and

(3.6) u′
n(0) = u1n ≡

n∑
i=1

qinwi → u1 in H1
0 (Ω) ∩ H2(Ω),

where pin =
∫
Ω u0widx, qin =

∫
Ω u1widx and u′ = ∂u

∂t .
By standard methods in differential equations [8], we prove the existence of solutions
to (3.4)−(3.6) on some interval [0, tn), 0 < tn < T . In order to extend the solution
of (3.4)−(3.6) to the whole interval [0, T ], we need the following a priori estimates.

Step 1. Setting w = 2u′
n(t) in (3.4), we obtain

(3.7)

d

dt

(∥∥u′
n(t)

∥∥2

2
+ α ‖∆un‖2

2 + µ(t) ‖∇un(t)‖2
2

)
= 2

∫
Ω

f1(x, t)u′
n(t)dx + µ′(t) ‖∇un(t)‖2

2 .

Note that by Hölder inequality and Young’s inequality, we have

(3.8) 2
∣∣∣∣∫

Ω
f1(x, t)u′

n(t)dx

∣∣∣∣ ≤ ‖f1‖2
2 +

∥∥u′
n(t)

∥∥2

2
.
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Then, by integrating (3.7) over (0, t) and using (3.8), we obtain

(3.9)

∥∥u′
n(t)

∥∥2

2
+ α ‖∆un‖2

2 + µ(t) ‖∇un(t)‖2
2

≤ c1 +
∫ t

0

(
1 +

|µ′(s)|
µ(s)

)[∥∥u′
n(s)

∥∥2

2
+ µ(s) ‖∇un(s)‖2

2

]
dt,

where c1 = ‖u1n‖2
2 + α ‖∆u0n‖2

2 + µ(0) ‖∇u0n‖2
2 +

∫ T
0 ‖f1‖2

2 dt.

We observe that conditions (3.5) and (3.6) and the assumption of f1 implies that c1

is bounded. Thus, by employing Gronwall’s Lemma, we see that

(3.10)
∥∥u′

n(t)
∥∥2

2
+ α ‖∆un‖2

2 + µ(t) ‖∇un(t)‖2
2 ≤ L1,

for t ∈ [0, T ] and L1 is a positive constant independent of n ∈ N.

Step 2. To estimate u′′
n(0) in L2-norm, we let t = 0 in (3.4) and put w =

2u′′
n(0), we deduce that∥∥u′′

n(0)
∥∥2

2
≤ ∥∥u′′

n(0)
∥∥

2

[
α

∥∥∆2u0n

∥∥
2
+ µ(0) ‖∆u0n‖2 + ‖f1‖2

]
.

Thus, using (3.5) and (3.6), there exists a positive constant L2 independent of n ∈ N
such that

(3.11)
∥∥u′′

n(0)
∥∥

2
≤ L2.

Next, we are going to give an upper bound for ‖u′′n(t)‖2 .

Step 3. Taking the derivative of (3.4) with respect to t and setting w = 2u′′
n(t),

we have

(3.12)

d

dt

(∥∥u′′
n(t)

∥∥2

2
+ α

∥∥∆u′
n(t)

∥∥2

2
+ µ(t)

∥∥∇u′
n(t)

∥∥2

2

)
=−2µ′(t)

∫
Ω

∇un(t)·∇u′′
n(t)dx+µ′(t)

∥∥∇u′
n(t)

∥∥2

2
+2

∫
Ω

f ′
1(x, t)u′′

n(t)dx.

By Hölder inequality and Young’s inequality, we note that

(3.13) 2
∣∣∣∣µ′(t)

∫
Ω

∇un(t) · ∇u′′
n(t)dx

∣∣∣∣ ≤ M2
1

(∥∥∆u′
n

∥∥2

2
+

∥∥u′′
n

∥∥2

2

)
and we also get

(3.14) 2
∣∣∣∣∫

Ω
f ′
1(x, t)u′′

n(t)dx

∣∣∣∣ ≤ ∥∥f ′
1

∥∥2

2
+

∥∥u′′
n

∥∥2

2
,

where M1 = sup
0≤t≤T

|µ′(t)| .
Thus, by integrating (3.12) over (0, t) and using (3.13), (3.14), (3.11) and (3.10),
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we obtain ∥∥u′′
n(t)

∥∥2

2
+ α

∥∥∆u′
n(t)

∥∥2

2
+ µ(t)

∥∥∇u′
n(t)

∥∥2

2

≤ c2 +
∫ t

0

(
2 +

|µ′(s)|
µ(s)

)(∥∥u′′
n(s)

∥∥2

2
+ µ(s)

∥∥∇u′
n(s)

∥∥2

2

)
ds,

where c2 = µ(0) ‖∇u1n‖2
2 + L2

2 + α ‖∆u1n‖2
2 + TL2

1M
2
1 +

∫ T
0 ‖f ′

1‖2
2 dt.

Then, by Gronwall’s Lemma and using (3.5)− (3.6), we have

(3.15)
∥∥u′′

n(t)
∥∥2

2
+ α

∥∥∆u′
n(t)

∥∥2

2
+ µ(t)

∥∥∇u′
n(t)

∥∥2

2
≤ L3,

for all t ∈ [0, T ] and L3 is a positive constant independent of n ∈ N.
Therefore, from (3.10) and (3.15), we see that

(3.16) ui → u weak-* in L∞ (
0, T ; H2

0(Ω)
)
,

(3.17) u′
i → u′ weak-* in L∞ (

0, T ; H1
0(Ω) ∩ H2(Ω)

)
,

(3.18) u′
i → u′ weak-* in L∞ (

0, T ; L2(Ω)
)
,

(3.19) u′′
i → u′′ weak-* in L∞ (

0, T ; L2(Ω)
)
.

Thus, by passing the limit in (3.4) and using (3.16)− (3.19), we obtain∫ T

0

∫
Ω

(
utt + α∆2u − µ(t)∆u

)
vθdxdt =

∫ T

0

∫
Ω

f1(x, t)vθdxdt,

for all θ ∈ D (0, T ) and for all v ∈ U. From above identity, we have

(3.20) utt + α∆2u − µ(t)∆u = f1(x, t) in D′ (Ω × (0, T )) .

On the other hand, since u′′, µ∆u and f1 ∈ L∞ (
0, T ; L2(Ω)

)
and by (3.20), we

deduce that ∆2u ∈ L∞ (
0, T ; L2(Ω)

)
, so u ∈ L∞ (0, T ; U) .

In addition

utt + α∆2u − µ(t)∆u = f1(x, t) in L∞ (
0, T ; L2(Ω)

)
.

Next, we want to show the uniqueness of (3.1) − (3.3). Let u(1), u(2) be two
solutions of (3.1)− (3.3). Then z = u(1) − u(2) satisfies

(3.21)
∫

Ω
z′′(t)wdx + α

∫
Ω

∆z∆wdx + µ(t)
∫

Ω
∇z(t) · ∇wdx = 0 for w ∈ U,
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z(x, 0) = 0, z′(x, 0) = 0, x ∈ Ω,

z(x, t) =
∂

∂ν
z(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

Setting w = 2z′(t) in (3.21), then as in deriving (3.10), we see that

∥∥z′(t)
∥∥2

2
+ µ(t) ‖∇z(t)‖2

2 + α ‖∆z(t)‖2
2

≤
∫ t

0

[
1 +

|µ′(s)|
µ(s)

] [∥∥z′(s)
∥∥2

2
+ µ(s) ‖∇z(s)‖2

2

]
ds.

Thus, by employing Gronwall’s Lemma, we conclude that∥∥z′(t)
∥∥

2
= ‖∇z(t)‖2 = ‖∆z(t)‖2 = 0 for all t ∈ [0, T ].

Therefore, we have the uniqueness.
Now, we are ready to to show the local existence of the problem (1.1)− (1.3).

Theorem 3.2. (Regular Solution). Suppose that (A1) holds, and that u0 ∈ U,

u1 ∈ H1
0 (Ω)∩H2(Ω), then there exists a unique solution u of (1.1)−(1.3) satisfying

u ∈ L∞(0, T ; U), ut ∈ L∞(0, T ; H1
0(Ω) ∩ H2(Ω))

and
utt ∈ L∞(0, T ; L2(Ω)).

Proof. Define the following two-parameter space :

XT,R0 =

{
υ ∈ L∞(0, T ; H2

0(Ω)), υt ∈ L∞(0, T ; H1
0(Ω) ∩ H2(Ω)) :

e(υ(t)) ≤ R2
0, t ∈ [0, T ], with υ(0) = u0 and υt(0) = u1.

}
,

for T > 0, R0 > 0 and e(υ(t)) ≡ ‖υt(t)‖2
2 + ‖∆υ(t)‖2

2. Then XT,R0 is a complete
metric space with the distance

(3.22) d(y, z) = sup
0≤t≤T

[
‖∆ (y − z)‖2

2 + ‖(y − z)t‖2
2

]1
2
.

where y, z ∈ XT,R0.

Given υ ∈ XT,R0, we consider the following problem

(3.23) utt + α∆2u − M(‖∇υ‖2
2)∆u = f(υ),

with initial conditions

(3.24) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,
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and boundary condition

(3.25) u(x, t) =
∂

∂ν
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

First of all, we observe that

(3.26)

d

dt
M(‖∇υ‖2

2) = 2M ′(‖∇υ‖2
2)

∫
Ω

∇υ · ∇υtdx

≤ 2M2 ‖∆υ‖2 ‖υt‖2

≤ M2R
2
0,

where M2 = sup{|M ′(s)| ; 0 ≤ s ≤ B2
1R2

0}. And by (A1), we note that f ∈
W 1,2(0, T ; L2(Ω)). Thus, by Lemma 3.1, there exists a unique solution u of (3.23)−
(3.25). We define the nonlinear mapping Sυ = u, and then, we shall show that
there exist T > 0 and R0 > 0 such that

(i) S : XT,R0 → XT,R0,

(ii) S is a contraction mapping in XT,R0 with respect to the metric d(·, ·)
defined in (3.22).

Multiplying (3.23) by 2ut, and then integrating it over Ω × (0, t), we obtain

(3.27)
d

dt
e1(u(t)) = I1 + I2,

where

(3.28)
e1(u(t)) = ‖ut‖2

2 + α ‖∆u‖2
2 + M(‖∇υ‖2

2) ‖∇u‖2
2 ,

I1 =
(

d

dt
M(‖∇υ‖2

2)
)
‖∇u‖2

2 ,

and
I2 = 2

∫
Ω

f(υ)utdx.

By (3.26) and (3.28), we have

(3.29) |I1| ≤ M2R
2
0e1(u(t)),

and by (A1), Hölder inequality and Lemma 2.1, we get

(3.30)

|I2| ≤ 2k1

∫
Ω

|υ|p−1 |ut| dx

≤ 2k1B
p−1
1 ‖∆υ‖p−1

2 ‖ut‖2

≤ 2k1B
p−1
1 Rp−1

0 e1(u(t))
1
2 .
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Then, by integrating (3.27) over (0, t) and using (3.29)− (3.30), we deduce

e1(u(t)) ≤ e1(u0) +
∫ t

0

(
2M2R

2
0e1(u(s)) + 2k1B

p−1
1 Rp−1

0 e1(u(s))
1
2

)
ds.

Thus, by Gronwall’s Lemma, we have

(3.31) e1(u(t)) ≤ χ(u0, u1, R0, T )2e2M2R2
0T ,

where
χ(u0, u1, R0, T ) =

√
e1(u0) + k1B

p−1
1 Rp−1

0 T.

Hence, from (3.31) and (3.28), we obtain

e(u(t)) ≤ k2χ(u0, u1, R0, T )2e2M2R2
0T ,

where k2 = 1
min{1,α}.

Therefore if the parameters T and R0 satisfy

(3.32) k2χ(u0, u1, R0, T )2e2M2R
2
0T ≤ R2

0,

then S maps XT,R0 into itself.
Next, we will show that S is a contraction mapping with respect to the metric

d(·, ·). Let υi ∈ XT,R0 and u(i) ∈ XT,R0, i = 1, 2 be the corresponding solution to
(3.23)− (3.25). Let w(t) =

(
u(1) − u(2)

)
(t), then w satisfy the following system :

(3.33)
wtt + α∆2w − M

(‖∇υ1‖2
2

)
∆w

= f(υ1) − f(υ2) +
[
M

(‖∇υ1‖2
2

) − M
(‖∇υ2‖2

2

)]
∆u(2),

with initial conditions

(3.34) w(0) = 0, wt(0) = 0,

and boundary condition

(3.35) w(x, t) =
∂

∂ν
w(x, t) = 0, x ∈ ∂Ω and t ≥ 0.

Multiplying (3.33) by 2wt, and integrating it over Ω, we have

(3.36)
d

dt

[
‖wt‖2

2 + M(‖∇υ1‖2
2) ‖∇w(t)‖2

2 + α ‖∆w‖2
2

]
= I3 + I4 + I5,

where
I3 = 2

[
M

(‖∇υ1‖2
2

) − M
(‖∇υ2‖2

2

)] ∫
Ω

∆u(2)wtdx,
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I4 = 2
∫

Ω
(f(υ1)− f(υ2))wtdx,

and
I5 =

(
d

dt
M(‖∇υ1‖2

2)
)
‖∇w(t)‖2

2 .

To proceed the estimates of Ii, i = 3, 4, 5, we observe that

(3.37)
|I3| ≤ 2L (‖∇υ1‖2 + ‖∇υ2‖2) ‖∇υ1 −∇υ2‖2

∥∥∥∆u(2)
∥∥∥

2
‖wt‖2

≤ 4LB2
1R2

0e(υ1 − υ2)
1
2 e(w(t))

1
2 ,

(3.38) |I4| ≤ 4k1B
p
1Rp−2

0 e(υ1 − υ2)
1
2 e(w(t))

1
2 ,

and

(3.39) |I5| ≤ M2R
2
0e(w(t)),

where L = L(R0) is the Lipschitz constant of M(r) in [0, R0].
Thus, by using (3.37)− (3.39) in (3.36), we get

(3.40)
d

dt

[
‖wt‖2

2 + M(‖∇υ1‖2
2) ‖∇w(t)‖2

2 + α ‖∆w‖2
2

]
≤ 2M2R

2
0e(w(t)) + c3e(υ1 − υ2)

1
2 e(w(t))

1
2 ,

where c3 = 4
(
LB2

1R2
0 + k1B

p
1Rp−2

0

)
.

Then, integrating (3.40) over (0, t) and using (3.34)− (3.35), we deduce

(3.41) e(w(t)) ≤
∫ t

0

[2M2R
2
0e(w(s)) + c3e(υ1 − υ2)

1
2 e(w(s))

1
2 ]ds.

Thus, by Gronwall’s Lemma, we obtain

e(w(t)) ≤ c2
3T

2e2M2R2
0T sup

0≤t≤T
e(υ1 − υ2).

By (3.22), we have

(3.42) d(u1, u2) ≤ C(T, R0)
1
2 d(υ1, υ2),

where
C(T, R0) = c2

3T
2e2M2B2

1R2
0T .

Hence, under inequality (3.32), S is a contraction mapping if C(T, R0) < 1. Indeed,
we choose R0 sufficiently large and T sufficiently small so that (3.32) and (3.42)
are satisfied at the same time. By applying Banach fixed point theorem, we obtain
the local existence result.
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Next, we are in condition to show the existence of weak solution for the problem
(1.1)− (1.3).

Theorem 3.3. (Weak Solution). Supposed that (A1) holds and that u0 ∈ H2
0 (Ω)

and u1 ∈ L2(Ω). Then the problem (1.1) − (1.3) possesses a unique solution u
such that

u ∈ C
(
[0, T ]; H2

0(Ω)
) ∩ C1

(
[0, T ]; L2(Ω)

)
.

Proof. Since U × (
H1

0 (Ω) ∩ H2(Ω)
)

is dense in H 2
0 (Ω)× L2(Ω), there exists

{um
0 , um

1 } ⊂ U × H1
0 (Ω) ∩ H2(Ω) such that {um

0 , um
1 } → {u0, u1} in H2

0 (Ω) ×
L2(Ω) as m → ∞.

By Theorem 3.2, for each m ∈ N, there exists a unique solution um such that
um ∈ L∞(0, T ; U), u′

m ∈ L∞(0, T ; H1
0(Ω) ∩ H2(Ω)) and u′′

m ∈ L∞(0, T ; L2(Ω))
satisfies

(3.43) u′′
m + α∆2um − M(‖∇um‖2

2)∆um = f(um),

(3.44) um(x, 0) = um
0 (x), u′

m(x, 0) = um
1 (x), x ∈ Ω,

(3.45) um(x, t) =
∂

∂ν
um(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

By using similar arguments as in the Step 1 of Lemma 3.1, we deduce

(3.46)
∥∥u′

m(t)
∥∥2

2
+ α ‖∆um(t)‖2

2 + M̂
(
‖∇un(t)‖2

2

)
≤ L

for all t ∈ [0, T ] and L is a positive constant independent of m ∈ N, where
M̂(s) =

∫ s
0 M(r)dr.

Let m2 ≥ m1 be two natural numbers and consider zm = um2−um1 . Repeating
similar discussions used in (3.33) − (3.40) and observing that {um

0 }, {um
1 } are

Cauchy sequence in U and H1
0 (Ω) ∩ H2(Ω), respectively, we, then, have

(3.47)
∥∥z′m(t)

∥∥2

2
+ M

(
‖∇zm2‖2

2

)
‖∇zm‖2

2 + α ‖∆zm‖2
2 → 0,

as m → ∞, for all t ∈ [0, T ].
Therefore, from (3.46) and (3.47), we see that

um → u in C
(
[0, T ] ; H2

0(Ω)
)
,

u′
m → u′ in C

(
[0, T ] ; L2(Ω)

)
,

um → u weak-* in L∞ (
0, T ; H2

0(Ω)
)
,

u′
m → u′ weak-* in L∞ (

0, T ; L2(Ω)
)
.
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By the above convergence results, it is sufficient to to pass the limit in (3.43), we
obtain

utt + α∆2u − M
(
‖∇u‖2

2

)
∆u = f(u) in L∞(0, T ; H−2(Ω)).

The uniqueness of weak solutions can be obtained by using the similar discus-
sions as in [4]. We omit the details.

4. GLOBAL EXISTENCE

In this section, we consider the global existence of solutions for a kind of the
problem (1.1)− (1.3) :

(4.1) utt + α∆2u − M(‖∇u‖2
2)∆u = |u|p−2 u, p > 2,

(4.2) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(4.3) u(x, t) =
∂

∂ν
u(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

Let

(4.4) I1(t) ≡ I1(u(t)) = α ‖∆u‖2
2 + m0 ‖∇u‖2

2 − ‖u‖p
p,

(4.5) I2(t) ≡ I2(u(t)) = α ‖∆u‖2
2 + M(‖∇u‖2

2) ‖∇u‖2
2 − ‖u‖p

p,

and

(4.6) J(t) ≡ J(u(t)) =
α

2
‖∆u‖2

2 +
1
2
M̂

(
‖∇u‖2

2

)
− 1

p
‖u‖p

p,

for u(t) ∈ H2
0 (Ω), t ≥ 0 and M̂(s) =

∫ s
0 M(r)dr.

We define the energy of the solution u of (4.1)− (4.3) by

(4.7) E(t) =
1
2
‖ut‖2

2 + J(t).

Lemma 4.1. E(t) is a constant function on [0, T ].

Proof. Multiplying (4.1) by ut, integrating by parts over Ω × (0, t), and using
the boundary conditions (4.3), we obtain

E(t) = E(0), for t ∈ [0, T ].

Remark. By (4.6), (4.7), the assumption of M and Lemma 2.1, we have

(4.8)
E (t) =

1
2
‖ut‖2

2 +
α

2
‖∆u‖2

2 +
1
2
M̂

(
‖∇u‖2

2

)
− 1

p
‖u‖p

p

≥ 1
2
l‖�u‖2

2 −
1
p
‖u‖p

p, t ≥ 0,
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where l = αB−2
1 + m0 and B1 is the Sobolev’s constant given in Lemma 2.1.

By Poincaré inequality, we get

(4.9) E(t) ≥ G(‖�u(t)‖2), t ≥ 0,

where

(4.10) G(λ) =
1
2
lλ2 − Bp

1

p
λp.

Note that G(λ) has the maximum at λ1 =
(

l
B

p
1

) 1
p−2 and the maximum value E1 is

(4.11) E1 = G (λ1) = l
p

p−2

(
1
2
− 1

p

)
B

−2p
p−2

1 .

Adapting the idea of Vitillaro [25], we have the following Lemma:

Lemma 4.2. Assume that E (0) < E1. Then

(i) if ‖�u0‖2 < λ1, then ‖�u (t)‖2 < λ1 for t ≥ 0.

(ii) If ‖�u0‖2 > λ1, then there exists λ2 > λ1 such that ‖�u (t)‖2 ≥ λ2 for
t ≥ 0.

Lemma 4.3. Let u be a solution of (4.1)− (4.3). Assume that 0 < ‖�u 0‖2 <

λ1 and

(4.12) β =
Bp

1

l

(
2p

l(p− 2)
E(0)

)p−2
2

< 1,

then I2(t) > 0, for all t ∈ [0, T ), where l is given in (4.8).

Proof. We note that ‖�u0‖2 < λ1 implies I1(u0) > 0, hence by the continuity
of u(t), we have

(4.13) I1(t) > 0,

for some interval near t = 0. Let tmax > 0 be a maximal time (possibly tmax = T ),
when (4.13) holds on [0, tmax).
From (4.6) and (4.4), we have

(4.14)
J(t) ≥ α

2
‖∆u‖2

2 +
m0

2
‖∇u(t)‖2

2 −
1
p
‖u(t)‖p

p

=
p − 2
2p

[
α ‖∆u‖2

2 + m0 ‖∇u(t)‖2
2

]
+

1
p
I1(t).

From (4.14) and using Poincaré inequality and Lemma 4.1, we get

(4.15) l ‖∇u‖2
2 ≤ 2p

p − 2
J(t) ≤ 2p

p − 2
E(t) =

2p

p − 2
E(0).
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Then, from Poincaré inequality, (4.15) and (4.12), we obtain

(4.16)
‖u‖p

p ≤ Bp
1‖∇u‖p

2 ≤
B

p
1

l

(
2p

l(p− 2)
E(0)

)p−2
2

l ‖∇u‖2
2

= βl ‖∇u‖2
2 < l ‖∇u‖2

2 on [0, tmax).

Thus

(4.17) I1(t) ≥ l ‖∇u‖2
2 − ‖u‖p

p > 0 on [0, tmax).

This implies that we can take tmax = T. But, from (4.4) and (4.5), we see that

I2(t) ≥ I1(t), t ∈ [0, T ].

Therefore, we have I2(t) > 0, for t ∈ [0, T ].

Remark. (4.12) holds if and only if 0 < E(0) < E1.

Next, we want to show that T = ∞, by using the similar arguments as that of
[11].

Theorem 4.4. (Global existence). Assume that u0 ∈ H2
0 (Ω) and u1 ∈ L2(Ω)

with the conditions that 0 < ‖�u0‖2 < λ1 and 0 < E(0) < E1. Then the problem
(4.1)− (4.3) has a unique weak global solution satisfying

u ∈ C
(
0,∞; H2

0 (Ω)
) ∩ C1

(
0,∞; L2(Ω)

)
.

Proof. We define

E2(t) =
1
2
‖ut‖2

2 +
α

2
‖∆u‖2

2 +
1
2
M̂

(
‖∇u(t)‖2

2

)
+

1
p
‖u(t)‖p

p.

Then, from Lemma 4.1, we obtain

(4.19) E ′
2(t) = 2

∫
Ω
|u|p−2 uutdx.

Note that by using (4.11), (4.7) and Lemma 4.1, we have

(4.20) α ‖∆u‖2
2 ≤ 2p

p − 2
J(t) ≤ 2p

p − 2
E(t) =

2p

p − 2
E(0).

On the other hand, by Hölder inequality, Poincaré inequality and (4.20), we get∣∣∣∣∫
Ω
|u|p−2 uutdx

∣∣∣∣ ≤ ‖ut‖2 ‖u‖p−1
2(p−1) ,

≤ 1
2
‖ut‖2

2 +
1
2
‖u‖2(p−1)

2(p−1)

≤ 1
2
‖ut‖2

2 +
1
2
B

2(p−1)
1 ‖∆u‖2(p−1)

2

≤ 1
2
‖ut‖2

2 +
B

2(p−1)
1

α

(
2p

α (p − 2)
E(0)

)p−2 α

2
‖∆u‖2

2 .
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Then integrating (4.19) over (0, t) and using above inequality, we obtain

(4.21) E ′
2(t) ≤ c4E2(t),

where c4 = max
{

1,
B

2(p−1)
1

α

(
2p

α(p−2)E(0)
)p−2

}
.

Thus, we deduce
E2(t) ≤ E2(0) exp(c4t),

for any t ≥ 0. Therefore by the standard continuation principle, we have T = ∞.

5. BLOW-UP PROPERTY

In this section, we shall discuss the blow up phenomena for a kind of the problem
(1.1)− (1.3) :

(5.1) utt + α∆2u − M(‖∇u‖2
2)∆u = |u|p−2 u, p > 2.

In order to state our results, we make further assumptions on M :

(A2) There exists a positive constant 0 < δ ≤ p−2
4 such that

(2δ + 1)M̂(s) − M(s)s ≥ 2δm0s, for all s ≥ 0.

Definition. A solution u of (5.1), (1.2) and (1.3) is called blow-up if there
exists a finite time T ∗ such that

(5.2) lim
t→T ∗−

(∫
Ω

u2dx

)−1

= 0.

Now, let u be a solution of (5.1) and define

(5.3) a (t) =
∫

Ω
u2dx, t ≥ 0.

Lemma 5.1. Assume that (A2) holds, then we have

(5.4) a′′ (t) − 4 (δ + 1) ‖ut‖2
2 ≥ Q1(t), for t ≥ 0,

where

(5.5) Q1(t) = −4 (1 + 2δ)E (0) + 4δl ‖∇u‖2
2 .

Proof. Form (5.3), we have
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(5.6) a′ (t) = 2
∫

Ω
uutdx.

By (5.1) and Divergence theorem, we get

(5.7) a′′ (t) = 2 ‖ut‖2
2 − 2α ‖∆u‖2

2 − 2M
(
‖�u‖2

2

)
‖∇u‖2

2 + 2 ‖u‖p
p .

Then, by (4.7), we arrive at

a′′ (t) − 4 (δ + 1) ‖ut‖2
2

= (−4 − 8δ)E (0) + 4δα ‖∆u‖2
2 + 2

(
1 − 2 + 4δ

p

)
‖u‖p

p

+
[
(2 + 4δ) M̂

(
‖�u(t)‖2

2

)
− 2M

(
‖�u(t)‖2

2

)
‖∇u(t)‖2

2

]
.

Therefore by (A2) and Poincaré inequality, we obtain (5.4) .

Now, we consider four different cases on the initial energy E (0) .
(1) If E (0) < 0, then from (5.4), we have

a′ (t) ≥ a′ (0)− 4 (1 + 2δ)E (0) t, t ≥ 0.

Thus we get a′ (t) > 0 for t > t∗1, where

(5.8) t∗1 = max
{

a′ (0)
4 (1 + 2δ)E (0)

, 0
}

.

(2) If E (0) = 0, then a′′ (t) ≥ 0 for t ≥ 0.

Furthermore, if a′ (0) > 0, then a′ (t) > 0, t ≥ 0

(3) If 0 < E(0) < E1 and ‖∇u0‖2 > λ1.
From (5.5) and Lemma 4.2, we see that

(5.9)

Q1(t) = (−4 − 8δ)E (0) + 4δl ‖∇u‖2
2

> (−4 − 8δ)E (0) + 4δl
p

p−2 B
− 2p

p−2

1

= (4 + 8δ)
[
−E (0) +

4δ

4 + 8δ

2p

p − 2
E1

]
.

Then, choosing δ = p−2
4 and from (5.4) and (5.9), we obtain

(5.10) a′′(t) ≥ Q1(t) > k3 > 0,
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where k3 = 2p (E1 − E(0)) .

Thus we get a′ (t) > 0 for t > t∗2, where

(5.11) t∗2 = max
{−a′ (0)

k3
, 0

}
.

(4) For the case that E (0) ≥ E1, we first note that, by using Hölder inequality and
Young’s inequality, we have from (5.6)

(5.12) a′ (t) ≤ a (t) + ‖ut‖2
2 .

Hence by (5.4) and (5.12) , we deduce

a′′ (t) − 4 (δ + 1) a′ (t) + 4 (δ + 1) a (t) + K1 ≥ 0,

where
K1 = (4 + 8δ)E (0) .

Let
b (t) = a (t) +

K1

4(1 + δ)
, t > 0.

Then b (t) satisfies (2.1). By (2.2), we see that if

(5.13) a′ (0) > r2

[
a (0) +

K1

4(1 + δ)

]
,

then a′ (t) > 0, t > 0, here r2 = 2(δ + 1) − 2
√

(δ + 1)δ.
Consequently, we have

Lemma 5.2. Assume that (A2) holds and that either one of the following state-
ments is satisfied:

(i) E (0) < 0,

(ii) E (0) = 0 and a′ (0) > 0,

(iii) 0 < E(0) < E1 and ‖∇u0‖2 > λ1,

(iv) E1 ≤ E (0) and (5.13) holds,

then a′ (t) > 0 for t > t0, where t0 = t∗1 is given by (5.8) in case (i) , t0 = t∗2 is
given by (5.11) in case (iii) and t0 = 0 in cases (ii) and (iv).

Now, we will find the estimate for the life span of a (t) .
Let

(5.14) J (t) = a (t)−δ , for t ≥ 0.
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Then we have
J ′ (t) = −δJ (t)1+ 1

δ a′ (t)

and

(5.15) J ′′ (t) = −δJ (t)1+ 2
δ V (t) ,

where

(5.16) V (t) = a′′ (t) a (t) − (1 + δ) a′ (t)2 .

By using Hölder inequality in (5.6), we get

(5.17) a′ (t) ≤ 2 ‖u‖2 ‖ut‖2 .

Thus, by (5.4) and (5.17), we obtain from (5.16)

V (t) ≥
[
Q1(t) + 4 (1 + δ) ‖ut‖2

2

]
a (t) − 4 (1 + δ) a(t) ‖ut‖2

2

= Q1(t)J (t)−
1
δ , t ≥ t0.

Therefore, by (5.15), we have

(5.18) J ′′ (t) ≤ −δQ1(t)J (t)1+ 1
δ , t ≥ t0.

Theorem 5.3. (Nonexistence of global solutions). Assume that (A2) holds and
that either one of the following statements is satisfied:

(i) E (0) < 0,

(ii) E (0) = 0 and a′ (0) > 0,

(iii) 0 < E(0) < E1 and ‖∇u0‖2 > λ1

(iv) E1 ≤ E (0) <
a′(t0)2
8a(t0)

and (5.13) holds,

then the solution u blows up at finite time T ∗ in the sense of (5.2) .

Moreover, the upper bound of T ∗ is estimated as follows:
In case (i),

T ∗ ≤ t0 − J (t0)
J ′ (t0)

.

Furthermore, if J (t0) < min
{
1,

√
α1
−β1

}
, then we have

T ∗ ≤ t0 +
1√−β1

ln

√
α1
−β1√

α1
−β1

− J (t0)
.
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In case (ii),

T ∗ ≤ t0 − J (t0)
J ′ (t0)

or
T ∗ ≤ t0 +

J (t0)√
α1

.

In case (iii),

T ∗ ≤ t0 − J (t0)
J ′ (t0)

.

Furthermore, if J (t0) < min
{
1,

√
α2
−β2

}
, we have

T ∗ ≤ t0 +
1√−β2

ln

√
α2
−β2√

α2
−β2

− J (t0)
.

In case (iv) ,

T ∗ ≤ J (t0)√
α1

or
T ∗ ≤ t0 + 2

3δ+1
2δ

δc√
α1

{
1 − [1 + cJ (t0)]

−1
2δ

}
,

where c =
(

β1
α1

) δ
2+δ

, here α1 and β1 are in (5.21) and (5.22) and α2 and β2 are
in (5.23) and (5.24)respectively.
Note that in case (i), t0 = t∗1 is given by (5.8) , t0 = t∗2 is given by (5.11) in case
(iii) and t0 = 0 in cases (ii) and (iv).

Proof. (1) For E(0) ≤ 0, from (5.18) and (5.5), we have

(5.19) J ′′ (t) ≤ δ (4 + 8δ)E (0)J (t)1+ 1
δ .

Note that by Lemma 5.2, J′ (t) < 0 for t > t0. Multiplying (5.19) by J′ (t) and
integrating it from t0 to t, we have

J ′ (t)2 ≥ α1 + β1J (t)2+ 1
δ for t ≥ t0,

where

(5.21)
α1 = δ2J (t0)

2+ 2
δ

[
a′ (t0)2 − 8E (0)J(t0)

−1
δ

]
> 0.
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and

(5.22) β1 = 8δ2E (0) .

Then by Lemma 2.3, there exists a finite time T ∗ such that lim
t→T ∗−

J (t) = 0 and

this will imply that lim
t→T ∗−

(∫
Ω u2dx

)−1 = 0.

(2) For the case of 0 < E(0) < E1, from (5.18) and (5.10), we get

J ′′ (t) ≤ −δk3J (t)1+ 1
δ for t ≥ t0.

Then as the same arguments in (1), we have

J ′ (t)2 ≥ α2 + β2J (t)2+ 1
δ for t ≥ t0,

where

(5.23)
α2 = δ2J (t0)

2+ 2
δ

[
a′ (t0)2 +

2k3

1 + 2δ
J(t0)

−1
δ

]
> 0.

and

(5.24) β2 = − 2k3δ
2

1 + 2δ
.

Thus, by Lemma 2.3, there exists a finite time T ∗ such that lim
t→T ∗−

(∫
Ω u2dx

)−1 = 0.

(3) For the case of E1 ≤ E(0)
Applying the same arguments as in part (1), we also have (5.21) and (5.22). We
observe that

α1 > 0 iff E (0) <
a′ (t0)2

8a (t0)
.

Hence, by Lemma 2.3, there exists a finite time T∗ such that lim
t→T ∗−

(∫
Ω u2dx

)−1 =0.
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