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ON SUBORDINATIONS FOR CERTAIN ANALYTIC FUNCTIONS
ASSOCIATED WITH THE DZIOK-SRIVASTAVA LINEAR OPERATOR

Jin-Lin Liu

Abstract. By making use of the method of differential subordination, we
investigate some interesting properties of certain analytic functions associated
with the Dziok-Srivastava linear operator.

1. INTRODUCTION

Let A(p) denote the class of functions of the form

(1.1) f(z) =2+ Z anz” (pe N =1{1,2,3,---}),
n=p+1

which are analytic in the open unit disk U = {z: z € C and |z| < 1}. When
p = 1,we denote by C' the class of univalent convex function in U. Also let the
Hadamard product (or convolution) (f; * f2)(z) of two functions

(1.2) fil)=2"+ > an;z" € Alp) (j=1,2)
n=p+1
be given by
(1.3) (fix fo)(z) =22 + Z Ap,10n,22" .
n=p+1

Given two functions f(z) and g(z), which are analytic in U, we say that the
function ¢(z) is subordinate to f(z) and write ¢ < f, if there exists a Schwarz
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function w(z) with w(0) = 0 and |w(z)| < 1 (2 € U) such that g(z) = f(w(z))
(z € U). In particular, if f(z) is univalent in U, we have the following equivalence
(14 g(z) < f(2) (z€U)eg(0)=f(0) and g(U)C f(U).

For each A and B such that —1 < B < A < 1, we define the function

1+ Az

1. A B;z) =

(z€U).

It is well known that h(A, B;z) for —1 < B < 1 is the conformal map of the
unit disk onto the disk symmetrical with respect to the real axis having the center
(1— AB)/(1 — B?) and the radius (A — B)/(1 — B?). The boundary circle cuts
the real axis at the points (1 — A)/(1 — B) and (1+ A)/(1+ B).

For complex parameters o, - -, aq and B1,---,3s (B #0,—1,-2,---;j =

1,---,s), we define the generalized hypergeometric function (Fi(a, - -, og; f1,
oo, Bsi 2) by
o
(1)n -+ (ag)n 2"
Fa17..'7a;/817..'7/8;z = AN a0
(1.6) ol ! #i%) RZ% (B -+~ (Bs)n 1t

(¢<s+1;¢,8€ Ng = NU{0};2€U),

where (A),, is the Pochhammer symbol defined, in terms of the Gamma function T',
by

CT(A+n) [ 1 (n=0),
(1.7) (A)n_W_{ AA+1)---(A+n—-1) (n€N).

Corresponding to a function hy(aq, - - -, ag; b1, -, Bs; ) defined by

(18) hp(alv T 7aq;/817 T 7/88;2) - quFs(Oél, T 7aq;/817 T 7/88;2)7

we consider a linear operator

Hy(on, -+, ag; B1,-++, Bs) : Alp) — A(p),

defined by the convolution

(1.9) ]¥p(a17"'7aq§ﬁ17"'7ﬁs)f(z):: hp(alv"'7aq§ﬁ17"'7ﬁs§z)*(f(z»

we observe that, for a function f of the form (1.1), we have

(1.10) Hy(an, -+ 0q; 81+, B) f(2) =22+ > Tlp)anz",
n=p+1
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where

o ) = G

For convenience, we write
(112) Hp7q,5(a1) :Hp(alv"' 7aq;/817"' 7/88)'

Thus, after some calculations, we have

(1.13)  2(Hpgs(a1)f(2)) = arHpgs(a1 + 1) f(2) — (a1 — p)Hp g,s(e1) f(2).

It is well known that the linear operator H), ; s(«1) is called the Dziok-Srivastava
linear operator. Many interesting subclasses of analytic functions, associated with
the Dziok-Srivastava linear operator H), , ;(c;) and its many special cases, were
investigated recently by Dziok and Srivastava [2,3,4], Gangadharan et al.[5], Liu
[6], Liu and Srivastava [7] and others. In the present sequel to these earlier works,
we shall use the method of differential subordination to derive several interesting
properties of the Dziok-Srivastava linear operator H), ; s(a1).

2. A THEOREM INVOLVING DIFFERENTIAL SUBORDINATION

Theorem 1. Let f(z) € A(p) and let F(z) be defined by
2.1) F(z)=[1—-X1+ a1 —p)|Hpgs(a1)f(z) +Aa1Hp g (o1 + 1) f(2).

if

2.2) Hpga(a) /()Y pl h(1—2v,-1;2) (z€U),

then we have

FO(z)  pl(1 =X+ \p)
~ < ,
Z (p—7)!

where 0 < j <p, 0<~v <1 and

(2.3)

h(1=2y,-1;2) (|2 <p),

1/2
T S S U
T— A+ p I- A+ A\p

The bound p € (0, 1) is best possible.

(2.4) p=
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Proof. From (1.13) and (2.1), we obtain
FO(z2) = [1 = A1+ a1 = p)](Hpg,s(1) f(2)V)
2:5) +Aa (Hp g s(ar + 1) f(2)9)
= (1= A+ Aj) (Hpg,5(01) F(2))D) + Az(Hp g,6(01) £(2)) 1.

Consider the function

z z
—(1— U
o) = (1= A+ 82 (€D,
where 5= A/(1 — X+ Ap) > 0. We first show that
1
(2.6) Re{M}>— (z € U),
pz 2
where p = (1+ 52)Y/2 - B.
Let 1/(1 —2) = Re? and |z| = < 1. In view of
1+ R?(1—r) 1
= >
cost ¥ , R_l—i—r’

we have

1
o Re {«P(Z) B 5} — 2(1 — §)Reosh + 26R%c0s20 — 1

= R*B(1— ) + RY((1 - A)(1 —r?) — 28r")
> RP[B(1—1)*+ (1= B)(1 —r*) - 26r?)
= R*(1-28r—7% >0

for |z| = r < p, which gives (2.6). Thus the function ¢ has the integral represen-
tation

27) #lo2) :/ LU -
fol=

Pz 11 —zz

where p(x) is a probability measure on |z| = 1.
Now putting }
(p = )! (Hpgs(ar) f(z)V)

9(2) = o e :
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we see that g(z) = 1+ b1z + - - - is analytic in U and it follows from (2.2) that
(2.8) Reg(z) >~ (z€U).

Since we can write

o)+ 29/(2) = (22« g(2),

it follows from (2.7) and (2.8) that

Re{g(pz) + Bpzg/(02)} — Re {(”’”)) , g<z>}

pz
(2.9)
= Re zz)du(x
{/mlg( )dp( )}
>~ (z€U).
Note that |
9(2) + Bzd'(z) = (p—4)! FU(z)

plL—=A+Xp) 2P~
Hence, from (2.5) and (2.9), we conclude that (2.3) holds.
To show that the bound p is sharp we take f(z) € A(p) defined by

(p—J)! (Hp,q,S(al))(j) o 1+z

Noting that

/
(p—j)! _FO(2) itz _ 1+2
0 2ap) g T (1=7) 1. Al =)z 1—2
1428z — 22
= 1 — _— =
=+ 1 -7) i—oz 7

for z = p '™ the proof is completed.

3. A THEOREM INVOLVING SUBORDINATING FACTOR

Let ¢, s € N and suppose that the parameters a,---, a4 and 31, ---, 35 are
positive real numbers. Also let 0 < b < 1 and —b < a < b. We denote by
V(q, s; a, b) the class of functions f € A(1) of the form

(3.1) fz)=2= anz" (an>0),
n=2
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which also satisfy the following condition

Hl,qu(al + l)f(z) 1+4+az

(3-2) Hyoalof(z) T R

Dziok and Srivastava [2] proved the following result.

Lemma 1. ([2]). 4 function f of the form (3.1) belongs to the class V (q, s; a, b)
if and only if

o0

(3.3) S ((b+1)n—(a+1)Th(1) <b—a,

n=2

where T',,(1) is defined by (1.11).
We shall also make use of the following definition and results.
Definition 1. (Subordinating Factor Sequence). A sequence {b,,}>>; of com-

plex numbers is called a subordinating factor sequence if for every univalent function
f(2) in C, we have the subordination given by

(3.4) ananz” < f(2) (z€Ua; =1).
n=1

Lemma 2. The sequence {b,} | is a subordinating factor sequence if and
only if

(3.5) Re{1+226nz”}>0 (z € U).
n=1

This lemma due to Wilf [8].

Theorem 2. Let g =s+las;1 =1and0< 3; <o; (j=1,2,---,5). If
f(z) € V(q,s;a,b), then

(1+2b—a)l2(1)
2[(142b—a)Ty(1) + (b —a)]

(3.6) (fx9)(2) <g(2) (2€U)

Sor every function g(z) in C, and

(1+2b— a)Da(1) + (b— a)

(3.7) Ref(z) > - (1+2b—a)Ty(1)
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The constant
(14+2b—a)la(1)+ (b—a)
(1+2b—a)y(1)

cannot be replaced by a larger one.

Proof. Let f(z) € V(q,s;a,b) and suppose that g(z) = z+ Y >, b,z" be
any function in the class C. Then we readily have

(

(3.8) (
' (

(

Thus, by Definition 1, the subordination result (3.6) will hold true if

o0

{_ (1+ 2b— a)T5(1) . }
2[(1+0)T2(1) + (0 —a)(1+T2(1)] "),

is a subordinating factor sequence with a; = 1. In view of Lemma 2, this is
equivalent to the following inequality

(3.9)

> (1420 —a)Ty(1) "
(3.10) Re{l—nz:l[(1+b)r2(1)+(b_a)(1+r2(1))]anz }>0 (z € U).

Under the hypothesis of the theorem, the sequence {(1+ 2b — a)T',(1)},2, is
nondecreasing. Thus we have

- (1 +2b—a)F2(1) n
Re{l 0 3N e T e T e }

n=1

o

14+2b—a)'5(1)a,z"
N PR E S )] vYc N 2 1o
- [(1+0)P2(1)+(b—a)(1+T2(1))] " [(1+0)2(1)+(b—a)(1+T2(1))]

b+1)n—(a+1 Fn 1 a'rﬂ"”
> 1 (14 2b—a)Ty(1) T_T;[( +1)n—(a+1)|T'n (1)
= [A4D)Ta(1)+(b—a)(1+T2(1))]  [(1+b)T2(1)+(b—a)(1+T2(1))]
> 1- (14 2b—a)Ta(1) . b T

[(14+0)To (1) +(b—a)(1+T2 (1)) [(1+6)T2(1)+(b—a)(1+T2(1))]
>0 (Jz]=r<1),
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where we have also made use of the assertion (2.3) of Lemma 1. This proves (3.6).
The inequality (3.7) follows from (3.6) upon setting

xD
z
9(z) = -2 =2+Zz”eC.
n=2
Next we consider the function
h—
(3.11) q(z) =2z — a 22,

(142b—a)ly(1)
which is a member of the class V (g, s; a, b). Then, by using (3.6),we have

(14 2b—a)l2(1)
2[(1+b0)2(1) + (b —a)(1 +T'y(1)

It is also easily verified for the function ¢(z) defined by (3.11) that

(3.12)

q(2) < ——

T (z€U).

, (1+2b— a)Ts(1) !
min{ Re (e £ L AT | =71 0

which completes the proof of Theorem 2.
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