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TRIPLE POSITIVE SOLUTIONS OF NONLINEAR THIRD ORDER
BOUNDARY VALUE PROBLEMS

Zeqing Liu, Shin Min Kang* and Jeong Sheok Ume

Abstract. In this paper we consider the following nonlinear third order two-
point boundary value problem

x′′′(t) + f(t, x(t)) = 0, a < t < b,

x(a) = x′′(a) = x(b) = 0.

By using the Leggett-Williams and Krasnosel’skii fixed-point theorems, we
offer criteria for the existence of three positive solutions to the boundary value
problem. Examples are also included to illustrate the results obtained.

1. INTRODUCTION

The boundary value problems of differential, integral and difference equations
have received a vast amount of attention in the recent literature and a lot of re-
searchers have discussed the existence of single, double, and triple positive solu-
tions for various boundary value problems, see for example [1-13,15,17-21] and the
references therein. By means of the Leggett-Williams fixed point theorem, Agarwal
and O’Regan [1] presented criteria which guarantee the existence of three nonneg-
ative solutions to a class of second order impulsive equations, and Anderson [4]
established the existence at least three positive solutions to a third order three-point
boundary value problem. Using the Krasnosel’skii fixed-point theorem, Anderson
and Davis [7] studied the existence of multiple positive solutions for a third order
three-point right focal boundary value problem, Wong and Agarwal [19] considered
the existence of multiple positive solutions for a two-point right focal boundary value

Received June 27, 2007, accepted September 29, 2007.
Communicated by J. C. Yao.
2000 Mathematics Subject Classification: 34B16, 34B18.
Key words and phrases: Nonlinear third order two-point boundary value problem, Multiple positive
solutions, Green’s function, Leggett-Williams fixed point theorem, Krasnosel’skii fixed-point theorem.
*Corresponding author.

955



956 Zeqing Liu, Shin Min Kang and Jeong Sheok Ume

problem and Yao [21] obtained the existence and multiplicity of positive solutions
for a third order three-point boundary value problem.

Motivated by the results mentioned, in this paper we derive criteria for the
existence of three positive solutions to the following nonlinear third order two-point
boundary value problem

x′′′(t) + f(t, x(t)) = 0, a < t < b, (1.1)

x(a) = x′′(a) = x(b) = 0, (1.2)

where f ∈ C([a, b]× R, [0,+∞)). Our arguments are based upon the positivity of
the Green’s functionG(t, s) and the Leggett-Williams and Krasnosel’skii fixed-point
theorems.

This paper is organized as follows. Section 2 contains the necessary definitions,
notation, properties of the Green’s function G(t, s) and fixed point theorems, which
play key roles in this paper. The existence criteria of three positive solutions for
equation (1.1), (1.2) are discussed in Section 3. Finally, three examples are presented
in Second 4 to illustrate the importance of the results obtained.

2. PRELIMINARIES

Let X be a Banach space and Y be a cone in X. A mapping α is said to be a
nonnegative continuous concave functional on Y if α : Y → [0,+∞) is continuous
and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y), x, y ∈ Y, t ∈ [0, 1].

x is said to be a positive solution of equation (1.1), (1.2) if x is a solution of
equation (1.1), (1.2) and x(t) > 0 for each t ∈ (a, b). Throughout this paper, we
assume that C[a, b] denotes the Banach space of all continuous functions on [a, b]
with the supremum norm ‖u‖ =: supt∈[a,b] |u(t)| for each u ∈ C[a, b], p and q are
constants with a < p < q < b,

f
0

= lim inf
s→0+

1
s

min{f(t, s) : t ∈ [p, q]},

f∞ = lim inf
s→+∞

1
s

min{f(t, s) : t ∈ [p, q]},

f0 = lim sup
s→0+

1
s

max{f(t, s) : t ∈ [a, b]},

f∞ = lim sup
s→+∞

1
s

max{f(t, s) : t ∈ [a, b]},

g(t) =
(b− t)2(b+ t− 2a)

2(b− a)
, h(t) =

(b− t)2(t− a)
2(b− a)3

, t ∈ [a, b],
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k−1 =
∫ b

a
g(s)ds =

5(b− a)3

24
,

m−1 = min
t∈[p,q]

h(t)
∫ q

p
g(s)ds

=
[
(b− p)3 − (b− q)3

3
− (b− p)4 − (b− q)4

8(b− a)

]
min{h(p), h(q)},

P = {x ∈ C[a, b] : x is concave on [a, b], x(t) ≥ h(t)‖x‖, t ∈ [a, b]},

Pr = {x ∈ P : ‖x‖ < r}, ∂Pr = {x ∈ P : ‖x‖ = r}, r > 0,

P r = {x∈P : ‖x‖ ≤ r}, P (α, r, s)={x ∈ P : r≤α(x), ‖x‖≤s}, s>r>0,

where α is a nonnegative continuous concave functional on P and

G(t, s) =




(t− a)(b− s)2

2(b− a)
− (t− s)2

2
, a ≤ s ≤ t ≤ b,

(t− a)(b− s)2

2(b− a)
, a ≤ t ≤ s ≤ b,

is the Green’s function of the homogeneous problem x′′′(t) = 0 satisfying the
boundary condition (1.2). It is easy to verify that P is a cone of C[a, b].

Lemma 2.1. (i) Equation (1.1), (1.2) has a solution y ∈ C[a, b] if and only if
the operator T : C[a, b] → C[a, b] defined by

Tx(t) =
∫ b

a
G(t, s)f(s, x(s))ds, t ∈ [a, b], x ∈ C[a, b]

has a fixed point y ∈ C[a, b];
(ii) Suppose that the following condition

f(t0, 0) > 0 for some t0 ∈ [a, b] (2.1)

is fulfilled, then each solution y ∈ C[a, b] of equation (1.1), (1.2) satisfies that
‖y‖ > 0.

Lemma 2.2.

(i) 0 ≤ h(t) ≤ 1
2 , 0 ≤ g(t) ≤ g(a) = (b−a)2

2 , t ∈ [a, b];
(ii) h(t)g(s) ≤ G(t, s) ≤ g(s), t, s ∈ [a, b].
(iii) For each s ∈ [a, b], the function G(·, s) is concave in the first argument on

[a, b].
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Proof. (i) is clear. Now we show that (ii) holds. For a ≤ t ≤ s ≤ b, by (i) we
infer that

G(t, s) =
(t− a)(b− s)2

2(b− a)
≤ (s− a)(b− s)2

2(b− a)
≤ g(s)

and
G(t, s) =

(t− a)(b− s)2

2(b− a)
=

t− a

b+ s− 2a
g(s)

≥ t− a

2(b− a)
g(s) ≥ h(t)g(s).

For a ≤ s < t ≤ b, by (i) we deduce that

G(t, s) =
(t− a)(b− s)2

2(b− a)
− (t− s)2

2

=
1

2(b− a)
[(b2 − 2bs+ s2)(t− a) − (t2 − 2ts+ s2)(b− a)]

=
b− t

2(b− a)
(2as− s2 + bt− ab− at)

=
b− t

2(b− a)
[−(a− s)2 + a(a− b) + t(b− a)]

=
b− t

2(b− a)
[(b− a)(t− a) − (a− s)2]

≤ b− s

2(b− a)
[(b− a)2 − (a− s)2]

= g(s)

and

G(t, s) =
(t− a)(b− s)2

2(b− a)
− (t− s)2

2

=
(b− t)[(b− a)(t− a)− (a− s)2]

(b− s)2(b+ s − 2a)
g(s)

=
(b− t)[(b− a)(t− a)− (t− a)2 + (t− a)2 − (a− s)2]

(b− s)2(b+ s− 2a)
g(s)

=
(b− t)[(t− a)(b− t) + (t− s)(t+ s − 2a)]

(b− s)2(b+ s − 2a)
g(s)

≥ (b− t)2(t− a)
(b− s)2(b+ s − 2a)

g(s)

≥ (b− t)2(t− a)
2(b− a)(b− s)2

g(s)

≥ h(t)g(s).
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That is, (ii) holds. Let c ∈ [0, 1] and t, r, s ∈ [a, b] with t ≤ r. In order to show
(iii), we have to consider the following possible cases:

Case 1. Suppose that s ≤ t. Notice that ct+ (1 − c)r ≥ s. It follows that

G(ct+ (1− c)r, s)− cG(t, s)− (1 − c)G(r, s)

=
(ct+ (1− c)r− a)(b− s)2

2(b− a)
− (ct+ (1 − c)r − s)2

2
− c(t− a)(b− s)2

2(b− a)

+
c(t− s)2

2
− (1− c)(r− a)(b− s)2

2(b− a)
+

(1− c)(r− s)2

2

=
c(t− s)2

2
+

(1− c)(r− s)2

2
− [c(t− s) + (1− c)(r− s)]2

2

≥ 0.

Case 2. Suppose that r ≤ s. Since ct+ (1− c)r ≤ s, it follows that

G(ct+ (1 − c)r, s)− cG(t, s)− (1− c)G(r, s)

=
(ct+ (1 − c)r − a)(b− s)2

2(b− a)
− c(t− a)(b− s)2

2(b− a)
− (1− c)(r− a)(b− s)2

2(b− a)

= 0.

Case 3. Suppose that t < s < r and ct+ (1− c)r ≤ s. It is easy to verify that

G(ct+ (1− c)r, s)− cG(t, s)− (1 − c)G(r, s)

=
(ct+ (1− c)r− a)(b− s)2

2(b− a)
− c(t− a)(b− s)2

2(b− a)

−(1 − c)(r− a)(b− s)2

2(b− a)
+

(1 − c)(r− s)2

2

=
(1 − c)(r− s)2

2
≥ 0.

Case 4. Suppose that t < s < r and ct+ (1 − c)r > s. Then

G(ct+ (1− c)r, s)− cG(t, s)− (1 − c)G(r, s)

=
(ct+ (1− c)r− a)(b− s)2

2(b− a)
− (ct+ (1 − c)r − s)2

2
− c(t− a)(b− s)2

2(b− a)

−(1 − c)(r− a)(b− s)2

2(b− a)
+

(1 − c)(r− s)2

2
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=
(1 − c)(r− s)2

2
− [(1− c)(r− s) − c(s− t)]2

2

≥ (1 − c)(r− s)2

2
− (1− c)2(r − s)2

2

=
c(1 − c)(r− s)2

2≥ 0.

Hence (iii) holds. This completes the proof.

Lemma 2.3. (Leggett-Williams Fixed-Point Theorem [14]). Let T : P c → P c
be a completely continuous operator and α be a nonnegative continuous concave
functional on P such that α(x) ≤ ‖x‖ for all x ∈ P c. Suppose that there exist
0 < d0 < a0 < b0 ≤ c such that

(i) {x ∈ P (α, a0, b0) : α(x) > a0} �= ∅ and α(Tx) > a0 for x ∈ P (α, a0, b0);

(ii) ‖Tx‖ < d0 for ‖x‖ ≤ d0;

(iii) α(Tx) > a0 for x ∈ P (α, a0, c) with ‖Tx‖ > b0.

Then T has at least three fixed points x 1, x2, x3 in P c satisfying

‖x1‖ < d0, a0 < α(x2), ‖x3‖ > d0 and α(x3) < a0.

Lemma 2.4. (Krasnosel’skii Fixed-Point Theorem [16]). Let (X, ‖ · ‖) be a
Banach space and let Y ⊂ X be a cone in X. Assume that A and B are open
subsets of X with 0 ∈ A, A ⊂ B and T : Y ∩ (B \ A) → Y is a completely
continuous operator such that, either

(i) ‖Tu‖ ≤ ‖u‖ for u ∈ Y ∩ ∂A, and ‖Tu‖ ≥ ‖u‖ for u ∈ Y ∩ ∂B, or

(ii) ‖Tu‖ ≥ ‖u‖ for u ∈ Y ∩ ∂A, and ‖Tu‖ ≤ ‖u‖ for u ∈ Y ∩ ∂B.
Then T has at least one fixed point in Y ∩ (B \ A).

3. EXISTENCE OF THREE POSITIVE SOLUTIONS

Now we are ready to establish sufficient conditions for the existence of at least
three positive solutions of equation (1.1), (1.2) under certain conditions by apply-
ing the positivity of the Green’s function G(t, s) and the Leggett-Williams and
Krasnosel’skii fixed-point theorems, respectively. Our first result employs Lemma
2.3.

Theorem 3.1. Suppose that there exist four constants d 0, a0, b0 and c0 satis-
fying
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0 < d0 < a0,
a0

min{h(p), h(q)} ≤ b0 ≤ c0; (3.1)

f(t, s) < kd0, t ∈ [a, b], s ∈ [0, d0]; (3.2)

f(t, s) > ma0, t ∈ [p, q], s ∈ [a0, b0]; (3.3)

f(t, s) < kc0, t ∈ [a, b], s ∈ [0, c0], (3.4)

respectively. If (2.1) holds, then equation (1.1), (1.2) possesses at least three
positive solutions x1, x2, x3 ∈ P c0 such that

0 < ‖x1‖ < d0, a0 < min{x2(p), x2(q)}, ‖x3‖ > d0,

min{x3(p), x3(q)} < a0.
(3.5)

Proof. Define the operator T : P → C[a, b] by

Tx(t) =
∫ b

a
G(t, s)f(s, x(s))ds, t ∈ [a, b], x ∈ C[a, b] (3.6)

and put
α(x) = min

t∈[p,q]
|x(t)|, x ∈ P.

It is not difficult to see that α is a nonnegative continuous concave functional on
P and α(x) = min{x(p), x(q)} ≤ ‖x‖, x ∈ P. By virtue of Lemma 2.2 and (3.6),
we infer that

Tx(ct+ (1− c)r) =
∫ b

a
G(ct+ (1− c)r, s)f(s, x(s))ds

≥
∫ b

a
[cG(t, s) + (1− c)G(r, s)]f(s, x(s))ds

= cTx(t) + (1 − c)Tx(r), x ∈ P, t, r ∈ [a, b], c ∈ [0, 1],

‖Tx‖ = sup
t∈[a,b]

∫ b

a
G(t, s)f(s, x(s))ds

≤
∫ b

a
g(s)f(s, x(s))ds, x ∈ P

and

Tx(t) =
∫ b

a
G(t, s)f(s, x(s))ds

≥ h(t)
∫ b

a
g(s)f(s, x(s))ds

≥ h(t)‖Tx‖, t ∈ [a, b], x ∈ P.
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That is, T : P → P. Furthermore, T is completely continuous by an application of
Arzela-Ascoli Theorem. Now we assert that T (P c0) ⊂ Pc0 . Let x ∈ P c0. It is easy
to see that

0 ≤ h(t)‖x‖ ≤ x(t) ≤ c0, t ∈ [a, b].

This together with Lemma 2.2 and (3.4) yield that

‖Tx‖ = sup
t∈[a,b]

∫ b

a
G(t, s)f(s, x(s))ds≤

∫ b

a
g(s)f(s, x(s))ds

< kc0

∫ b

a

g(s)ds = c0,

which implies that T (P c0) ⊂ Pc0 . Similarly we could deduce that ‖Tx‖ < d0 for
‖x‖ ≤ d0 by Lemma 2.2 and (3.2). Choose

x0(t) =
3
4
a0 +

1
4
b0, t ∈ [a, b].

This together with (3.1) guarantee that x0 ∈ {x ∈ P (α, a0, b0) : α(x) > a0} �= ∅.
For any x ∈ P (α, a0, b0), Lemma 2.2 and (3.3) ensure that

α(Tx) = min
t∈[p,q]

∫ b

a
G(t, s)f(s, x(s))ds≥ min

t∈[p,q]

∫ b

a
h(t)g(s)f(s, x(s))ds

≥ min{h(p), h(q)}
∫ q

p

g(s)f(s, x(s))ds

> min{h(p), h(q)}ma0

∫ q

p
g(s)ds = a0.

For any x ∈ P (α, a0, c0) and ‖Tx‖ > b0, Lemma 2.2, (3.1) and (3.6) guarantee
that

‖Tx‖ = max
t∈[a,b]

∫ b

a
G(t, s)f(s, x(s))ds

≤
∫ b

a

g(s)f(s, x(s))ds

and

α(Tx) = min
t∈[p,q]

∫ b

a
G(t, s)f(s, x(s))ds

≥ mint∈[p,q]

∫ b
a h(t)g(s)f(s, x(s))ds

= min{h(p), h(q)}
∫ b

a
g(s)f(s, x(s))ds

≥ min{h(p), h(q)}‖Tx‖> min{h(p), h(q)}b0 ≥ a0.



Nonlinear Third Order Boundary Value Problems 963

Lemma 2.3 gives that the operator T has at least three fixed points x1, x2, x3 ∈ P c0
with

‖x1‖ < d0, a0 < α(x2), ‖x3‖ > d0 and α(x3) < a0. (3.7)

Lemmas 2.1 and 2.2, (2.1) and (3.7) imply that equation (1.1), (1.2) possesses at
least three positive solutions x1, x2, x3 ∈ P c0 satisfying (3.5). This completes the
proof.

Next we continue to use Lemma 2.3 to give other existence criteria of three
positive solutions for equation (1.1), (1.2).

Theorem 3.2 Suppose that there exist four constants d 0, a0, b0 and c satisfying
(3.2), (3.3),

0 < d0 < a0,
a0

min{h(p), h(q)} ≤ b0, (3.8)

f(t, s) ≤ ks, t ∈ [a, b], s ∈ [c,+∞), (3.9)

respectively. If (2.1) holds, then there exists c0 > max{c, b0} such that equation
(1.1), (1.2) possesses at least three positive solutions x 1, x2, x3 ∈ P c0 satisfying
(3.5).

Proof. In order to prove Theorem 3.2, we need only to show that there exists
c0 > max{b0, c} satisfying (3.4). Suppose that f is bounded on [a, b]× [0,+∞).
It follows that there exists c0 > max{b0, c} such that

f(t, s) < kc0, t ∈ [a, b], s ∈ [0,+∞).

Suppose that f is unbounded on [a, b] × [0,+∞). The continuity of f and (3.9)
yield that there exist c0 > max{b0, c} and s0 ∈ (c, c0)such that

f(t, s) ≤ f(t, s0) ≤ ks0 < kc0, t ∈ [a, b], s ∈ [0, c0].

That is, (3.4) holds. Thus Theorem 3.2 follows from Theorem 3.1. This completes
the proof.

Theorem 3.3. Suppose that there exist two constants a 0 and b0 with 0 <
a0

min{h(p),h(q)} ≤ b0 satisfying (3.3) and

max{f0, f∞} < k. (3.10)

If (2.1) holds, then there exist two constants d 0 and c0 with 0 < d0 < a0 and
c0 > b0 such that equation (1.1), (1.2) possesses at least three positive solutions
x1, x2, x3 ∈ P c0 satisfying (3.5).
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Proof. Notice that (3.10) implies that there exist d0 ∈ (0, a0) and c > b0
satisfying

1
s

max{f(t, s) : t ∈ [a, b]}< f 0 + k

2
, s ∈ (0, d0],

1
s

max{f(t, s) : t ∈ [a, b]}< f∞ + k

2
, s ∈ [c,+∞),

which give that
f(t, s) < kd0, t ∈ [a, b], s ∈ [0, d0],

f(t, s) < ks, t ∈ [a, b], s ∈ [c,+∞).

Thus Theorem 3.3 follows from Theorem 3.2. This completes the proof.

Remark 3.1. Theorems (3.1)-(3.3) guarantee only that equation (1.1), (1.2)
possesses at least two positive solutions and a nonnegative solution provided that
(2.1) is omitted.

Now we use Lemma 2.4 to provide a few existence criteria of triple positive
solutions for equation (1.1), (1.2).

Theorem 3.4. Suppose that there exist four constants d 0, a0, b0 and c0 with
0 < d0 < a0 < b0 < c0 satisfying (3.2),

f(t, s) > ma0, t ∈ [p, q], s ∈ [min{h(p), h(q)}a0, a0]; (3.11)

f(t, s) < kb0, t ∈ [a, b], s ∈ [0, b0]; (3.12)

f(t, s) > mc0, t ∈ [p, q], s ∈ [min{h(p), h(q)}c0, c0]. (3.13)

Then equation (1.1), (1.2) possesses at least three positive solutions x 1, x2, x3 ∈
P c0 satisfying

d0 < ‖x1‖ < a0 < ‖x2‖ < b0 < ‖x3‖ < c0. (3.14)

Proof. Define the operator T : P → C[a, b] by (3.6). Then T : P → P is
completely continuous. We assert that (3.2) and (3.11) imply that there exist two
positive constants d1 and a1 with d0 < d1 < a1 < a0 satisfying

f(t, s) ≤ kd1, t ∈ [a, b], s ∈ [0, d1]; (3.15)

f(t, s) ≥ ma1, t ∈ [p, q], s ∈ [min{h(p), h(q)}a1, a1]. (3.16)
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Set

ψ(s) = min{f(t, x) : t ∈ [p, q], x ∈ [min{h(p), h(q)}s, s]}, s ≥ 0,

ϕ(s) = max{f(t, x) : t ∈ [a, b], x ∈ [0, s]}, s ≥ 0.

It is clear that (3.2) and (3.11) are equivalent to ϕ(d0)
d0

< k and ψ(a0)
a0

> m, respec-
tively. Note that

ψ(d0)
d0

≤ ϕ(d0)
d0

< k < m <
ψ(a0)
a0

.

The continuity of ψ yields that there exists some a1 ∈ (d0, a0) satisfying ψ(a1)
a1

= m,
which implies that (3.16) holds. Because

ϕ(d0)
d0

< k < m =
ψ(a1)
a1

≤ ϕ(a1)
a1

,

it follows from the continuity of ϕ that there exists some d1 ∈ (d0, a1) with ϕ(d1)
a1

=
k, which means that (3.15) holds.

Now we claim that equation (1.1), (1.2) possesses at least one positive solution
x1 ∈ P with d0 < d1 ≤ ‖x1‖ ≤ a1 < a0. Let x be in ∂Pd1 . It is easy to verify that
‖x‖ = d1 and

0 ≤ h(t)d1 ≤ x(t) ≤ d1, t ∈ [a, b].

Thus (3.15) yields that

f(t, x(t)) ≤ kd1, t ∈ [a, b]. (3.17)

In light of Lemma 2.2, (3.6) and (3.17), we get that

‖Tx‖ = sup
t∈[a,b]

∫ b

a
G(t, s)f(s, x(s))ds

≤
∫ b

a
g(s)f(s, x(s))ds

≤ kd1

∫ b

a
g(s)ds

= d1,

which yields that
‖Tx‖ ≤ ‖x‖, x ∈ ∂Pd1. (3.18)

Let x be in ∂Pa1. It follows that ‖x‖ = a1 and

min{h(p), h(q)}a1 ≤ h(t)‖x‖ ≤ x(t) ≤ a1, t ∈ [p, q].
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Note that (3.16) yields that

f(t, x(t)) ≥ma1, t ∈ [p, q]. (3.19)

By virtue of Lemma 2.2, (3.6) and (3.19), we observe that

Tx(t) =
∫ b

a

G(t, s)f(s, x(s))ds

≥ h(t)
∫ b

a
g(s)f(s, x(s))ds

≥ min{h(p), h(q)}
∫ q

p
g(s)f(s, x(s))ds

≥ min{h(p), h(q)}ma1

∫ q

p
g(s)ds

= a1, t ∈ [p, q],

which implies that
‖Tx‖ ≥ ‖x‖, x ∈ ∂Pa1. (3.20)

Thus Lemma 2.4, (3.18) and (3.20) imply that equation (1.1), (1.2) possesses at
least one solution x1 ∈ P with d0 < d1 ≤ ‖x1‖ ≤ a1 < a0. Note that

x1(t) ≥ h(t)‖x1‖ ≥ d1h(t) > 0, t ∈ (a, b).

That is, the solution x1 of equation (1.1), (1.2) is positive. Similarly, by (3.11)-
(3.13) we could conclude that there exist a2, b2, b3, c3 with a0 < a2 < b2 < b0 <

b3 < c3 < c0 such that equation (1.1), (1.2) possesses at least two positive solutions
x2, x3 ∈ P with

a0 < a2 ≤ ‖x2‖ ≤ b2 < b0 < b3 ≤ ‖x3‖ ≤ c3 < c0.

This completes the proof.

Theorem 3.5. Suppose that there exist two constants a 0 and b0 with 0 < a0 <
b0 satisfying (3.11) and (3.12), respectively. If the function f satisfies

f0 < k and f∞ >
m

min{h(p), h(q)}, (3.21)

then there exists constants d0 and c0 with 0 < d0 < a0 and b0 < c0 such that
equation (1.1), (1.2) possesses at least three positive solutions x 1, x2, x3 ∈ P c0
satisfying (3.14).
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Proof. Notice that (3.21) implies that there exist d0 ∈ (0, a0) and c0 with
min{h(p), h(q)}c0 > b0 satisfying

1
s

max{f(t, s) : t ∈ [a, b]} < f0 + k

2
, s ∈ (0, d0],

1
s

min{f(t, s) : t ∈ [p, q]} > m

min{h(p), h(q)}, s ∈ [min{h(p), h(q)}c0,+∞),

which yield that

f(t, s) < kd0, t ∈ [a, b], s ∈ [0, d0],

f(t, s) >
m

min{h(p), h(q)}s ≥ mc0, t ∈ [p, q], s ∈ [min{h(p), h(q)}c0, c0].

Hence Theorem 3.5 follows from Theorem 3.4. This completes the proof.

By combining arguments used in Theorems 3.1-3.5, we have the following
results.

Theorem 3.6. Assume that there exist four constants d 0, a0, b0 and c0 with
0 < d0 < a0 < b0 < c0 satisfying (3.4),

f(t, s) > md0, t ∈ [p, q], s ∈ [min{h(p), h(q)}d0, d0]; (3.22)

f(t, s) < ka0, t ∈ [a, b], s ∈ [0, a0]; (3.23)

f(t, s) > mb0, t ∈ [p, q], s ∈ [min{h(p), h(q)}b0, b0]. (3.24)

Then equation (1.1), (1.2) possesses at least three positive solutions x 1, x2, x3 ∈
P c0 satisfying (3.14).

Theorem 3.7. Assume that there exist three constants d 0, a0 and b0 with
0 < d0 < a0 < b0 satisfying (3.22), (3.23) and (3.24), respectively. If the function
f satisfies (3.9) for some constant c > 0, then there exists c 0 > max{c, b0} such
that equation (1.1), (1.2) possesses at least three positive solutions x 1, x2, x3 ∈ P c0
satisfying (3.14).

Theorem 3.8. Assume that there exist two constants a 0 and b0 with 0 < a0 < b0
satisfying (3.23) and (3.24), respectively. If the function f satisfies

f∞ < k and f
0
>

m

min{h(p), h(q)}, (3.25)

then there exist constants d0 and c0 with 0 < d0 < a0 and < b0 < c0 such that
equation (1.1), (1.2) possesses at least three positive solutions x 1, x2, x3 ∈ P c0
satisfying (3.14).
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4. EXAMPLES

In this section, we construct three examples to illustrate the usefulness of the
results obtained in Section 3.

Example 4.1. Let a = 0, b = 3, p = 1, q = 2, d0 = 1, a0 = 7, b0 = 190,
c0 = 303807105000 and

f(t, s) =




1− ts
3

45+t2
, t∈ [a, b], s∈(−∞, d0],

1 − t
3

45 + t2
+

3
41

(t2 + s2)(s− 1)3, t ∈ [a, b], s ∈ (d0, b0],

1− t
3

45+t2
+

20253807
41

(t2 + 36100)+
s− 190

9
, t ∈ [a, b], s∈(b0,+∞).

It is clear that k = 8
45 , h(p) = 2

27 , h(q) = 1
27 , m = 648

41 , and

f(t, s) ≤ 1
45

< kd0, t ∈ [a, b], s ∈ [0, d0],

f(t, s) >
3
41
s(s− 1)3 > ma0, t ∈ [p, q], s ∈ [a0, b0],

f(t, s) ≤ 1 +
731344716963

41
+

303807104810
9

< kc0, t ∈ [a, b], s ∈ [0, c0].

Theorem 3.1 ensures that equation (1.1), (1.2) has at least three positive solutions
x1, x2, x3 ∈ P c0 satisfying (3.5).

Example 4.2. Let a = 1, b = 4, p = 2, q = 3, d0 = 1, a0 = 40, b0 = 629600,
c0 = 17628800 and

f(t, s) =




1 − s

45 + t2(s− 1)2
, t∈ [a, b], s∈ (−∞, d0],

(2079 + 27t2)(s− 1), t∈ [a, b], s∈ (d0, a0],

81081 + 1053t2 +
s− 40
45 + ts

, t∈ [a, b], s∈ (a0, b0],

81081+1053t2+
629560

45+629600t
+729t2(s−629600)2, t∈ [a, b], s∈ (b0,+∞).

Note that k = 8
45 , h(p) = 2

27 , h(q) = 1
27 , m = 1296

67 . It is not difficult to verify that

f(t, s) <
1
45

< kd0, t ∈ [a, b], s ∈ [0, d0],

f(t, s) > 1053 > ma0, t ∈ [p, q], s ∈ [min{h(p), h(q)}a0, a0],

f(t, s) < 97929 +
629560

45
< kb0, t ∈ [a, b], s ∈ [0, b0],

f(t, s) > 85293 + 2916
(
c0
27

− 629600
)2

> mc0, t∈ [p, q], s∈ [min{h(p), h(q)}c0, c0].
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Theorem 3.4 guarantees that equation (1.1), (1.2) possesses at least three positive
solutions x1, x2, x3 ∈ P c0 satisfying (3.14).

Example 4.3. Let a = 0, b = 5, p = 1, q = 2, d0 = 2, a0 = 605, b0 =
515320, c0 = 4103820000 and

f(t, s) =




751+(1+t)
√

2−s
191

, t∈ [a, b], s∈ (−∞, d0],

751
191

+
4(s− 2)

125
, t∈ [a, b], s ∈ (d0, a0],

554367
23875

+
(124 + t2)(s− 605)

4
, t ∈ [a, b], s ∈ (a0, b0],

554367
23875

+
514715(124 + t2)

4
+

(1+4t)(s−515320)
625

, t∈ [a, b], s∈ (b0,+∞).

It is easy to verify that k = 24
625 , m = 375

191 , h(p) = 8
125 , h(q) = 9

125 ,

f(t, s) >
751
191

> md0, t ∈ [p, q], s ∈ [min{h(p), h(q)}d0, d0],

f(t, s) ≤ 751
191

+
2412
125

< ka0, t ∈ [a, b], s ∈ [0, a0],

f(t, s) ≥ 1011754 > mb0, t ∈ [p, q], s ∈ [min{h(p), h(q)}b0, b0],
f(t, s) < 19559194 +

21
625

(c0 − 515320) < kc0, t ∈ [a, b], s ∈ [0, c0].

That is, the conditions of Theorem 3.6 are fulfilled. Consequently, Theorem 3.6
yields that equation (1.1), (1.2) has at least three positive solutions x1, x2, x3 ∈ P c0
satisfying (3.14).
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