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PROPER CLARKE EPIDERIVATIVE IN SET-VALUED OPTIMIZATION

C. S. Lalitha and R. Arora*
Dedicated to Professor Boris S. Mordukhovich in honor of his 60th birthday.

Abstract. Using the concept of Clarke tangent cone, a new notion of proper
Clarke epiderivative for a set-valued map is introduced. Its nature and certain
properties are investigated. Finally necessary and sufficient optimality condi-
tions for a constrained set-valued optimization problem have been established
in terms of proper Clarke epiderivative.

1. INTRODUCTION

The derivative of a map at a point has got its implication analytically as well as
geometrically. The notion of derivatives for set-valued maps has been defined with
the help of tangent cones. Aubin [1] introduced the notion of derivatives in terms of
tangent cones for set-valued maps using the contingent cone. This derivative called
contingent derivative, is defined as the set-valued map whose graph coincides with
the contingent cone to the graph of the set-valued map. However prior to the work
of Aubin [1] the notion of coderivative has been introduced for set-valued maps
in terms of the basic normal cone to their graphs by Mordukhovich [20]. This
concept of derivative is conceptually different from the tangential derivative due
to the absence of duality between tangent and normal cones in nonconvex setting.
However for the smooth and convex maps the two notions are equivalent.

In the past two decades a lot of research has been done to improvise the notion of
derivative in terms of tangent cones. Using contingent derivative Corley [6] derived
necessary and sufficient optimality conditions for weak efficient solutions whereas
Luc [19] derived these conditions for local efficient solutions. Also Corley [6]
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observed that the necessary and sufficient optimality conditions do not unify under
the standard assumptions. So, derivatives involving epigraph of set-valued maps
termed as epiderivatives have been considered in literature. In this direction Jahn
and Rauh [14] introduced the concept of contingent epiderivative relating epigraph
of the derivative with the contingent cone.

Chen and Jahn [5] introduced generalized contingent epiderivative in terms of
minimizers of projection of the contingent cone to epigraph of a set-valued map.
Jahn and Khan [12] introduced the notion of weak and proper contingent epideriva-
tive in terms of weak and proper minimizers of projection sets respectively. Jahn
and Khan [13] established various forms of optimality conditions for a set-valued
optimization problem in terms of proper and weak contingent epiderivatives. For
more details one can refer to the book by Jahn [11].

Chen [4] introduced the notion of tangent epiderivative (also termed Clarke
epiderivative in [15]) of a set-valued map in terms of Clarke tangent cone where
epiderivative is a single valued map. Lalitha, Dutta and Govil [15] obtained optimal-
ity conditions using this notion Clarke epiderivative for weak mnimizers. Recently
Lalitha and Arora [16] introduced the notion of weak Clarke epiderivative in terms
of weak minimizers of Clarke tangent cone. Bigi and Castellani [3] proposed a
general definition of K-epiderivative and employed it to develop a general scheme
for necessary optimality conditions in set-valued optimization problems.

Weak efficiency generalizes efficiency whereas proper efficiency refines effi-
ciency by removing certain undesirable aspects of efficiency. The most important
feature of proper efficiency is to eliminate unstable situations and to obtain some
robustness of the solution, for instance, in situations where boundedness of the trade
off rates is required or to establish optimality with respect to a larger ordering cone.
Apart from the stability aspect it has been observed that there are efficient solutions,
which fail to get characterized by a scalar optimization problem even if the decision
set is convex. Apart from the work of Jahn and Khan [12, 13] various authors have
dealt with different kinds of proper efficient solutions in set-valued optimization and
discussed optimality conditions (see Liu and Gong [17], Song et al. [24], Gong et
al. [9], Gong [8]).

Since Clarke tangent cone is convex and proper efficiency is a refinement of
the concept of efficiency, it is significant to study the notion of an epiderivative in
terms of proper minimizer considering the Clarke tangent cone. The main aim of
the paper is to introduce this notion, termed as proper Clarke epiderivative. The
paper also deals with issues related to the nature and properties of proper Clarke
epiderivative and establishes an optimality criterion for a constrained set-valued
optimization problem.

The paper is organized as follows. Section 2 presents some basic definitions and
results used in the paper. In Section 3 the notion of proper Clarke epiderivative is
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introduced and its nature, characterization and properties are investigated. Section
4 deals with both Fritz John and Kuhn Tucker type necessary optimality criteria
as well as sufficient optimality criterion under a weakened form of cone convexity
assumption namely semilocal cone convexity. In Section 5 certain observations are
made regarding the relation of proper Clarke epiderivative with the existing gener-
alized notions of epiderivatives. Finally some concluding remarks are made in the
end.

2. PRELIMINARIES

Let Y be a real normed space partially ordered by a closed convex pointed cone
K in Y and let Y ∗ be the dual space of Y . Let B be a nonempty set in Y and 0Y

be the zero of Y . We first recall two well known notions of minimality of sets.
An element ȳ ∈ B is said to be a minimizer of B if (B − ȳ) ∩ (−K) = {0Y }

and a proper minimizer of B if there exists a convex cone K1 ⊂ Y such that
K \ {0Y } ⊂ intK1 and ȳ is a minimizer of B with respect to the cone K1.

The set of all minimizers and proper minimizers of B is denoted by Min (B,K),
and PMin(B,K) respectively. It is obvious that PMin(B,K) ⊆ Min(B,K).

We denote the closure of B and interior of B by clB and int B respectively.
Also, cone B denotes cone generated by B, that is, cone B := {λb | b ∈ B, λ ≥ 0}.
A nonempty convex subset C of the convex cone K is called a base of K if K =
cone C and 0Y /∈clC. The dual cone K∗ and the strict dualK# ofK are defined as

K∗ := {l ∈ Y ∗ | 〈l, k〉 ≥ 0, ∀ k ∈ K};
K# := {l ∈ Y ∗ | 〈l, k〉> 0, ∀ k ∈ K \ {0Y }}.

The Clarke tangent cone to B at ȳ ∈ B is defined as

T (B, ȳ) := {y ∈ Y | ∀ ȳn → ȳ, ȳn ∈ B, tn > 0, tn → ∞, ∃ yn ∈ B

such that yn → ȳ and tn(yn − ȳn) → y}.
Equivalently it is defined as

T (B, ȳ) := {y ∈ Y | ∀ ȳn → ȳ, ȳn ∈ B, tn ↓ 0, ∃ yn → y

with ȳn + tnyn ∈ B ∀ n}.
It can be seen that T (B, ȳ) is a closed convex cone.

Let X be another real normed space and let F : X → 2Y be a set-valued map.
Throughout we assume that K is a pointed closed convex cone in Y . The domain,
graph and epigraph of F are defined as

dom F := {x ∈ X |F (x) = φ};
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graph F := {(x, y) ∈ X × Y | x ∈ dom F, y ∈ F (x)};
epi F := {(x, y) ∈ X × Y | x ∈ dom F, y ∈ F (x) +K}.

The profile map PF : X → 2Y of F is defined as

PF (x) = F (x) +K.

We now consider the notion of Clarke epiderivative for set-valued map where the
epiderivative is a single valued map (see Chen [4], Lalitha, Dutta and Govil [15]).

Given (x̄, ȳ) ∈ graph F , a single valued map DeF (x̄, ȳ) : X → Y whose
epigraph is the Clarke tangent cone to epiF at (x̄, ȳ), that is,

epiDeF (x̄, ȳ) = T (epiF, (x̄, ȳ))

is called the Clarke epiderivative of F at (x̄, ȳ).
In practice there are numerous set-valued maps for which Clarke epiderivative

does not exist. For example consider a set-valued map F : R→ 2R2 defined by

F (x) = {(−y, y) ∈ R2 | 0 ≤ y ≤ x+ 1}
for every x ∈ R and K = R2

+. Here the epigraph is nonconvex and for x̄ = 0, ȳ =
(0, 0)

T (epiF, (x̄, ȳ)) = {(x, y1, y2) ∈ R3 | y1 ≤ 0, y1 + y2 ≥ 0} + {0} × R2
+.

Clearly the Clarke epiderivative at (x̄, ȳ) does not exist for any x in dom F .
Occurrence of such situations motivated the introduction of the concept of gen-

eralized tangent epiderivative by Chen [4]. In this case the projection of the Clarke
tangent cone to epiF at (x̄, ȳ) on the image space is taken at a point and the value
of the generalized Clarke epiderivative at a point is given by the minimizer of the
projection set at that point. A set-valued map DgF (x̄, ȳ) : X → 2Y is said to be
the generalized tangent epiderivative of F at (x̄, ȳ) if

DgF (x̄, ȳ)(x) = Min(G(x), K)

where

G(x) := {y ∈ Y | (x, y) ∈ T (epiF, (x̄, ȳ))}.
It can be easily observed that G(x) is a closed convex set and G(x) = G(x) +K .

In the example considered above the generalized tangent epiderivative exists for
each x and is given by

DgF (x̄, ȳ)(x) = {(y1, y2) ∈ R2 | y1 + y2 = 0, y1 ≤ 0}.
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3. PROPER CLARKE EPIDERIVATIVE

Although the concept of efficiency is quite relevant in the study of optimality of a
set-valued optimization problem it has certain limitations namely the lack of stability
conditions or inability to obtain a scalar characterization for efficient solutions. In
order to avoid such undesirable efficient solutions, the notion of proper efficiency
has been introduced by various authors. In the same spirit, we now introduce
the concept of proper Clarke epiderivative in terms of proper minimizers of the
projection set.

Definition 3.1. Given (x̄, ȳ) ∈ graph F , a set-valued map DpF (x̄, ȳ) : X → 2Y

is said to be the proper Clarke epiderivative of F at (x̄, ȳ) if

(1) DpF (x̄, ȳ)(x) = PMin(G(x), K).

Based on the relation between proper minimizers and minimizers, it is obvious that

DpF (x̄, ȳ)(x) ⊆ DgF (x̄, ȳ)(x)

for all x in X .

In the example considered above DpF (x̄, ȳ)(x) exists and coincides with Dg

F (x̄, ȳ)(x) for all x in domF . We now provide an example where proper Clarke
epiderivative exists and is a proper subset of the generalized tangent epiderivative.

Example 3.1. Let F : R→ 2R2 be a set-valued map defined by

F (x) =

{
R2 if x ≥ 0
{(y1, y2) ∈ R2 | y2

1 + y2
2 ≥ x2, y1 ≥ 0, y2 ≥ 0} if x < 0

and K = R2
+. Clearly epiF is a nonconvex set. For x̄ = 0, ȳ = (0, 0)

T (epiF, (x̄, ȳ)) = {(x, y1,y2)∈R3 | x≥0, y2
1 + y2

2 ≤x2, y1≤0, y2≤0} + {0}×R2
+

and G : R→ 2R2 is given as

G(x) =

{
{(y1, y2) ∈ R2 | y2

1 + y2
2 ≤ x2, y1 ≤ 0, y2 ≤ 0} +R2

+ if x ≥ 0
φ if x < 0.

Hence

DpF (x̄, ȳ)(x) =



{(y1, y2) ∈ R2 | y2

1 + y2
2 = x2, y1 < 0, y2 < 0} if x > 0

{(0, 0)} if x = 0
φ if x < 0
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which is a proper subset of

DgF (x̄, ȳ)(x) =

{
{(y1, y2) ∈ R2 | y2

1 + y2
2 = x2, y1 ≤ 0, y2 ≤ 0} if x ≥ 0

φ if x < 0.

Observe that for x = 0, both the epiderivatives coincide.

Next we have an existence theorem for the proper Clarke epiderivative in finite
dimensional case. For this we first we recall the following definitions.

Definition 3.2. [14, 18]. Let B ⊆ Y and ȳ ∈ Y .
(i) The set B ∩ (ȳ −K) is said to be a K-lower section of B at ȳ.
(ii) The setB is said to be minorized if there exists y∈Y such that B⊆{y}+K.
(iii) The cone K is said to be Daniell if any decreasing sequence in Y having a

lower bound converges to its infimum.

In view of the existence theorems for the efficient points in Luc [18], the fol-
lowing conclusions can be made when Y is a finite dimensional space.

Theorem 3.1. Let Y be a finite dimensional space Rm and F : X → 2Y be a
set-valued map. For (x̄, ȳ) ∈ graph F,DpF (x̄, ȳ) exists if either of the following
conditions hold:

(i) G(x) has a nonempty minorized K-lower section for every x ∈ domG;
(ii) G(x) has a nonempty bounded K-lower section for every x ∈ domG.

Proof. Since a pointed closed convex cone in a finite dimensional space is
Daniell (see [10]) and G(x) +K is a closed convex set in Y , the proof follows on
using Corollary 3.8 (i) and (iii) and Corollary 3.16 (chapter 2) of Luc [18].

Remark 3.1. The conditions imposed on G(x) in the above theorem cannot be
relaxed as illustrated by the following example. If F : R → 2R2 is a set-valued
map defined by F (x) = {(y, 0) | y ≤ 0}, ∀ x ∈ R then epiF is a convex set and
G(x) = {(y1,y2) | y2 ≥ 0}. Observe that DpF (x̄, ȳ)(x) does not exist for any x in
R as none of the K-lower sections of G(x) is bounded or minorized.

Apart from the conditions under which the set of efficient points of a set is
nonvoid, another important aspect in the theory of decision making is about the
existence of an efficient alternative which is smaller than a given alternative with
respect to the same ordering cone. This is the domination property, which has been
studied widely by many researchers. The setB is said to satisfy domination property
if B ⊆ Min(B,K) + K. For the set of proper minimizers, we now introduce a
refined form of this domination property termed as the strong domination property.



Proper Clarke Epiderivative in Set-valued Optimization 1701

Definition 3.3. The setB ⊆ Y is said to satisfy the strong domination property if

B ⊆ cl PMin(B,K) +K.

Remark 3.2. It is easy to observe that

cl PMin(B,K) +K ⊆ cl (PMin(B,K) +K).

Hence if strong domination property holds then

B ⊆ cl (PMin(B,K) +K).

In the definition, the proper Clarke epiderivative is given in terms of projection set
(see (1)) but in the following two theorems we give some direct relations of proper
Clarke epiderivative and Clarke tangent cone.

Theorem 3.2. For (x̄, ȳ) ∈ graphF if DpF (x̄, ȳ) exists and strong domination
property holds for G(x) for x ∈ X then

cl epiDpF (x̄, ȳ) = T (epiF, (x̄, ȳ)).

Moreover, if DeF (x̄, ȳ) exists then

cl epiDpF (x̄, ȳ) = epiDeF (x̄, ȳ).

Proof. Let (x, y) ∈ cl epiDpF (x̄, ȳ) which implies that there exists a sequence
{(xn, yn)} in epiDpF (x̄, ȳ) such that (xn, yn) → (x, y). As yn ∈ DpF (x̄, ȳ)(xn)+
K ⊆ G(xn)+K = G(xn), therefore (xn, yn) ∈ T (epiF, (x̄, ȳ)) which being closed
implies (x, y) ∈ T (epiF, (x̄, ȳ)). Conversely for (x, y) ∈ T (epiF, (x̄, ȳ)) we have
y ∈ G(x). Since strong domination property holds for G(x), by Remark 3.2 it
follows that y ∈ cl (PMin(G(x), K)+K) and hence there exists a sequence {yn}
in PMin(G(x), K) +K such that yn → y. As yn ∈ DpF (x̄, ȳ)(x) +K, therefore
(x, yn) ∈ epiDpF (x̄, ȳ), that is, (x, y) ∈ cl epiDpF (x̄, ȳ).

Theorem 3.3. If DpF (x̄, ȳ) exists for (x̄, ȳ) ∈ graph F , and if DpF (X) :=
∪{DpF (x̄, ȳ)(x) | x ∈ domG} and F (X) := ∪{F (x) | x ∈ domF} then

DpF (x̄, ȳ)(X) ⊆ T (F (X) +K, ȳ).

Proof. If T (F (X) + K, ȳ) = Y , there is nothing to prove. For T (F (X) +
K, ȳ) = Y , let x ∈ domG and y ∈ DpF (x̄, ȳ)(x) ⊆ G(x). Clearly (x, y) ∈
T (epiF, (x̄, ȳ)) and hence by the definition of Clarke tangent cone, for every
(x̄n, ȳn) → (x̄, ȳ) with (x̄n, ȳn) ∈ epiF and tn ↓ 0 there exists (xn, yn) → (x, y)
such that (x̄n, ȳn)+tn(xn, yn) ∈ epiF . This implies ȳn+tnyn∈F (x̄n+tnxn)+K⊆
F (X)+K for every positive integer n or equivalently y∈T (F (X)+K, ȳ).
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The following theorem relates DpF (x̄, ȳ), DgF (x̄, ȳ) and DeF (x̄, ȳ) if they
exist.

Theorem 3.4. For (x̄, ȳ) ∈ graphF if DpF (x̄, ȳ) and DeF (x̄, ȳ) both exist
then for each x ∈ domG,DpF (x̄, ȳ)(x) and DgF (x̄, ȳ)(x) belong to the boundary
of DeF (x̄, ȳ)(x) +K.

Proof. As DeF (x̄, ȳ)(x) + K is closed and DpF (x̄, ȳ)(x) ⊆ DgF (x̄, ȳ)(x)
for every x ∈ domG, therefore the result follows by proving that DgF (x̄, ȳ)(x)
does not belong to the interior of DeF (x̄, ȳ)(x) + K , for each x in domG. For
y ∈ DgF (x̄, ȳ)(x) we have (x, y) ∈ epiDeF (x̄, ȳ), that is, y ∈ DeF (x̄, ȳ)(x)+K.
If y ∈ int (DeF (x̄, ȳ)(x) + K) for some x ∈ domG ⊆ X , then there exist ε >
0 and a corresponding open sphere Bε(y) of radius ε, such that y ∈ Bε(y) ⊆
DeF (x̄, ȳ)(x) + K. As Bε(y) = y + Bε(0), therefore for any k ∈ K \ {0Y },
there exists η > 0, sufficiently small such that −ηk ∈ Bε(0), which implies that
y−ηk ∈ Bε(y) ⊆ DeF (x̄, ȳ)(x)+K . Equivalently (x, y−ηk) ∈ epiDeF (x̄, ȳ) =
T (epiF, (x̄, ȳ)) which further implies −ηk ∈ G(x)−y. Also as k ∈ K \{0Y } and
η > 0 we have −ηk ∈ −K \ {0Y } and thus −ηk ∈ (G(x) − y) ∩ (−K \ {0Y })
which contradicts the fact that y ∈ Min(G(x), K).

Set-valued optimization problems like any other vector optimization problems
lack completeness in preference orders. To overcome difficulties caused by incom-
pleteness of the orders, techniques that convert vector problems into appropriate
scalar problems are widely applied.

Scalarization of proper minimizers is quite well known for different forms of
proper efficient points. For proper minimzers of the form considered in this paper
refer to Theorems 3.1.2, 3.4.1 and 3.4.2 in Sawargi, Nakayama and Tanino [23],
Theorem 2.1 in Gong [8] and Theorem 2.11 (Chapter 4) in Luc [18]. Likewise we
have the following characterization for proper Clarke epiderivative.

Theorem 3.5. For (x̄, ȳ) ∈ graphF if DpF (x̄, ȳ) exists and K has a compact
base then

DpF (x̄, ȳ)(x) = ∪{〈k, G(x)〉− | k ∈ K#}
for each x ∈ domG where 〈k, G(x)〉− := {y ∈ G(x) | 〈k, y〉 ≤ 〈k, G(x)〉} and
〈k, G(x)〉 := {〈k, y〉 | y ∈ G(x)}.

Proof. Follows on the lines of Proposition 4.2 of Jahn and Khan [12] as
Clarke tangent is convex.

In Example 3.1, it can be seen that for k = (k1, k2) ∈ K# and x ∈ domG

the set 〈k, G(x)〉− = {(y1, y2) | y1 = −tk1, y2 = −tk2, t = x/
√
k2

1 + k2
2}. Since
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k ∈ K# it follows that ∪{〈k, G(x)〉− | k ∈ K#} = {(y1,y2) ∈ R2 | y2
1 + y2

2 =
x2, y1 < 0, y2 < 0} which coincides with DpF (x̄, ȳ)(x) for each x in domG.

Remark 3.3. For (x̄, ȳ) ∈ graphF if DpF (x̄, ȳ)(x) exists for all x in domG,
then it can be observed that it is strictly positive homogeneous, that is, for all x ∈ X
and α > 0, DpF (x̄, ȳ)(αx) = αDpF (x̄, ȳ)(x). This follows as G(αx) = αG(x)
and PMin(αB,K) = αPMin(B,K) for α > 0.

4. OPTIMALITY CONDITIONS

In this section we deal with optimality conditions for a constrained set-valued
optimization problem in terms of proper Clarke epiderivative. We consider the fol-
lowing set-valued optimization problem

(VP) MinF (x)
subject to H(x) ∩ (−D) = φ

where H : X → 2Z is a set-valued map and D is a closed convex pointed cone in
real normed space Z.

The feasible region is given by the set S := {x ∈ X |H(x)∩ (−D) = φ}. The
image set of S under F is given by F (S) = ∪{F (x) | x ∈ S}.

Definition 4.1. A point (x̄, ȳ, z̄) is said to be a proper minimizer of (VP) if
x̄ ∈ S, ȳ ∈ F (x̄) ∩ PMin(F (S), K) and z̄ ∈ H(x̄) ∩ (−D).

To establish Kuhn Tucker type necessary and sufficient optimality criteria we
require certain convexity assumptions of the set-valued maps. In this regard we
consider the notion of semilocal cone convexity, a generalization of cone convexity.

We first recall the following notion of local star shapedness introduced by Ewing
[7]. A set A in X is said to be locally star shaped at x̄ ∈ A if for any x ∈ A,
there exists a positive real number a(x, x̄) ≤ 1 such that (1 − λ)x̄ + λx ∈ A for
0 < λ ≤ a(x, x̄). The set A is said to be locally star shaped if it is locally star
shaped at each of its points.

The set A = {(x, y) ∈ R2 | x2 ≤ | y | } ∪ {(x, y) ∈ R2 | y = 0} is locally star
shaped at origin but is not convex in any neighborhood containing origin.

Let A ⊆ X be a locally star shaped set at x̄ ∈ A and F : A → 2Y be a set-
valued map such that domF = A. The map F is said to be semilocally K-convex
at x̄ if for every x ∈ A, y ∈ F (x) and ȳ ∈ F (x̄) there exists a positive real number
d((x, y), (x̄, ȳ)) ≤ a(x, x̄) such that

(1 − λ)ȳ + λy ∈ F ((1 − λ)x̄+ λx) +K for 0 < λ ≤ d((x, y), (x̄, ȳ)).
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F is said to be semilocally K-convex on A if F is semilocally K-convex at each
x ∈ A.

Remark 4.1. If A is locally star shaped and d((x, y), (x̄, ȳ)) = a(x, x̄) = 1 for
every x, x̄ ∈ A, y ∈ F (x) and ȳ ∈ F (x̄) then clearly A is a convex set and every
semilocally K-convex set-valued map on A is K-convex on A.

On using standard arguments the following lemma can be easily established.

Lemma 4.1. A set-valued map F : A → 2Y defined on a locally star shaped
set A is semilocally K-convex if and only if epiF is a locally star shaped set.

It can be observed that semilocally K-convex set-valued map is a generalization
of locally K-convex set-valued map considered in [13]. We recall that a set-valued
map F : X → 2Y is locally K-convex at (x̄, ȳ) ∈ graph F if there exists a
neighborhood N of (x̄, ȳ) such that the set cl (N ∩ epiF ) is convex.

We recall that a set-valued map F : X → 2Y is said to be closed at x ∈ X

if for sequences {xn} in X and {yn} in Y with yn ∈ F (xn) ⊆ Y, xn → x and
yn → y we have y ∈ F (x). F is said to be closed on X if F is closed at every
x ∈ X .

Since a set-valued map is closed if and only if its graph is a closed set we can
conclude that the epigraph of a set-valued map F is closed if the profile map PF
is closed.

The following theorem gives a representation of a semilocal cone convex set-
valued map defined on X in terms of proper Clarke epiderivative.

Theorem 4.1. Suppose that F : X → 2Y is a semilocally K-convex set-valued
map on X such that the following hold:

(a) DpF (x̄, ȳ) exists for (x̄, ȳ) ∈ graphF ;
(b) domG = X;
(c) strong domination property holds for G(x) for every x ∈ X;
(d) profile map PDpF (x̄, ȳ) is closed;

then

F (x) − {ȳ} ⊆ DpF (x̄, ȳ)(x− x̄) +K

for every x ∈ X .

Proof. In order to prove the above result we need to prove that for (x, y) ∈
graph F the implication y − ȳ ∈ DpF (x̄, ȳ)(x − x̄) + K , that is, (x − x̄, y −
ȳ) ∈ epiDpF (x̄, ȳ) holds. Since the profile map PDpF (x̄, ȳ) is closed we have
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epiDpF (x̄, ȳ) = cl epiDpF (x̄, ȳ) and since strong domination property holds, from
Theorem 3.2, we have cl epiDpF (x̄, ȳ) = T (epiF, (x̄, ȳ)). Therefore it is enough
to prove that (x−x̄, y−ȳ) ∈ T (epiF, (x̄, ȳ)). Let (x̄n, ȳn) → (x̄, ȳ) with (x̄n, ȳn) ∈
epiF and tn → ∞ with tn > 0. Since epiF is a locally star shaped set there exists
a positive real number d((x, y), (x̄n, ȳn)) ≤ 1 such that ((1 − λ)x̄n + λx, (1 −
λ)ȳn + λy) ∈ epiF for 0 ≤ λ ≤ d((x, y), (x̄n, ȳn)). Without loss of generality
we can assume that 0 < 1/tn ≤ d((x, y), (x̄n, ȳn)) for each n. Define xn =
(1 − 1/tn)x̄n + (1/tn)x and yn = (1 − 1/tn)ȳn + (1/tn)y for each n. Hence for
each n we have xn ∈ X, yn ∈ F (xn)+K, {xn} → x̄ and {yn} → ȳ. This implies
(xn, yn)∈epiF, (xn, yn) → (x̄, ȳ) and tn{(xn, yn)−(x̄n, ȳn)} → (x−x̄, y−ȳ).

In the following theorems we use the set-valued map (F,H) : X → 2Y ×Z

defined as (F,H)(x) := F (x) × H(x), for every x ∈ X . For (x̄, ȳ, z̄) ∈ graph
(F,H) define

G′(x) := {(y, z) ∈ Y × Z | (x, y, z) ∈ T (epi(F,H), (x̄, ȳ, z̄))}.

Theorem 4.2. If (x̄, ȳ, z̄) is a proper minimizer of (VP) such that the following
conditions hold:

(i) strong domination property holds for G ′(x) for every x ∈ X;
(ii) G′(0) is pointed;

then there exists (ϕ, ψ) ∈ K ∗ × D∗ \ {(0Y , 0Z)} such that for all (y, z) ∈
Dp(F,H)(x̄, ȳ, z̄)(X)

(i) ϕ(y) + ψ(z) ≥ 0;
(ii) ψ(z̄) = 0;

where 0Z is the zero of Z.

Proof. The proof follows from Theorem 3.1 in [4] as a proper min-
imzer is a minimizer, strong domination property implies domination property and
Dp(F,H)(x̄, ȳ, z̄)(X) ⊆ Dg(F,H)(x̄, ȳ, z̄)(X).

Next we have the Kuhn Tucker type necessary optimality criteria for (VP) under
Slater’s type constraint qualification and semilocal cone convexity conditions. We
say the problem (VP) satisfies the generalized Slater’s constraint qualification if
there exists x′ ∈ X such that H(x′) ∩ (−intD) = φ.

Theorem 4.3. If (x̄, ȳ, z̄) is a proper minimizer of (VP) such that the following
conditions hold:

(a) strong domination property holds for G ′(x) for every x ∈ X;
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(b) G′(0) is pointed;
(c) domG′ = X;
(d) F is semilocally K-convex on X and H is semilocally D-convex on X;
(e) profile map PDp(F,H)(x̄, ȳ, z̄) is closed;
(f) Slater’s constraint qualification holds;

then there exist ϕ ∈ K ∗ \ {0Y } and ψ ∈ D∗ such that for all (y, z) ∈ Dp(F,H)
(x̄, ȳ, z̄)(X) conditions (i) and (ii) of Theorem 4.2 hold.

Proof. As (x̄, ȳ, z̄) is a proper minimizer of (VP) therefore by Theorem 4.2,
there exists (ϕ, ψ) ∈ K∗ ×D∗ \ {(0Y , 0Z)} such that ψ(z̄) = 0 and ϕ(y) + ψ(z)
≥ 0 for each (y, z) in Dp(F,H)(x̄, ȳ, z̄)(X). In view of Theorem 4.1 for any
(y, z) ∈ F (S)×H(S) we have (y, z)−(ȳ, z̄) ∈ Dp(F,H)(x̄, ȳ, z̄)(x−x̄)+K×D.
Since ϕ(k) ≥ 0 for every k ∈ K and ψ(d) ≥ 0 for every d ∈ D, it follows that
ϕ(y− ȳ)+ψ(z− z̄) ≥ 0, that is ϕ(y− ȳ)+ψ(z) ≥ 0. If ϕ = 0Y then ψ = 0Z and
hence for all z ∈ H(S), we get ψ(z) ≥ 0. As the generalized Slater’s constraint
qualification is satisfied there exists x ′ ∈ X such that H(x′)∩ (−intD) = φ which
implies that there exists z ′ ∈ H(x′) ∩ (−intD). Since z′ ∈ −intD it follows that
ψ(z′) < 0 which is a contradiction.

In order to establish the sufficiency optimality criteria, Chen [4] assumed the
cone convexity of the objective function and the set-valued map involved in the
constraints while dealing with the generalized tangent epiderivatives. However in
case of proper Clarke epiderivative we impose semilocal cone convexity assumptions
on the maps.

Theorem 4.4. Suppose that for x̄ ∈ S, ȳ ∈ F (x̄), z̄ ∈ H(x̄)∩ (−D) there exist
ϕ ∈ K#

1 ⊆ K∗ \{0Y } and ψ ∈ D∗ such that for all (y, z) ∈ Dp(F,H)(x̄, ȳ, z̄)(X)
conditions (i) and (ii) of Theorem 4.2 hold where K1 is a pointed convex cone
satisfying K \ {0Y } ⊂ intK1. Moreover assume that the following conditions
hold:

(a) strong domination property holds for G ′(x) for every x ∈ X;
(b) domG′ = X;
(c) F is semilocally K-convex on X and H is semilocally D-convex on X;
(d) profile map PDp(F,H)(x̄, ȳ, z̄) is closed;

then (x̄, ȳ, z̄) is a proper minimizer of (VP).

Proof. In view of Theorem 4.1 for any (y, z) ∈ F (S)×H(S) we have (y, z)
−(ȳ, z̄) ∈ Dp(F,H)(x̄, ȳ, z̄)(x− x̄)+K×D. Since K \ {0Y } ⊂ intK1 it follows
that ϕ ∈ K∗ and on using the hypothesis we have ϕ(y − ȳ) + ψ(z) ≥ 0 for any
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(y, z) ∈ F (S) × H(S). If ȳ /∈ PMin(F (S), K) then for every pointed convex
cone K′ containing K \ {0Y } in its interior, ȳ /∈ Min(F (S), K ′). In particular
ȳ /∈ Min(F (S), K1), that is, there exists x̂ ∈ S, ŷ ∈ F (x̂), ŷ = ȳ such that
ϕ(ŷ − ȳ) < 0. Since x̂ ∈ S there exists ẑ ∈ H(x̂) ∩ (−D) which satisfies the
relation ψ(ẑ) ≤ 0. Hence ϕ(ŷ − ȳ) + ψ(ẑ) < 0 which is a contradiction.

5. RELATION WITH CONTINGENT EPIDERIVATIVES

In the following theorem we use the notion of a contingent (Bouligand tangent)
cone to B at ȳ ∈ B defined as

Tc(B, ȳ) := {y ∈ Y | ∃ yn → ȳ, yn ∈ B, tn > 0, tn → ∞,

such that tn(yn − ȳ) → y}.
Equivalently

Tc(B, ȳ) := {y ∈ Y | ∃ yn → ȳ, yn ∈ B, tn ↓ 0 such that ȳ + tnyn ∈ B}.
It can be seen that Tc(B, ȳ) is a closed cone, T (B, ȳ) ⊆ Tc(B, ȳ) and T (B, ȳ) =
Tc(B, ȳ) = cl cone(B − ȳ) if B is a convex set.

We now study the relations between the notions of Clarke epiderivatives and
the contingent epiderivatives considered by Jahn and Khan [12]. The epiderivatives
in terms of the contingent cone are defined as the respective minimizers of the
projection set Gc(x) of the contingent cone on the image space given by the set

Gc(x) := {y ∈ Y | (x, y) ∈ Tc(epiF, (x̄, ȳ))}, ∀ x ∈ X.

Based on the nature of the contingent cone, it can be seen that Gc(x) is a closed
set. Moreover G(x) ⊆ Gc(x), for every x ∈ domG and G(x) = Gc(x) if
Tc(epiF, (x̄, ȳ)) is a convex set.

We now recall the definitions of the generalized contingent epiderivative and
proper contingent epiderivative given by Jahn and Khan [12]. Let F : X → 2Y be
a set-valued map with ȳ ∈ F (x̄) for x̄ ∈ X . A set-valued mapDc

gF (x̄, ȳ) : X → 2Y

defined by

Dc
gF (x̄, ȳ) = Min(Gc(x), K)

is the generalized contingent epiderivative of F at (x̄, ȳ) and a set-valued map
Dc

pF (x̄, ȳ) : X → 2Y defined by

Dc
pF (x̄, ȳ) = PMin(Gc(x), K)

is the proper contingent epiderivative of F at (x̄, ȳ).
We now have a set-valued map for which the proper and the generalized con-

tingent epiderivatives do not exist whereas the proper Clarke epiderivative and the
generalized tangent epiderivative exist.
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Example 5.1. For the set-valued map F : R → 2R2 defined by F (x) =
{(x, 0) | x ≤ 0} ∪ {(0, x) | x ≤ 0} and K = R2

+. In this case for x̄ = 0, ȳ =
(0, 0), Tc(epiF, (x̄, ȳ)) = R × (R2 \ intR2−). Therefore Gc(x) : R → R2 is
given by Gc(x) = R2 \ intR2− and hence Dc

gF (x̄, ȳ)(x) = Dc
pF (x̄, ȳ)(x) = φ.

As T (epiF, (x̄, ȳ)) = R × R2
+ we have G(x) = R2

+ and hence DgF (x̄, ȳ)(x) =
DpF (x̄, ȳ)(x) = {(0, 0)}, for every x ∈ R.

The proper contingent epiderivative even if it exists may differ from the proper
Clarke epiderivative as illustrated by the following example.

Example 5.2. Let F : R → 2R2 be a set-valued map defined by F (x) =
{(y1, y2) ∈ R2 | y2 ≥ −y1, y1 ≤ 0} ∪ {(y1, y2) ∈ R2 | y2 ≥ −2y1, y1 ≥ 0} for all x
in R and K = R2

+. Here it can be seen that for x̄ = 0, ȳ = (0, 0), Dc
gF (x̄, ȳ)(x) =

Dc
pF (x̄, ȳ)(x) = {(y1, y2) ∈ R2 | y2 = −y1, y1 ≤ 0} ∪ {(y1, y2) ∈ R2 | y2 =

−2y1, y1 ≥ 0} for all x in domG whereas DgF (x̄, ȳ)(x) = DpF (x̄, ȳ)(x) =
{(y1, y2) ∈ R2 | y2 = −y1, y1 ≥ 0} ∪ {(y1, y2) ∈ R2 | y2 = −2y1, y1 ≤ 0} for all x
in domG.

If the proper and generalized contingent epiderivatives and corresponding Clarke
epiderivatives exist for (x̄, ȳ) ∈ grahF , then for every x ∈ domG,

(i) Dc
pF (x̄, ȳ)(x) ∩G(x) ⊆ DpF (x̄, ȳ)(x) ⊆ Dc

pF (x̄, ȳ)(x) +K;
(ii) Dc

gF (x̄, ȳ)(x) ∩G(x) ⊆ DgF (x̄, ȳ)(x) ⊆ Dc
gF (x̄, ȳ)(x) +K;

(iii) DpF (x̄, ȳ)(x) ⊆ DgF (x̄, ȳ)(x) ⊆ Dc
gF (x̄, ȳ)(x) +K.

If the set-valued map is convex around the point (x̄, ȳ) ∈ graph F then proper
Clarke epiderivative coincides with contingent epiderivative as the Clarke tangent
cone and contingent cone coincide at that point. This holds for instance for locally
K-convex map.

6. CONCLUSIONS

The notion of proper Clarke epiderivative has been introduced in this paper and
its nature has been studied. An optimality criterion has been established in terms
of proper Clarke epiderivative. The study of this new notion is significant because
it refines the existing class of generalized Clarke epiderivative. Moreover to obtain
the Kuhn Tucker necessary optimality theorem and sufficiency criteria in terms of
proper Clarke epiderivative the convexity assumptions taken are more general.

It would be further interesting to derive optimality conditions using variational
principle and generalized differentiation tools (see [21, 22]) for set valued maps
derived by Bao and Mordukhovich [2].
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