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GAP FUNCTIONS FOR NONSMOOTH EQUILIBRIUM PROBLEMS

Marco Castellani and Massimo Pappalardo

Abstract. We consider equilibrium problems (EP) with directionally differ-
entiable (not necessarily C') bifunctions which are convex with respect to the
second variable and we use a gap function approach to solve them. In the
first part of the paper we establish a condition under which any stationary
point of the gap function solves (EP) and we propose a solution method which
uses descent directions of the gap function. In the final section we study the
problem when this condition is not satisfied. In this case we use a family of
gap functions depending on a parameter « which allows us to overcome the
trouble due to the lack of a descent direction.

1. INTRODUCTION

Different kinds of competitive situations (see for example [2, 5] and references
therein) can be formulated via general equilibrium model of this type

(EP) find z € C st f(z,y) >0, Vy € C,
where C' C R™ is a compact convex set and the equilibrium bifunction f € A where

A={f :R"xR" = R : f(-,y) is directionally differentiable for all y € C,

f(z,-) is convex for all zeC, f(z,z)=0 forall zeC}

Recently an increasing effort has been made to develop algorithms for computing
equilibrium solutions. Some of them are based on the fact that (EP) can be refor-
mulated as an optimization problem via gap functions. This has been proposed also
in [1, 3, 6, 7, 8]. In this paper we focus on (EP) in which the bifunction f is only
directionally differentiable and not C'. The scheme proposed follows the same line
of [1].
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The following notation will be used in the paper. If f € A we denote the
directional derivative of f(-,y) at = along the direction u by

Dy f(z,y;u) = tli%i f(z + tu, i) _ f(x,y)'

Analogously D, f(x,y;v) indicates the directional derivative of f(x,-) at y along
the direction v.
The following function

p(r) = — ryrgg f(z,y)

was introduced in [7]. We prove, for the sake of completeness, that it is a gap
function for (EP).

Theorem 1.1. Let f € A be given; then

(i) ¢(x) >0 forall z € C,
(if) z € C verifies ¢(z) = 0 if and only if z solves (EP).

Proof. For all z € C we have

pla) = —min f(@.y) = —f(r,2) = 0

proving statement (i). If 0 = ¢(Z) = —minyec f(Z,y) then z € C solves (EP);
the converse is trivial since f(z,z) = 0 for all z € C and this proves (ii). [ |

Next sections are devoted to seek for descent directions of the gap function ¢
in order to minimize it.
2. STRICTLY CONVEX AND STRICTLY D-MONOTONE EQUILIBRIUM PROBLEMS
In this section we suppose that f € A is strictly convex with respect to y, for all
x € C. This assumption, together with the compactness of C, implies the existence

of the unique minimizer y(z) € C such that

1) p(z) = —f(z,y(x)).

The next result of Danskin [4] permits to compute the directional derivative of .
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Theorem 2.1. Let f € A be strictly convex with respect to y; the function
x +— y(x) is continuous and ¢ is directionally differentiable with

Do(z;v) = =Dy f(z, y(2); v)
forall x € C and v € R™.
Since f(z,z) =0, it is easy to show that the solution set of (EP) coincides with
the set of the fixed points of the function z — y(z), i.e. Z € C'is a solution of (EP)
if and only if z = y(z). When z # y(z), in order to establish whether y(z) — =

is a descent direction for ¢, additional assumptions on f are usually assumed in
literature (see for instance [3, 6, 8]). We will use the following.

Definition 2.1. A bifunction g € A is called strictly D-monotone on C' if
) Dyg(z,y;y—x) > Dyg(x,y; 2 —y),  Vo,ye Cwithz #y.

If ¢ € A is continuously differentiable, the concept of strict D-monotonicity
collapses with the concept of strict V-monotonicity introduced in [1]. It is easy to

prove that the concept of strict D-monotonicity is not related to the classical concept
of strict monotonicity. Several nice properties hold.

Theorem 2.2. Suppose that f € A is strictly convex with respect to y and
strictly D-monotone on C, then

(3) Dy(z;y(x) —z) <0, Vz € C with = # y(z).

Proof. From Theorem 2.1 and the strict D-monotonicity of f we deduce

Do(x;y(r) —x) = =Dof (2, y(2); y(z) — ) < =Dy f(2,y(x); 2 — y(x));

since y(x) is a global minimum of f(x, -) over C, the first order necessary optimality
condition implies

Dyf(z,y(z);z —y(z)) 2 0
that concludes the proof. [ |

Strict D-monotonicity guarantees also the following “stationarity property” for
the reformulation of (EP) as optimization problem through .

Theorem 2.3. Suppose that f € A is strictly convex with respect to y and
strictly D-monotone on C; if z is a stationary point of ¢ over C, i.e.

(4) Dy(z;y—x) > 0, Vy € C,

then z solves (EP).
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Proof. By contradiction, suppose that z does not solve (EP) and hence y(z) #
z. Since y(z) is a global minimum for the function f(z, -) we deduce

) D, f(# y(x): 7 — y(z)) > 0.

Moreover, from (4) valued at y(z) and Theorem 2.1 we obtain

6) Do f(z,y(2));y(z) —7) < 0.

But (5) and (6) contradict the assumption of strict D-monotonicity of f. ]

The results proved in Theorem 2.2 and Theorem 2.3 give us a solution method
for solving (EP). In fact, we have a descent direction (Theorem 2.2), a stopping rule
(Theorem 2.3), and we can propose an exact linesearch rule to find the stepsize.
The iterative sequence of the solution method is given

ol =2k 4+ tkdk
where d* = y(2*) — z* and ¢;, € [0, 1] minimizes 0(t) = p(z* 4 td*) over [0, 1].

Since d* depends with continuity upon z*, convergence to a stationary point of ¢
is achieved via Zangwill’s Theorem.

3. CoNnVEX AND STRICTLY D-MONOTONE EQUILIBRIUM PROBLEMS

When f(z, -) is not strictly convex, we have not the uniqueness of the minimum
point y(x). For this reason we consider a continuously differentiable bifunction
h:R™ x R™ — R such that

(@ h(z,y)>0forall z,y € Cand h(z,z) =0 forall z € C,

(b) A(x,-)is strictly convex for all = € C.

As immediate consequence of (a) and (b) we have that V,h(z, z) = 0, for all z € C.
We define the bifunction F' = f + h and we introduce the following auxiliary
equilibrium problem

(AEP) find z € C st F(z,y) >0, Vy e C.
The next result shows the equivalence between (EP) and (AEP).

Theorem 3.1. The point z solves (EP) if and only if z solves (AEP).
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Proof.  Trivially, every solution of (EP) solves (AEP). Vice versa let z be
a solution of (AEP) and suppose, by contradiction, there exists 4 € C such that
f(z,y) < 0. Since h is continuously differentiable, h(z,z) = 0 and V,h(Z,z) = 0,
we have
Wz, 2+t — 1)) = |7 — jlltw(t), vt € (0,1]

where w(t) tends to 0 for ¢+ — 0T. Therefore, from the convexity of f(z,-) and
since f(z,z) = 0, we deduce

0 < F(z,z+1t(y—x))
= f(z,z2+t(y—z))+h(z,z+t(y—2))
< A=0)f(x,2)+tf(2,9) + ||z — ylltw(?)
= i[f(z,9) + |z = gllw(?)].

Since f(z, §) + ||z — gllw(t) < 0 for ¢ sufficiently small, we achieve the contra-
diction. -

Theorem 3.1 allows us to apply the results of the previous section to the gap func-
tion associated to the bifunction F' and for this we need the strict D-monotonicity
of F.

Definition 3.1. A bifunction g € A is called D-monotone on C if

(7) D,g(x,y;y — x) > Dyg(z,y; 2 — y), Va,y € C.

If ¢ is continuously differentiable the concept of D-monotonicity collapses with
the concept of V-monotonicity defined in [1], i.e.

(Vag(z,y) +Vyg(z,y),y —x) >0, Va,y e C.

All the usually used bifunctions A as, for instance, the square of the euclidean norm
h(z,y) = ||z — y||> are D-monotone but not strictly D-monotone.

It is easy to show that if f is strictly D-monotone and 4 is D-monotone then F
is strictly D-monotone. So we can adapt to this case the solution method presented
at the end of Section 2.

4. A LARGER CLASS OF EQUILIBRIUM PROBLEMS

Since strict D-monotonicity is not always verified by the bifunction f, we now
analyse the case when f doesn’t satisfy this condition but it is only D-monotone. In
this case (even if f(z,-) is strictly convex) Theorem 2.2 can not be applied. In fact,
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if we substitute the assumption of strict D-monotonicity with D-monotonicity, it is
possible to show that y(x) — x is not always a descent direction (see [1, Example
2.5]). For this reason we substitute the auxiliary bifunction F' with a family of
bifunctions F,, = f + «ah, with o > 0 and we denote by ¢, the associated gap
function. We will show that the parameter « allows us to overcome the troubles due
to the lack of the “stationarity property”. Anyway, we will require the following
additional assumption on f

(8) f(@,y) + Do f(z,y;9y —2) >0,  Va,yeC.

It is possible to prove that condition (8) is stronger than D-monotonicity.
Theorem 4.1. If the bifunction f € A satisfies (8) then it is D-monotone.

Proof. From the convexity of f(z,-) we have

0= f(x,z) > f(x,y) + Dyf(z,y;0—y),  Va,yecC;

therefore, the above inequality and (8) guarantee

Dyf(z,y;y—2) — Dyf(z,y; 2 —y)
= [f(@,y) + Do f(z,y;y — @) = [f(2,y) + Dy f(z,y;2—y)] 2 0
for all z,y € C and thus f is D-monotone. ]

Some examples presented in [1] show that no relationship exists between condi-
tion (8) and the strict D-monotonicity and, moreover, that the stationarity property
is not guaranteed for a fixed gap function ¢,. When condition (8) holds, we can
overcome the trouble of finding a descent direction by eventually modifying the
parameter « and therefore by changing the considered gap function.

Theorem 4.2. Suppose f € A satisfies (8) and assume that

. flx+tly —x),y) = f(z,y)

) Yyt , b ,
— i L L&Y —2),Y) — [ y)
t—0+ y' —y t ’

forall z,y € C. If z € C is not a solution of (EP), then there exists & such that
Yo(x) — 2 is a descent direction at = for all positive o < a.

Proof. Suppose, by contradiction, there exists a sequence {ax} | 0 such that

(10) Dpey, (25 Yoy, (x) —2) 2 0
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Since C'is compact, we can suppose that the sequence {y,, ()} convergestoy € C.
By assumption
fak(x7yak(x)) - _‘Pak(x) <0
and therefore, since f(x,-) is continuous, taking the limit for £ — oo, we deduce
that
fla,y) = im fo, (2, Yo, (2)) < 0.

On the other hand y,, minimizes f,, (x,-) over C, then

Dy fo, (2, Yoy (2); & = Yo, (x)) = 0.

Let a > Dy f(x,y; x — y) then there exists ¢y, € (0, 1) such that y + t(z —y) € C
and
flay+t@—y) - fley) _
t
for all t € (0, t9). Moreover f(x, Y, (z)+t(x—yaq,(x))) tendsto f(z, y+t(z—y))
and f(x,yaq,(x)) tends to f(xz,y) for k — oco. Hence, for k sufficiently large, we

have
(@, Yo, (7) + & = Yo, (7)) = f(2, Yo (2))

a

< a.

Since

Dy f (2, Yoy (2); & = Yo (1)) <

it follows that
lim sup Dy f (2, Yo, ();  — Yo, (z)) < @

k—oo

This is true for any a > D, f(z,y; x — y) and then

Dyf(z,y;x —y) > limsup Dy f(, Yo, (7); T — Yo, (7))

k—oo

= limsup Dy, fo, (%, Yo, (2); & — Ya,, (x)) > 0.

k—oo

Therefore, from Theorem 4.1, we deduce that

D, f(x,y;y—x) > 0.

Condition (10) can be written

Dmfak(xvyak(x)§yak(x) - 1‘) S 0

and taking the limit for & — oo and using condition (9) we have the converse
inequality
Dyf(z,y;y—2) <0
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and therefore
D, f(z,y;y—x) = 0.

Since condition (8) holds, we have f(z,y) > 0 and therefore we deduce f(z,y) = 0.
Moreover fy, (x, Yo, (x)) < fo,(x,y) for all y € C, hence, taking the limit again,

0=f(z,y) < flz,y), W eC

This implies that = solves (EP) in contradiction with the assumption. ]

When f is continuously differentiable, condition (9) is trivially satisfied. The
above result provides the key idea for the solution method for D-monotone bi-
functions: decrease the value of o whenever y,(x) — « isn’t any longer a descent
direction for ¢, and apply the scheme presented in Section 2.

Nevertheless, in order to device a new kind of solution method more efficient
from the computational point of view, we have to implement an Armijo-type rule
for the stepsize. If we adopt this kind of rule, we need the following theorem.

Theorem 4.3. Suppose that f € A satisfies condition (8) and A is V-monotone
then
D(Poc(xQ yoc(x) - 1‘)

(11)
< f(@,ya(2)) = a(Vah(2, yo(7)), ya(z) — ) <0, Ve el

Proof. The first inequality in (11) descends immediately from condition (8)
since
D(Poc(xQ yoc(x) - 1‘) = _Dmfoc(xv yoc(x)§ yoc(x) - 1‘)
= =D f(#,Ya(2); ya(®) =) =Vl (2, Yo (2)), Ya(z) — )
f(@,ya(@)) — AVah(2, ya(2)), Ya(@) — ).

IN

For the second inequality in (11), since y, () is a global minimum for f,(x,-), the
first order necessary optimality condition implies

0< Dyfoc(xv Ya(1); T — ya(T))
= Dy f(2,ya(2); 2 — Ya(2)) + A Vyh(z, ya(2)), T — ya(z)).
Moreover h is V-monotone then

Dy f (2, ya(2); x = Yya())

(12)
> a(Vyh(z, Yo (), Ya(r) — 2) = =V (2, Ya(T)), Ya(z) — 2).
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From the convexity of f(z,-) we obtain

0=f(z,2) = f(2,Ya(r)) + Dyf (2, ya(2); 2 = ya(z)),

and hence
(13) Dy f(z,ya(2); 2 = Ya(z)) < —f(2, ya(z)).
Comparing (12) and (13) we deduce the required second inequality. ]

Theorem 4.3 gives us an upper estimate of the directional derivative of the gap
function. This is a fundamental result in order to obtain a globally convergent
algorithm as we have seen in the continuously differentiable case [1]. In fact
exploiting (11) we can force the gap function to have a decrease which is large
enough. In particular the direction will be accepted when the inequality

1
(14) ~Pa(x) = a((Vah(z, ya(2) = 2) + h(z, ya(2))) < =5 ¢alz)
holds. Naturally we can work decreasing the parameter «.. In fact, if = is not a
solution of (EP) condition (14) ensures that the direction is a descent direction (see
Theorem 4.3).
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