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GAP FUNCTIONS FOR NONSMOOTH EQUILIBRIUM PROBLEMS

Marco Castellani and Massimo Pappalardo

Abstract. We consider equilibrium problems (EP) with directionally differ-
entiable (not necessarily C1) bifunctions which are convex with respect to the
second variable and we use a gap function approach to solve them. In the
first part of the paper we establish a condition under which any stationary
point of the gap function solves (EP) and we propose a solution method which
uses descent directions of the gap function. In the final section we study the
problem when this condition is not satisfied. In this case we use a family of
gap functions depending on a parameter α which allows us to overcome the
trouble due to the lack of a descent direction.

1. INTRODUCTION

Different kinds of competitive situations (see for example [2, 5] and references
therein) can be formulated via general equilibrium model of this type

(EP ) find x̄ ∈ C s.t. f(x̄, y) ≥ 0, ∀y ∈ C,

where C ⊆ R
n is a compact convex set and the equilibrium bifunction f ∈ A where

A={f : R
n × R

n → R : f(·, y) is directionally differentiable for all y ∈ C,

f(x, ·) is convex for all x∈C, f(z, z)=0 for all z∈C}

Recently an increasing effort has been made to develop algorithms for computing
equilibrium solutions. Some of them are based on the fact that (EP) can be refor-
mulated as an optimization problem via gap functions. This has been proposed also
in [1, 3, 6, 7, 8]. In this paper we focus on (EP) in which the bifunction f is only
directionally differentiable and not C1. The scheme proposed follows the same line
of [1].
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The following notation will be used in the paper. If f ∈ A we denote the
directional derivative of f(·, y) at x along the direction u by

Dxf(x, y; u) = lim
t→0+

f(x + tu, y) − f(x, y)
t

.

Analogously Dyf(x, y; v) indicates the directional derivative of f(x, ·) at y along
the direction v.

The following function

ϕ(x) = −min
y∈C

f(x, y)

was introduced in [7]. We prove, for the sake of completeness, that it is a gap
function for (EP).

Theorem 1.1. Let f ∈ A be given; then

(i) ϕ(x) ≥ 0 for all x ∈ C;

(ii) x̄ ∈ C verifies ϕ(x̄) = 0 if and only if x̄ solves (EP).

Proof. For all x ∈ C we have

ϕ(x) = −min
y∈C

f(x, y) ≥ −f(x, x) = 0

proving statement (i). If 0 = ϕ(x̄) = −miny∈C f(x̄, y) then x̄ ∈ C solves (EP);
the converse is trivial since f(z, z) = 0 for all z ∈ C and this proves (ii).

Next sections are devoted to seek for descent directions of the gap function ϕ

in order to minimize it.

2. STRICTLY CONVEX AND STRICTLY D-MONOTONE EQUILIBRIUM PROBLEMS

In this section we suppose that f ∈ A is strictly convex with respect to y, for all
x ∈ C. This assumption, together with the compactness of C, implies the existence
of the unique minimizer y(x) ∈ C such that

(1) ϕ(x) = −f(x, y(x)).

The next result of Danskin [4] permits to compute the directional derivative of ϕ.
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Theorem 2.1. Let f ∈ A be strictly convex with respect to y; the function
x �→ y(x) is continuous and ϕ is directionally differentiable with

Dϕ(x; v) = −Dxf(x, y(x); v)

for all x ∈ C and v ∈ R
n.

Since f(z, z) = 0, it is easy to show that the solution set of (EP) coincides with
the set of the fixed points of the function x �→ y(x), i.e. x̄ ∈ C is a solution of (EP)
if and only if x̄ = y(x̄). When x̄ �= y(x̄), in order to establish whether y(x̄) − x̄

is a descent direction for ϕ, additional assumptions on f are usually assumed in
literature (see for instance [3, 6, 8]). We will use the following.

Definition 2.1. A bifunction g ∈ A is called strictly D-monotone on C if

(2) Dxg(x, y; y− x) > Dyg(x, y; x− y), ∀x, y ∈ C with x �= y.

If g ∈ A is continuously differentiable, the concept of strict D-monotonicity
collapses with the concept of strict ∇-monotonicity introduced in [1]. It is easy to
prove that the concept of strict D-monotonicity is not related to the classical concept
of strict monotonicity. Several nice properties hold.

Theorem 2.2. Suppose that f ∈ A is strictly convex with respect to y and
strictly D-monotone on C, then

(3) Dϕ(x; y(x)− x) < 0, ∀x ∈ C with x �= y(x).

Proof. From Theorem 2.1 and the strict D-monotonicity of f we deduce

Dϕ(x; y(x)− x) = −Dxf(x, y(x); y(x)− x) < −Dyf(x, y(x); x− y(x));

since y(x) is a global minimum of f(x, ·) over C, the first order necessary optimality
condition implies

Dyf(x, y(x); x− y(x)) ≥ 0

that concludes the proof.

Strict D-monotonicity guarantees also the following “stationarity property” for
the reformulation of (EP) as optimization problem through ϕ.

Theorem 2.3. Suppose that f ∈ A is strictly convex with respect to y and
strictly D-monotone on C; if x̄ is a stationary point of ϕ over C, i.e.

(4) Dϕ(x̄; y − x̄) ≥ 0, ∀y ∈ C,

then x̄ solves (EP).
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Proof. By contradiction, suppose that x̄ does not solve (EP) and hence y(x̄) �=
x̄. Since y(x̄) is a global minimum for the function f(x̄, ·) we deduce

(5) Dyf(x̄, y(x̄); x̄− y(x̄)) ≥ 0.

Moreover, from (4) valued at y(x̄) and Theorem 2.1 we obtain

(6) Dxf(x̄, y(x̄)); y(x̄) − x̄) ≤ 0.

But (5) and (6) contradict the assumption of strict D-monotonicity of f .

The results proved in Theorem 2.2 and Theorem 2.3 give us a solution method
for solving (EP). In fact, we have a descent direction (Theorem 2.2), a stopping rule
(Theorem 2.3), and we can propose an exact linesearch rule to find the stepsize.
The iterative sequence of the solution method is given

xk+1 = xk + tkdk

where dk = y(xk) − xk and tk ∈ [0, 1] minimizes θ(t) = ϕ(xk + tdk) over [0, 1].
Since dk depends with continuity upon xk, convergence to a stationary point of ϕ

is achieved via Zangwill’s Theorem.

3. CONVEX AND STRICTLY D-MONOTONE EQUILIBRIUM PROBLEMS

When f(x, ·) is not strictly convex, we have not the uniqueness of the minimum
point y(x). For this reason we consider a continuously differentiable bifunction
h : R

n × R
n → R such that

(a) h(x, y) ≥ 0 for all x, y ∈ C and h(z, z) = 0 for all z ∈ C,

(b) h(x, ·) is strictly convex for all x ∈ C.

As immediate consequence of (a) and (b) we have that ∇yh(z, z) = 0, for all z ∈ C.
We define the bifunction F = f + h and we introduce the following auxiliary

equilibrium problem

(AEP ) find x̄ ∈ C s.t. F (x̄, y) ≥ 0, ∀y ∈ C.

The next result shows the equivalence between (EP) and (AEP).

Theorem 3.1. The point x̄ solves (EP) if and only if x̄ solves (AEP).



Gap Functions for Equilibrium Problems 1841

Proof. Trivially, every solution of (EP) solves (AEP). Vice versa let x̄ be
a solution of (AEP) and suppose, by contradiction, there exists ȳ ∈ C such that
f(x̄, ȳ) < 0. Since h is continuously differentiable, h(x̄, x̄) = 0 and ∇yh(x̄, x̄) = 0,
we have

h(x̄, x̄ + t(ȳ − x̄)) = ‖x̄ − ȳ‖tω(t), ∀t ∈ (0, 1]

where ω(t) tends to 0 for t → 0+. Therefore, from the convexity of f(x̄, ·) and
since f(x̄, x̄) = 0, we deduce

0 ≤ F (x̄, x̄ + t(ȳ − x̄))

= f(x̄, x̄ + t(ȳ − x̄)) + h(x̄, x̄ + t(ȳ − x̄))

≤ (1 − t)f(x̄, x̄) + tf(x̄, ȳ) + ‖x̄ − ȳ‖tω(t)

= t[f(x̄, ȳ) + ‖x̄ − ȳ‖ω(t)].

Since f(x̄, ȳ) + ‖x̄ − ȳ‖ω(t) < 0 for t sufficiently small, we achieve the contra-
diction.

Theorem 3.1 allows us to apply the results of the previous section to the gap func-
tion associated to the bifunction F and for this we need the strict D-monotonicity
of F .

Definition 3.1. A bifunction g ∈ A is called D-monotone on C if

(7) Dxg(x, y; y− x) ≥ Dyg(x, y; x− y), ∀x, y ∈ C.

If g is continuously differentiable the concept of D-monotonicity collapses with
the concept of ∇-monotonicity defined in [1], i.e.

〈∇xg(x, y) + ∇yg(x, y), y− x〉 ≥ 0, ∀x, y ∈ C.

All the usually used bifunctions h as, for instance, the square of the euclidean norm
h(x, y) = ‖x− y‖2 are D-monotone but not strictly D-monotone.

It is easy to show that if f is strictly D-monotone and h is D-monotone then F
is strictly D-monotone. So we can adapt to this case the solution method presented
at the end of Section 2.

4. A LARGER CLASS OF EQUILIBRIUM PROBLEMS

Since strict D-monotonicity is not always verified by the bifunction f , we now
analyse the case when f doesn’t satisfy this condition but it is only D-monotone. In
this case (even if f(x, ·) is strictly convex) Theorem 2.2 can not be applied. In fact,
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if we substitute the assumption of strict D-monotonicity with D-monotonicity, it is
possible to show that y(x) − x is not always a descent direction (see [1, Example
2.5]). For this reason we substitute the auxiliary bifunction F with a family of
bifunctions Fα = f + αh, with α > 0 and we denote by ϕα the associated gap
function. We will show that the parameter α allows us to overcome the troubles due
to the lack of the “stationarity property”. Anyway, we will require the following
additional assumption on f

(8) f(x, y) + Dxf(x, y; y − x) ≥ 0, ∀x, y ∈ C.

It is possible to prove that condition (8) is stronger than D-monotonicity.

Theorem 4.1. If the bifunction f ∈ A satisfies (8) then it is D-monotone.

Proof. From the convexity of f(x, ·) we have

0 = f(x, x) ≥ f(x, y) + Dyf(x, y; x− y), ∀x, y ∈ C;

therefore, the above inequality and (8) guarantee

Dxf(x, y; y − x) − Dyf(x, y; x− y)

= [f(x, y) + Dxf(x, y; y − x)]− [f(x, y) + Dyf(x, y; x− y)] ≥ 0

for all x, y ∈ C and thus f is D-monotone.

Some examples presented in [1] show that no relationship exists between condi-
tion (8) and the strict D-monotonicity and, moreover, that the stationarity property
is not guaranteed for a fixed gap function ϕα. When condition (8) holds, we can
overcome the trouble of finding a descent direction by eventually modifying the
parameter α and therefore by changing the considered gap function.

Theorem 4.2. Suppose f ∈ A satisfies (8) and assume that

(9)
lim
y′→y

lim
t→0+

f(x + t(y′ − x), y′) − f(x, y′)
t

= lim
t→0+

lim
y′→y

f(x + t(y′ − x), y′) − f(x, y′)
t

,

for all x, y ∈ C. If x ∈ C is not a solution of (EP), then there exists ᾱ such that
yα(x) − x is a descent direction at x for all positive α ≤ ᾱ.

Proof. Suppose, by contradiction, there exists a sequence {αk} ↓ 0 such that

(10) Dϕαk
(x; yαk

(x) − x) ≥ 0
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Since C is compact, we can suppose that the sequence {yαk
(x)} converges to y ∈ C.

By assumption
fαk

(x, yαk
(x)) = −ϕαk

(x) < 0

and therefore, since f(x, ·) is continuous, taking the limit for k → ∞, we deduce
that

f(x, y) = lim
k→∞

fαk
(x, yαk

(x)) ≤ 0.

On the other hand yαk
minimizes fαk

(x, ·) over C, then

Dyfαk
(x, yαk

(x); x− yαk
(x)) ≥ 0.

Let a > Dyf(x, y; x− y) then there exists t0 ∈ (0, 1) such that y + t(x − y) ∈ C

and
f(x, y + t(x − y))− f(x, y)

t
< a

for all t ∈ (0, t0). Moreover f(x, yαk
(x)+t(x−yαk

(x))) tends to f(x, y+t(x−y))
and f(x, yαk

(x)) tends to f(x, y) for k → ∞. Hence, for k sufficiently large, we
have

f(x, yαk
(x) + t(x − yαk

(x)))− f(x, yαk
(x))

t
< a.

Since

Dyf(x, yαk
(x); x− yαk

(x)) ≤ f(x, yαk
(x) + t(x − yαk

(x)))− f(x, yαk
(x))

t

it follows that
lim sup

k→∞
Dyf(x, yαk

(x); x− yαk
(x)) ≤ a

This is true for any a > Dyf(x, y; x− y) and then

Dyf(x, y; x− y) ≥ lim sup
k→∞

Dyf(x, yαk
(x); x− yαk

(x))

= lim sup
k→∞

Dyfαk
(x, yαk

(x); x− yαk
(x)) ≥ 0.

Therefore, from Theorem 4.1, we deduce that

Dxf(x, y; y − x) ≥ 0.

Condition (10) can be written

Dxfαk
(x, yαk

(x); yαk
(x)− x) ≤ 0

and taking the limit for k → ∞ and using condition (9) we have the converse
inequality

Dxf(x, y; y − x) ≤ 0
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and therefore
Dxf(x, y; y − x) = 0.

Since condition (8) holds, we have f(x, y) ≥ 0 and therefore we deduce f(x, y) = 0.
Moreover fαk

(x, yαk
(x)) ≤ fαk

(x, y′) for all y′ ∈ C, hence, taking the limit again,

0 = f(x, y) ≤ f(x, y′), ∀y′ ∈ C.

This implies that x solves (EP) in contradiction with the assumption.

When f is continuously differentiable, condition (9) is trivially satisfied. The
above result provides the key idea for the solution method for D-monotone bi-
functions: decrease the value of α whenever yα(x) − x isn’t any longer a descent
direction for ϕα and apply the scheme presented in Section 2.

Nevertheless, in order to device a new kind of solution method more efficient
from the computational point of view, we have to implement an Armijo-type rule
for the stepsize. If we adopt this kind of rule, we need the following theorem.

Theorem 4.3. Suppose that f ∈ A satisfies condition (8) and h is ∇-monotone
then

(11)
Dϕα(x; yα(x)− x)

≤ f(x, yα(x))− α〈∇xh(x, yα(x)), yα(x) − x〉 ≤ 0, ∀x ∈ C.

Proof. The first inequality in (11) descends immediately from condition (8)
since

Dϕα(x; yα(x)− x) = −Dxfα(x, yα(x); yα(x)− x)

= −Dxf(x, yα(x); yα(x)−x)−α〈∇xh(x, yα(x)), yα(x)−x〉
≤ f(x, yα(x)) − α〈∇xh(x, yα(x)), yα(x)− x〉.

For the second inequality in (11), since yα(x) is a global minimum for fα(x, ·), the
first order necessary optimality condition implies

0 ≤ Dyfα(x, yα(x); x− yα(x))

= Dyf(x, yα(x); x− yα(x)) + α〈∇yh(x, yα(x)), x− yα(x)〉.

Moreover h is ∇-monotone then

(12)
Dyf(x, yα(x); x− yα(x))

≥ α〈∇yh(x, yα(x)), yα(x) − x〉 ≥ −α〈∇xh(x, yα(x)), yα(x)− x〉.
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From the convexity of f(x, ·) we obtain

0 = f(x, x) ≥ f(x, yα(x)) + Dyf(x, yα(x); x− yα(x)),

and hence

(13) Dyf(x, yα(x); x− yα(x)) ≤ −f(x, yα(x)).

Comparing (12) and (13) we deduce the required second inequality.

Theorem 4.3 gives us an upper estimate of the directional derivative of the gap
function. This is a fundamental result in order to obtain a globally convergent
algorithm as we have seen in the continuously differentiable case [1]. In fact
exploiting (11) we can force the gap function to have a decrease which is large
enough. In particular the direction will be accepted when the inequality

(14) −ϕα(x)− α(〈∇xh(x, yα(x)− x〉 + h(x, yα(x))) < −1
2
ϕα(x)

holds. Naturally we can work decreasing the parameter α. In fact, if x is not a
solution of (EP) condition (14) ensures that the direction is a descent direction (see
Theorem 4.3).

REFERENCES

1. G. Bigi, M. Castellani and M. Pappalardo, A new solution method for equilibrium
problems, Optimization Methods and Software, to appear.
DOI: 10.1080/10556780902855620.

2. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium
problems, The Mathematics Student, 63 (1993), 1-23.

3. O. Chadli, I. V. Konnov and J. C. Yao, Descent methods for equilibrium problems in
a Banach space, Computers and Mathematics with Applications, 48 (2004), 609-616.

4. J. M. Danskin, The theory of min-max with applications, SIAM Journal on Applied
Mathematics, 14 (1966), 641-664.

5. A. Iusem and W. Sosa, New existence results for equilibrium problems, Nonlinear
Analisys, 52 (2003), 621-635.

6. I. V. Konnov and M. S. S. Ali, Descent methods for monotone equilibrium problems
in Banach spaces, Journal of Computational and Applied Mathematics, 188 (2006),
165-179.

7. G. Mastroeni, On auxiliary principle for equilibrium problems, in: Equilibrium prob-
lems and variational models, P. Daniele, F. Giannessi and A. Maugeri (eds.), Kluwer
Academic Publishers, Dordrecht, 2003, pp. 289-298.



1846 Marco Castellani and Massimo Pappalardo

8. G. Mastroeni, Gap functions for equilibrium problems, Journal of Global Optimiza-
tion, 27 (2003), 411-426.

Marco Castellani
Department of “Sistemi ed Istituzioni per l’Economia”,
University of L’Aquila,
Italy

Massimo Pappalardo
Department of “Matematica Applicata”,
University of Pisa,
Italy


