Vol. 13, No. 2A, pp. 369-375, April 2009

This paper is available online at http://www.tjm.nsysu.edu.tw/

AN APPLICATION OF DIFFERENTIAL SUBORDINATIONS TO THE CLASS OF CERTAIN ANALYTIC FUNCTIONS

Shigeyoshi Owa and A. A. Attiya

Abstract. For functions belonging to the generalization class $\mathcal{R}_p(k,\alpha,\lambda)$ of analytic functions in the open unit disc $\mathbb{U}=\{z:|z|<1\}$, which investigated in this paper, some applications of differential subordination are obtained which contain interesting property of Hurwitz-Lerch Zeta function.

1. Introduction and Definitions

Let $A_p(k)$ denote the class of functions f(z) of the form

$$f(z) = z^p + \sum_{m=p+k}^{\infty} a_m z^m \qquad (p, k \in \mathbb{N} = \{1, 2, ...\})$$
 (1.1)

which are analytic in the open unit disc $\mathbb{U} = \{z : |z| < 1\}.$

Also, let $\mu_a(k)$ denote the class of analytic functions in $\mathbb U$ of the form

$$q(z) = a + \sum_{m=k}^{\infty} a_m z^m \quad (z \in \mathbb{U}), \qquad (1.2)$$

for some $a \in \mathbb{C}$ (\mathbb{C} is the complex plane).

A function f(z) in the class $\mathcal{A}_p(k)$ is said to be in the class $\mathcal{R}_p(k,\alpha)$ if it satisfies

$$\operatorname{Re}\left\{\frac{f(z)}{z^p}\right\} > \frac{\alpha}{p} \qquad (z \in \mathbb{U}),$$
 (1.3)

for some α ($0 \le \alpha < p$). The class $\mathcal{R}_p(1,0) = \mathcal{R}_p$, was introduced by Saitoh and Nunokawa [16], Saitoh *et al.* [17] and Fukui *et al.* [7]. Also, the classes

Received October 3, 2006, accepted August 5, 2007.

Communicated by J. C. Yao.

2000 Mathematics Subject Classification: Primary 30C45, Secondary 30C80.

Key words and phrases: Analytic function, Univalent function, Convex function differential subordination, Hurwitz-Lerch Zeta function.

 $\mathcal{R}_1(1,\alpha) = \mathcal{C}(\alpha)$, and $\mathcal{R}_1(1,0) = \mathcal{C}(0)$, were studied by Ezrohi [5] and MacGregor [13], respectively.

Further; a function f(z) in the class $\mathcal{A}_p(k)$ is said to be in the class $\mathcal{P}_p(k,\alpha)$ if it satisfies

$$\operatorname{Re}\left\{\frac{f'(z)}{z^{p-1}}\right\} > \alpha \qquad (z \in \mathbb{U}) , \qquad (1.4)$$

for some α ($0 \le \alpha < p$). The classes $\mathcal{P}_p(1,\alpha) = \mathcal{P}(p,\alpha)$, and $\mathcal{P}_p(1,0) = \mathcal{P}_p$, were previously studied by Cho [3] and Umezawa [20], respectively. Also $\mathcal{P}_1(1,\alpha) = \mathcal{B}(\alpha)$, was introduced by Chen ([1], [2]) and Goel [8]. Moreover $\mathcal{P}_1(1,0) = \mathcal{B}(0)$, was studied by Goel [9] and Yamaguchi [21].

Now we define:

Definition 1.1. Suppose that $f(z) \in \mathcal{A}_p(k)$. Then the function f(z) is said to be a member of the class $\mathcal{R}_p(k,\alpha,\lambda)$ if it satisfies

$$\operatorname{Re}\left\{ (1-\lambda)\frac{f(z)}{z^{p}} + \lambda \frac{f'(z)}{p z^{p-1}} \right\} > \frac{\alpha}{p} \qquad (z \in \mathbb{U}), \qquad (1.5)$$

for some $\alpha (0 \le \alpha < p)$ and $\lambda \ge 0$.

We note that, $\mathcal{R}_p(k, \alpha, 0) = R_p(k, \alpha)$, and $\mathcal{R}_p(k, \alpha, 1) = \mathcal{P}_p(k, \alpha)$. We shall also need the following definitions:

Definition 1.2. Let f(z) and F(z) be analytic functions. The function f(z) is said to be *subordinate* to F(z), written $f(z) \prec F(z)$, if there exists a function w(z) analytic in \mathbb{U} , with w(0) = 0 and $|w(z)| \leq 1$, and such that f(z) = F(w(z)). If F(z) is univalent, then $f(z) \prec F(z)$ if and only if f(0) = F(0) and $f(\mathbb{U}) \subset F(\mathbb{U})$.

Definition 1.3. Let $\Psi: \mathbb{C}^3 \times \mathbb{U} \to \mathbb{C}$ and let h(z) be univalent in \mathbb{U} . If $q(z) \in \mu_a(k)$ satisfies the differential subordination:

$$\Psi(q(z), z q'(z), z^2 q''(z); z) \prec h(z) \quad (z \in \mathbb{U}),$$
 (1.6)

then q(z) will be called (a,k)-solution. The univalent function s(z) is called (a,k)-domainant, if $q(z) \prec s(z)$ for all q(z) satisfying (1.6), (a,k)-domainant $\bar{s}(z) \prec s(z)$ for all (a,k)-domainant s(z) of (1.6) is said to be the best (a,k)-domainant of (1.6).

In this paper, an interesting property of functions in the class $\mathcal{R}_p(k,\alpha,\lambda)$ using the technique of differential subordination is obtained. An application of Hurwitz-Lerch Zeta function is also discussed.

2. Differential Subordination with $R_p(k,\alpha,\lambda)$

We require the following theorem due to Hallenbeck and Ruscheweyh [10] (see also [14])

Theorem 2.1. Let h(z) be convex in $\mathbb U$, with $h(0)=a,\ \gamma\neq 0$ and $\operatorname{Re}(\gamma)\geq 0$. If $q(z)\in \mu_a(k)$ and

$$q(z) + \frac{z \, q'(z)}{\gamma} \ \prec \ h(z), \tag{2.1}$$

then

$$q(z) \prec S(z) \prec h(z)$$
,

where

$$S(z) = \frac{\gamma}{k z^{\frac{\gamma}{k}}} \int_{0}^{z} h(t) t^{\frac{\gamma}{k} - 1} dt . \qquad (2.2)$$

The function S(z) is convex and is the best (a, k) – domainint. Now, we prove the following lemma:

Theorem 2.2. Let the function f(z) defined by (1.1) be in the class $\mathcal{R}_p(k, \alpha, \lambda)$ ($\lambda \geq 0$), then

$$\operatorname{Re}\left\{\frac{f(z)}{z^{p}}\right\} > \left(\frac{2\alpha}{p} - 1\right) + \frac{2(p - \alpha)}{p} \int_{0}^{1} \frac{dt}{1 + t^{\frac{\lambda k}{p}}} \qquad (z \in \mathbb{U}), \tag{2.3}$$

for some $\alpha (0 \le \alpha < p)$.

The constant $\left(\frac{2\alpha}{p}-1\right)+\frac{2(p-\alpha)}{p}\int\limits_{0}^{1}\frac{dt}{1+t^{\frac{\lambda k}{p}}}$ is the best estimate.

Proof. Defining the function $q(z) = \frac{f(z)}{z^p}$, we have $q(z) \in \mu_1(k)$.

If we take $\gamma = \frac{p}{\lambda}$, and the convex function h(z) defined by

$$h(z) = \frac{1 + \left(\frac{2\alpha}{p} - 1\right)z}{1 + z}, \quad 0 \le \alpha$$

then, we have

$$q(z) + \frac{z \, q'(z)}{\gamma} = (1 - \lambda) \frac{f(z)}{z^p} + \lambda \frac{f'(z)}{p \, z^{p-1}}.$$
 (2.5)

Since $f(z) \in R_p(k, \alpha, \lambda)$, we see that

$$q(z) + \frac{z \, q'(z)}{\gamma} \prec h(z),\tag{2.6}$$

where h(z) is defined by (2.4) with h(0) = 1.

Applying Theorem 2.1, we obtain that $\frac{f(z)}{z^p} \prec S(z)$, where the convex function S(z) defined by

$$S(z) = \frac{p}{\lambda k \ z^{\frac{p}{\lambda k}}} \int_{0}^{z} \frac{1 + \left(\frac{2\alpha}{p} - 1\right)t}{1 + t} \ t^{\left(\frac{p}{\lambda k} - 1\right)} dt. \tag{2.7}$$

Noting that $\operatorname{Re} \{h(z)\} > 0$ and $S(z) \prec h(z)$, we have $\operatorname{Re} \{S(z)\} > 0$. This implies that

$$\inf_{z \in \mathbb{U}} \operatorname{Re} \left\{ S(z) \right\} = S(1) = \left(\frac{2\alpha}{p} - 1 \right) + \frac{2p}{\lambda k} \left(1 - \frac{\alpha}{p} \right) \int_{0}^{1} \frac{u^{\left(\frac{p}{\lambda k} - 1 \right)}}{1 + u} du$$

$$= \left(\frac{2\alpha}{p} - 1 \right) + \frac{2(p - \alpha)}{p} \int_{0}^{1} \frac{dt}{1 + t^{\frac{\lambda k}{p}}} \quad (z \in \mathbb{U}).$$

$$(2.8)$$

Hence, the constant $\left(\frac{2\alpha}{p}-1\right)+\frac{2(p-\alpha)}{p}\int\limits_0^1\frac{dt}{1+t^{\frac{\lambda k}{p}}}$ can't be replace by any larger one.

This completes the proof of Theorem 2.2.

Remark 2.1. Putting $p = k = \lambda = 1$, in Theorem 3.2, we have the results due to Saitoh [15].

3. An Application for Hurwitz-Lerch Zeta Function

We can show that, for $0 \le \alpha < p$, and for $z \in \mathbb{U}$, the function

$$f(z) = z^{p} \left\{ \frac{2\alpha - p}{p} + \frac{2(p - \alpha)}{\lambda} \Phi(z, 1, \frac{p}{\lambda}) \right\}$$
(3.1)

is a member of the class $\mathcal{R}_p(1,\alpha,\lambda)$ $(\lambda>0)$, where $\Phi(z,s,b)$ is the *Hurwitz-Lerch Zeta function*, defined by (cf., eg., [18, p.121 *et seq.*]),

$$\Phi(z, s, b) = \sum_{k=0}^{\infty} \frac{z^k}{(k+b)^s},$$
(3.2)

 $(b\in\mathbb{C}\setminus\mathbb{Z}_0^-,\,\mathbb{Z}_0^-=\{0,\,-1,\,-2,\dots\},\,s\in\mathbb{C}$ when , $z\in\mathbb{U},\,\operatorname{Re}(s)>1$ when |z|=1). Recently, several properties of $\Phi(z,s,b)$ have been studied by Choi and Srivastava [4], Ferreira and López [6], Lin, Srivastava and Wang [11], Luo and Srivastava [12], and others.

Theorem 3.1. Let $\Phi(z, s, b)$ is the Hurwitz-Lerch Zeta function, defined by (3.2), then

$$\operatorname{Re} \left\{ \Phi \left(z, 1, m \right) \right\} > \Phi \left(-1, 1, m \right), \quad (|z| < 1; \, m > 0), \tag{3.3}$$

the constant $\Phi(-1,1,m)$ can't be replace by any larger one.

Proof. Using Theorem 2.2, for the function f(z) given by (3.1), we have

$$\operatorname{Re}\left\{\Phi\left(z,1,\frac{p}{\lambda}\right)\right\} > \frac{\lambda}{p} \int_{0}^{1} \frac{dt}{1 + t^{\frac{\lambda}{p}}}, \quad (|z| < 1; p \ge 1), \tag{3.4}$$

which is equivalent to

Re
$$\{\Phi(z,1,m)\}>\Phi(-1,1,m), (|z|<1; m>0),$$
 (3.4)

the constant $\Phi(-1, 1, m)$ can't be replace by any larger one.

Moreover, letting $\lambda = 2p$ in (3.4), we readily obtain the following *Hurwitz-Lerch Zeta* property:

Corollary 3.1. Let $\Phi(z, s, b)$ is the Hurwitz-Lerch Zeta function, defined by (3.2), then

$$\operatorname{Re}\left\{\Phi\left(z,1,\frac{1}{2}\right)\right\} > \frac{\pi}{2} \quad (|z| < 1), \tag{3.5}$$

the constant $\frac{\pi}{2}$ can't be replace by any larger one.

Remark 3.1. More recently, Srivastava and Attiya [18] have shown some interesting results of an integral operator with the Hurwitz-Lerch Zeta functions.

REFERENCES

- 1. M. P. Chen, On functions satisfying $\operatorname{Re}\left\{f(z)/z\right\}>\alpha,$ Tamkang J. Math., 5 (1974), 231-234.
- 2. M. P. Chen, On the regular functions satisfying Re $\{f(z)/z\} > \alpha$, Bull. Inst. Math. Acad. Sinica, **3** (1975), 65-70.

- 3. N. E. Cho, On certain classes of p-valent analytic functions, *Int. J. Math. Math. Sci.*, **16** (1993), 319-328.
- 4. J. Choi and H. M. Srivastava, Certain families of series associated with the Hurwitz-Lerch Zeta functions, *Appl. Math. Comput.* **170** (2005), 399-409.
- 5. T. G. Ezrohi, Certain estimates in special class of univalent functions in the unit circle |z| < 1, Dopovidi Akad. Nauk. Ukrain RSR, (1965), 984-988.
- 6. C. Ferreira and J. L. López, Asymptotic expansions of the Hurwitz-Lerch zeta function, *J. Math. Anal. Appl.*, **298** (2004), 210-224.
- 7. S. Fukui, S. Owa and M. Nunokawa, The radius of starlikeness of functions satisfying Re $\{f(z)/z^p\} > 0$. Bull. Fac. Ed. Wakayama Univ. Natur. Sci., 37 (1988), 11-13.
- 8. R. M. Goel, On functions satisfying $\operatorname{Re} \{f(z)/z\} > \alpha$, *Publ. Math. Debrecen*, **18** (1971), 111-117.
- 9. R. M. Goel, The radius of convexity and starlikeness for certain classes of analytic functions with fixed second coefficient, *Ann. Univ. Mariae Curie-Sklodowska Soci.*, **25** (1971), 33-39.
- 10. D. J. Hallenbeck and St. Ruscheweyh, Subordination by convex functions, *Proc. Amer. Math. Soc.*, **52** (1975), 191-195.
- 11. S. D. Lin, H. M. Srivastava and P. Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, *Integral Transform. Spec. Funct.*, **17** (2006), 817-722.
- 12. Q. M. Luo, and H. M. Srivastava, Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, *J. Math. Appl.*, **308** (2005), 290-302.
- 13. T. H. MacGregor, Functions whose derivative has a positive real part, *Trans. Amer. Math. Soc.*, **104** (1962), 532-537.
- S. S. Miller and P. T. Mocanu, *Differential Subordinations: Theory and Applications*, Series in Pure and Applied Mathematics, No. 225. Marcel Dekker, Inc., New York, 2000.
- 15. H. Saitoh, *On certain subclasses of analytic functions involving a linear operator*. Transform Methods and Special Functions (in Varna '96), Bulg. Acad. Sci., (1998), 401-411.
- 16. H. Saitoh and M. Nunokawa, On functions satisfying $\operatorname{Re}\{f(z)/z^p\} > 0$. Bull. Soci. Roy. Sci. Liège, **56** (1987), 462-464.
- 17. H. Saitoh, M. Nunokawa, S. Owa and S. Fukui, A note on certain class of analytic functions satisfying Re $\{f(z)/z^p\} > 0$, *Math. Today*, **7** (1989), 33-36.
- 18. H. M. Srivastava and A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, *Integral Transform. Spec. Funct.*, **18** (2007), 95-107.
- 19. H. M. Srivastava and J. Choi, *Series Associated with the Zeta and Related Functions*, Kluwer Academic Publishers, Dordrecht, Boston, and London, 2001.

- 20. T. Umezawa, Multivalently close-to-convex functions, *Proc. Amer. Math. Soc.*, **8** (1957), 869-874.
- 21. K. Yamaguchi, On functions satisfying $\operatorname{Re} \{f(z)/z\} > \alpha$, *Proc. Amer. Math. Soc.*, **17** (1966), 588-591.

Shigeyoshi Owa Department of Mathematics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan E-mail: owa@math.kindai.ac.jp

A. A. Attiya
Department of mathematics,
Faculty of Science,
University of Mansoura,
Mansoura 35516,
Egypt
E-mail: aattiy@mans.edu.eg
(Current address)
Department of Mathematics,
Teachers'college in Abha,
Abha 249, Saudi Arabia