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SURFACES OF REVOLUTION WITH POINTWISE
1-TYPE GAUSS MAP IN MINKOWSKI 3-SPACE

U-Hang Ki, Dong-Soo Kim, Young Ho Kim and Young-Mee Roh

Abstract. We study the rational surfaces of revolution in Minkowski 3-space
and characterize them with pointwise 1-type Gauss map. In this article, we
give a complete classification of rational surfaces of revolution in Minkowski
3-space with pointwise 1-type Gauss map and provide new examples of cones
in Minkowski 3-space.

1. INTRODUCTION

The notion of finite type immersion has been widely used in studying subman-
ifolds of Euclidean and pseudo-Euclidean space ([2]). Also, such a notion can be
extended to smooth maps on submanifolds. Among them the Gauss map is a very
useful and extensively used to deal with submanifolds ([3]). The Gauss map G of
some minimal or maximal surfaces including catenoid in Euclidean 3-space and the
Enneper’s surface of the second kind in Minkowski 3-space satisfy some partial dif-
ferential equation similar to an eigenvalue problem that is not an actual eigenvalue
problem. One of the present authors defined and used a notion of pointwise 1-type
Gauss map to study certain surfaces in Euclidean or Minkowski space ([4, 5, 6, 7]).
The Gauss map G on a submanifold M of pseudo-Euclidean space Em

s of index s
is said to be of pointwise 1-type if

(1.1) ∆G = F (G + C)

for some nonzero smooth function F on M and some constant vector C, where ∆
denotes the Laplace operator defined onM . A pointwise 1-type Gauss map is called
proper if the function F defined by (1.1) is non-constant. A non-proper pointwise
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1-type Gauss map is just of 1-type in the usual sense ([ 2, 3, 5]). A submanifold
with pointwise 1-type Gauss map is said to be of the first kind if the vector C in
(1.1) is the zero vector. Otherwise, the pointwise 1-type Gauss map is said to be
of the second kind ([4]).

In this article we study surfaces of revolution of the polynomial kind and the
rational kind with pointwise 1-type Gauss map in Minkowski 3-space. We also
provide new examples of surface of revolution in a Minkowski space.

2. PRELIMINARIES

LetE3
1 be a three-dimensional Minkowski space with the scalar product of index

1 given by 〈·, ·〉 = −dx2
0 + dx2

1 + dx2
2, where (x0, x1, x2) is a standard rectangular

coordinate system of E3
1 . A vector x of E3

1 is said to be space-like if 〈x, x〉 > 0
or x = 0, time-like if 〈x, x〉 < 0 and light-like or null if 〈x, x〉 = 0 and x �= 0. A
time-like or light-like vector in E3

1 is said to be causal.

Lemma 2.1. For two vectors X and Y in E 3
1 the Lorentz cross product of X

and Y is defined by

X × Y = (x2y1 − x1y2, x2y0 − x0y2, x0y1 − x1y0).

For the Lorentz vector space the next two lemmas are well known and useful.

Lemma 2.2. There are no causal vectors in E m
1 orthogonal to a time-like

vector.

Lemma 2.3. Two light-like vectors are orthogonal if and only if they are
linearly dependent.

Let I be an open interval and γ : I → Π a plane curve lying in a plane Π of E3
1

and l a straight line in Π which does not intersect with the curve γ . A surface of
revolutionM with axis l in E3

1 is defined to be invariant under the group of motions
in E3

1 , which fixes each point of the line l (cf. [1]). From this we obtain four kinds
of surface of revolution in E3

1 . If the axis l is space-like (resp. time-like), then
there is a Lorentz transformation by which the axis l is transformed to the x1−axis
or x2−axis (resp. x0−axis). Hence, without loss of generality, we may consider as
the axis of revolution with the x2-axis (resp. the x0−axis) if l is not null. If the
axis is null, then we may assume that this axis is the line spanned by vector (1, 1, 0)
of the plane Ox0x1.

We now introduce three different types of surfaces of revolution in E3
1 .

Type I. The axis of revolution is a space-like line.
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Without loss of generality, we may assume that the curve γ is lying in the
x1x2-plane or in the x0x2-plane. In turn, the curve γ is parameterized by

γ(u) = (0, f(u), g(u))

or
(2.1) γ(u) = (f(u), 0, g(u)),

where f = f(u) is a smooth positive function and g = g(u) is a smooth function
on I . Hence, the surface of M can be defined by

(2.2) x(u, v) = (f(u) sinhv, f(u) coshv, g(u))

or
(2.3) x(u, v) = (f(u) coshv, f(u) sinhv, g(u)).

Type II. The axis of revolution is a time-like line.
Without loss of generality we may assume that the curve γ lies in the x0x1-plane.

Hence, its parametrization may be given by

γ(u) = (g(u), f(u), 0),

where f = f(u) is a smooth positive function and g = g(u) is a smooth function
on I . Hence, the surface of revolution M revolving γ around the axis 0x0 may be
given by

(2.4) x(u, v) = (g(u), f(u) cosv, f(u) sinv).

Type III. The axis of revolution is a light-like line, or equivalently the line in
the plane x0x1 spanned by the vector (1, 1, 0).

Since the surface M is non-degenerate, we can assume that the curve γ lies in
the x0x1-plane and its parametrization is given by

γ(u) = (f(u), g(u), 0),

where f = f(u) is a smooth positive function and g = g(u) is a smooth function
on I such that h(u) = f(u) − g(u) �= 0. Then, the surface of revolution M may
be parameterized by

(2.5) x(u, v) =
(
f(u) +

v2

2
h(u), g(u) +

v2

2
h(u), h(u)v

)
.

A surface of revolution is called a polynomial kind if the function f(u) and
g(u) are both some polynomials and a rational kind if the functions f(u) and g(u)
are both some rational functions.
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Now, let us consider the Gauss map G on a surface M in E3
1 . The map

G : M −→ Q2(ε) ⊂ E3
1 which maps each point ofM into the parallel displacement

of the unit normal vector to M at the point to the origin is called the Gauss map of
surface M , where ε(= ±1) denotes the sign of the vector field G and Q2(ε) is a
2−dimensional space form as follows;

Q2(ε) =




S2
1(1) in E3

1 if ε = 1;

H2(−1) in E3
1 if ε = −1.

For the matrix g = (gij) consisting of the components of the Riemannian metric
on M , we denote by g−1 = (gij) is the inverse matrix of the matrix (gij). Then,
the Laplacian operator ∆ on M is given by

∆ = − 1√|G|
∑
i,j

∂

∂xi
(
√
|G|gij ∂

∂xj
),

where G = det g.

We need the following lemma for later use.

Lemma 2.4. Let M be a surface of revolution with pointwise 1-type Gauss
map of the second kind. Then, the function F defined in (1.1) depends only on the
parameter of the profile curve and the vector C in (1.1) is parallel to the axis of
the surface of revolution.

Proof. We now separate the cases of proof according to the character of the
profile curves and the axes.

Case 1. Suppose M is a surface of revolution of type I in E3
1 parameterized

by (2.2) for some smooth function f and g. We may assume that the curve γ given
by (2.1) is of unit speed. By a straightforward computation, we obtain

G = (g′(u) sinh v, g′(u) coshv,−f ′(u))

and the Laplacian ∆G of the Gauss map G satisfies

∆G = −1
f

((f ′g′′ + fg′′′ − g′

f
) sinh v, (f ′g′′ + fg′′′ − g′

f
) cosh v,−f ′f ′′ − ff ′′′).

If M has pointwise 1-type Gauss map of the second kind, then (1.1) holds for some
nonzero function F and some nonzero vector C. Since F �= 0, a direct argument
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gives the first two components of C must be zero and

F (u, v)g′ = −1
f

(f ′g′′ + fg′′′ − g′

f
),

F (u, v)(−f ′ + c) =
1
f

(f ′f ′′ + ff ′′′),

where C = (0, 0, c), c �= 0. Since f ′(u) and g′(u) are not both zero, the function
F is independent of v. And if M is a surface of revolution of type I in E3

1

parameterized by (2.3), we also obtain the same result.

Case 2. Suppose that M is a surface of revolution of type II in E3
1 parame-

terized by (2.4) for some smooth function f and g. We may assume that

f ′2 − g′2 = ±1

since the profile curve γ is of unit speed. Suppose that

f ′2(u)− g′2(u) = 1, ∀u ∈ I.

Then, the Gauss map G is easily obtained by

G = (−f ′,−g′ cos v,−g′ sin v)

and its Laplacian ∆G is given as

∆G = −1
f

(−f ′f ′′ − ff ′′′, (−g′′′f − g′′f ′ +
g′

f
) cos v, (−g′′′f − g′′f ′ +

g′

f
) sin v).

We now suppose thatM has pointwise 1-type Gauss map of the second kind. Then,
(1.1) holds for some nonzero function F and some nonzero vector C. Then, we
easily see that the last two components of C must be zero and

1
f

(g′′′f + g′′f ′ − g′

f
) = F (u, v)(−g′(u)),

f ′f ′′ + ff ′′′

f
= F (u, v)(−f ′(u) + c),

where C = (c, 0, 0), c �= 0. Since f ′(u) and g′(u) are not both zero, the function
F is independent of v. For f ′2 − g′2 = −1, by the similar discussion developed as
above we can get the same result.

Case 3. Let M be a surface of revolution of type III , which is obtained by
revolving a smooth curve of γ(u) around a light-like axis. Without loss of generality,
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we may choose the axis which is defined by the origin and the vector (1, 1, 0). Then,
the parametrization x of M is given by

(2.6) x(u, v) =
(
f(u) +

v2

2
h(u), g(u) +

v2

2
h(u), h(u)v

)
,

where h(u) = f(u) − g(u) �= 0. Since M is nondegenerate, −f ′(u)2 + g′(u)2

never vanishes and thus h′(u) = f ′(u) − g′(u) �= 0 everywhere. We may take the
parameter in such a way that

h(u) = −2u.

Let k(u) = f(u) + u. Then, the functions f and g in the definition of the profile
curve γ look like

f(u) = k(u)− u, g(u) = k(u) + u.

So, the parametrization of M becomes

(2.7) x(u, v) = (k(u)− u − uv2, k(u) + u − uv2,−2uv).

Then, we get 〈xu, xu〉 = 4k′(u), 〈xu, xv〉 = 0 and 〈xv, xv〉 = 4u2. Since the
induced metric 〈·, ·〉 on M is nondegenerate, k′(u)u never vanishes. For u >

0, k′(u) > 0, the Gauss map G can be obtained as

G =
1

2
√

k′(u)
(k′(u) + v2 + 1, k′(u) + v2 − 1, 2v).

For a function ϕ on M , its Laplacian ∆ϕ is computed by

∆ϕ = − 1
4u

√
k′(u)

(
2k′(u) − uk′′(u)

2k′(u)3/2
ϕu +

u√
k′(u)

ϕuu +

√
k′(u)
u

ϕvv).

Let us compute Gu, Guu and Gvv to get ∆G. Then, we have

Gu = − k′′(u)
4k′(u)3/2

(v2 + 1, v2 − 1, 2v) +
k′′(u)

4
√

k′(u)
(1, 1, 0),

Guu =−2k′(u)2k′′′(u)−3k′(u)k′′(u)2

8k′(u)5/2
(v2+1, v2−1, 2v)+

2k′(u)k′′′(u)−k′′(u)2

8k′(u)3/2
(1,1,0),

Gvv =
1√
k′(u)

(1, 1, 0).

Suppose that the Gauss map G is of pointwise 1-type of the second kind. Let
(∆G)i be the i−th component of ∆G. Then, we have

(2.8) (∆G)1 = F (u, v)(
k′(u) + v2 + 1

2
√

k′(u)
+ c1),
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(2.9) (∆G)2 = F (u, v)(
k′(u) + v2 − 1

2
√

k′(u)
+ c2),

(2.10) (∆G)3 = F (u, v)(
v√
k′(u)

+ c3),

where C = (c1, c2, c3) and (∆G)i is the i−th component of ∆G (i = 1, 2, 3).
Subtracting (2.9) from (2.8), we get

(2.11)
(2k′ − uk′′)k′′

16uk′7/2
+

2k′2k′′′ − 3k′k′′2

16k′9/2
= F (u, v)(

1√
k′ + c1 − c2).

For simplicity, we put

A(u) =
(2k′ − uk′′)k′′

16uk′7/2
+

2k′2k′′′ − 3k′k′′2

16k′9/2
.

(2.10) and (2.11) imply

F (u, v)(
v√
k′(u)

+ c3) = vA(u),

F (u, v)(
1√
k′(u)

+ c1 − c2) = A(u).

Therefore, the function F depends only on u and c1 = c2 and c3 = 0. This means
that the given constant vector C is parallel to the axis of revolution. It completes
the proof.

3. EXAMPLES

In this section, we provide some examples of surfaces of revolution with point-
wise 1-type Gauss map of the first kind and the second kind in Minkowski 3-space.

Example 3.1. (Hyperbolic cylinder). Consider a hyperbolic cylinder parameter-
ized by

x(u, v) = (a sinh v, a coshv, u)

for some constant a > 0. Then its Gauss map G is given by

G = (sinh v, cosh v, 0).

Hence, the Laplacian ∆G of the Gauss map G satisfies

∆G =
1
a2

G,
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so that the hyperbolic cylinder has pointwise 1-type Gauss map of the first kind.
Indeed, it is of 1-type in the usual sense.

Fig. 1. Hyperbolic cylinder.

Fig. 2. Hyperbolic cone.

Example 3.2. (Right cone). A right cone is parameterized by

x(u, v) = (au, u cosv, u sinv)

for u > 0 and some constant a > 1. Then, the Gauss map G and its Laplacian ∆G

are respectively given by

G =
−1√
a2 − 1

(1, a cosu, a sinu),

∆G =
1
u2

(
G + (

1√
a2 − 1

, 0, 0)
)
.
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Thus, the right cone has pointwise 1-type Gauss map of the second kind.

Fig. 3. Right cone.

Example 3.3. (Hyperbolic cone). Consider the hyperbolic cone which is param-
eterized by

x(u, v) = (u sinh v, u coshv, au), a �= 0.

Then the Gauss map G is given by

G =
1√

a2 + 1

(
a sinh v, a cosh v,−1

)
.

Hence, the Laplacian ∆G of the Gauss map G satisfies

∆G =
1
u2

(
G + (0, 0,

1√
a2 + 1

)
)
.

This implies that the hyperbolic cone has pointwise 1-type Gauss map of the
second kind.

Example 3.4. (Enneper’s surface of second kind ([8])). The Enneper’s surface
of second kind is parameterized by

x(u, v) = a(
1
3
u3 − u − uv2,

1
3
u3 + u − uv2,−2uv), a �= 0.

Then the Gauss map G and its Laplacian ∆G are respectively given by

G =
1
2u

(
u2 + v2 + 1, u2 + v2 − 1, 2v

)
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and
∆G = − 1

2a2u4
G

for u > 0. Therefore, the Enneper’s surface of second kind has pointwise 1-type
Gauss map of the first kind.

4. REVOLUTION IN MINKOWSKI SPACE WITH POINTWISE 1-TYPE GAUSS MAP OF THE
FIRST KIND

Theorem 4.1. Let M be a surface of revolution in a three-dimensional
Minkowski space. Then, the mean curvature is constant if and only if M has
pointwise 1-type Gauss map of the first kind.

Proof. Suppose that a surface of revolution has pointwise 1-type Gauss map of
the first kind.

Case 1. M is a surface of revolution of type I parameterized by

x(u, v) = (f(u) sinhv, f(u) coshv, g(u))

for some smooth functions f(u) and g(u) as is given in (2.2). Then, Lemma 2.4
implies the following system of differential equations

(4.1)
F (u)g′ = −1

f
(f ′g′′ + fg′′′ − g′

f
),

F (u)f ′ = −1
f

(f ′f ′′ + ff ′′′).

Since
f ′(u)2 + g(u)′2 = 1,

we may put
f ′(u) = cos t(u), g′(u) = sin t(u).

for some function t = t(u). Then, (4.1) yields

−sin t cos t

f2
+

t′ cos t

f
+ t′′ = 0,

which implies that sin t
f + t′ is a constant.

On the other hand, the mean curvature H of M is obtained by

H =
−f2(f ′′g′ − f ′g′′) + fg′

−2f2

= −1
2
(
sin t

f
+ t′).
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Thus, M has constant mean curvature. And, if M is a surface of revolution of
type I parameterized by (2.3), then by similar discussion as above we can get same
result.

Case 2. M is a surface of revolution of type II parameterized by

x(u, v) = (g(u), f(u) cosv, f(u) sinv),

where f ′2 − g′2 = 1. If we adapt Lemma 2.4 again, the following system of
differential equations is derived :

F (u)g′ = −1
f

(f ′g′′ + fg′′′ − g′

f
),

F (u)f ′ = −1
f

(f ′f ′′ + ff ′′′).

By the similar discussion as is developed in Case 1 we get

t′′ +
t′ cosh t

f
− sinh t cosh t

f2
= 0

which implies that t′ + sinh t
f is a constant and the mean curvature H is a constant.

Also, we obtain the same result by the similar argument as above in case of
f ′2 − g′2 = −1.

Case 3. M is a surface of revolution of type III parameterized by

x(u, v) =
(
f(u) +

v2

2
h(u), g(u) +

v2

2
h(u), h(u)v

)
,

where h(u) = f(u) − g(u) �= 0. By a straightforward computation, the following
system of differential equations are obtained:

1
h

(h′g′′ + hg′′′ − 1
2
v2h′h′′ − 1

2
v2hh′′′ − h′

h
) = F (u)(−g′ +

1
2
v2h′),

1
h

(h′f ′′ + hf ′′′ − 1
2
v2h′h′′ − 1

2
v2hh′′′ − h′

h
) = F (u)(−f ′ +

1
2
v2h′),

1
h

(vh′h′′ + vhh′′′) = −F (u)vh′,

which are reduced to

(4.2) h′(g′f ′′ − f ′g′′) + h(g′f ′′′ − f ′g′′′) +
h′2

h
= 0.

Since we may assume
f ′2(u) − g′2(u) = −1,
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there exists a smooth function t = t(u) such that

f ′(u) = sinh t(u), g′(u) = cosh t(u).

Then, (4.2) yields

t′′ +
h′t′

h
+

h′2

h2
= 0

which means that (t′ − h′
h ) is a constant.

On the other hand, the mean curvature H of M is obtained by

H =
h2(f ′′g′ − f ′g′′) − hh′

2h2

=
1
2
(f ′′g′ − f ′g′′ − h′

h
)

=
1
2
(t′ − h′

h
),

where h(u) = f(u) − g(u) �= 0. Therefore, the mean curvature H is a constant.
In case of f′2 − g′2 = 1, by the similar computation as above we obtain the same
result. The converse is straightforward.

For simplicity, from now on, we call a surface of revolution of rational kind as
a rational surface of revolution.

Theorem 4.2. (Characterization). A rational surface of revolution of type I has
pointwise 1-type Gauss map of the first kind if and only if it is an open part of
a plane or a hyperbolic cylinder. A rational surface of revolution of type II has
pointwise 1-type Gauss map of the first kind if and only if it is an open part of
a plane or a circular cylinder. A rational surface of revolution of type III has
pointwise 1-type Gauss map of the first kind if and only if it is an open part of an
Enneper’s surface of second kind, a de Sitter space or an anti-de Sitter space up
to rigid motion.

Proof. Suppose that M is a rational surface of revolution of type I . Then, one
of its parametrizations is given by (2.2). If the function f is a constant, then the
surface is a hyperbolic cylinder. When f is a not constant, we may put f(u)=u
without loss of generality. Then, M can be parameterized by

(4.3) x(u, v) = (u sinh v, u coshv, g(u)).

In this case, the surface of revolution M has constant mean curvature if and only
if g = g(u) is a solution of the following differential equation

(4.4) g′′ +
g′

u
(1 + g′2) + 2α(1 + g′2)

3
2 = 0
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for some constant α. If we make the following change of variable g′ = sinh y, then
(4.4) becomes

y′ +
1
u

sinh y cosh y + 2α cosh2 y = 0.

After we make another change of variable y = tanh−1 ω, we get

y′ =
ω′

1 − ω2
, sinh y =

ω√
1 − ω2

, cosh y =
1√

1 − ω2
.

Thus we get
uω′(u) + ω + 2αu = 0.

Solving the above equation yields ω(u) = (a−αu2)/u for some constant a. Hence

g′(u) =
a − αu2√

u2 − (a − αu2)2
,

where a is a constant. Therefore g(u) is given by

g(u) =
∫

a − αu2√
u2 − (a− αu2)2

du.

If a = α = 0, g is a constant. In this case, the surface is an open part of a
plane. If α = 0 and a �= 0, then obtain g(u)=a cosh−1(u/a)+ c1 for some constant
c1. In this case, the surface is certainly not of rational kind. If a = 0 and α �= 0,
then g(u) =

√
α−2 − u2 + c2. In this case, the surface is up to rigid motion a de

Sitter space which is also not of rational kind. If a �= 0, α �= 0, then that g(u) can
be expressed in terms of elliptic functions and g(u) is not a rational function of u.
The converse is easy to verify.
On the other hand, if M is parameterized by (2.3), by similar computation as above
we can get the similar result.
Now, we consider the case that M is a surface of revolution of type II given
by (2.4). If the function f is a constant, then the surface is a circular cylinder.
Suppose f is not constant. By putting f(u) = u, the surface of revolution M can
be parameterized by

x(u, v) = (g(u), u cosv, u sinv).

Suppose that g ′2 > 1. In this case, the surface of revolution has constant mean
curvature if and only if g = g(u) is a solution of the following differential equation:

(4.5) g′′ − g′

u
(g′2 − 1) + 2α(g′2 − 1)

3
2 = 0
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for some constant α. If we make the following change of variable by g′ = cosh y,

then (4.5) becomes

y′ − 1
u

sinh y cosh y + 2α sinh2 y = 0.

By another change of variable by y = coth−1 ω, we get

y′ =
ω′

1 − ω2
, sinh y =

1√
ω2 − 1

, cosh y =
ω√

ω2 − 1
.

Thus we have
uω′(u) + ω − 2αu = 0.

Solving above equation yields ω(u) = (a + αu2)/u for some constant a. Hence

g′(u) = cosh(coth−1(
a + αu2

u
)) =

a + αu2√
(a + αu2)2 − u2

,

where a is a constant. Therefore g(u) is given by

g(u) =
∫

a + αu2√
(a + αu2)2 − u2

du.

If a = α = 0, g is a constant. In this case, the surface is an open part of a
plane. If α = 0 and a �= 0, then we obtain g(u)=−a cosh−1(u/a) + c3 for some
constant c3. In this case, the surface is a catenoid which is not of rational kind. If
a = 0 and α �= 0, then g(u) =

√
u2 − α−2 + c4. In this case, the surface is also

not of rational kind, either. If aα �= 0, then that g(u) can be expressed in terms of
elliptic functions and g(u) is not a rational function of u. The proof of converse is
easy. In case of g′2 < 1. we get the similar result.

Finally, we consider the case that M is a rational surface of type III parame-
terized in the form of (2.5). We use the parametrization of M described in Lemma
2.4:

(4.6) x(u, v) = (k(u)− u − uv2, k(u) + u − uv2,−2uv).

A straightforward computation implies that the mean curvature is constant if and
only if

(4.7) k′′(u)− 2
u

k′(u) = 4α(k′(u))3/2

for some constant α if k′(u) > 0 and u > 0. (4.7) is a Bernoulli’s differential
equation and can be solved as

k′(u) =
u2

(−αu2 + a)2
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for some constant a. If α = 0, k(u) = 1
3a2 u3 + b for some constant b. In this case,

M is part of Enneper’s surface of second kind (see [ 8 ]). If a = 0, k(u) = − 1
α2

1
u +b

for some constant b. In this case,

〈x(u, v)− B, x(u, v)− B〉 = − 4
α2

,

where B = (b, b, 0) and thusM is part of an anti-de Sitter space up to rigid motion.
Similarly, if k′(u)u < 0, we obtain that M is part of Ennerper’s surface of second
kind or a de Sitter space. If αa �= 0, the function k(u) cannot be expressed as a
rational function. The converse is obvious.

5. SURFACES OF REVOLUTION IN MINKOWSKI SPACE WITH POINTWISE 1-TYPE GAUSS
MAP OF THE SECOND KIND

For a surfaces of revolution of type I or type II , we may assume f(u) = u

without loss of generality. Then, the surface of revolution of type I or type II in
E3

1 is parameterized by

(5.1) x(u, v) = (u sinh v, u coshv, g(u))

or

(5.2) x(u, v) = (u cosh v, u sinhv, g(u))

and

(5.3) x(u, v) = (g(u), u cosv, u sinv).

It is enough for us to consider (5.1) in the case of a surface of revolutionM of type
I .
We now prove

Theorem 5.1. Let M be a polynomial surface of revolution of type I or type
II . Then, it has pointwise 1-type Gauss map of the second kind if and only if it is
open portion of a hyperbolic cone or a right cone.

Proof.

Case 1. Let M be a surface of revolution given by (5.1) for some smooth
function g(u). Then the Gauss map G is obtained as

G =
1√

1 + g′2
(g′ sinh v, g′ cosh v,−1).
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Applying the Laplacian operator ∆ to G, we get

∆G =
−1

u
√

1 + g′2

{
(
(g′′ + ug′′′)(1 + g′2) − 4ug′g′′2

(1 + g′2)3
− g′

u
) sinh v,

(
(g′′ + ug′′′)(1 + g′2) − 4ug′g′′2

(1 + g′2)3
− g′

u
) cosh v,

(g′g′′ + ug′′2 + ug′g′′′)(1 + g′2) − 4ug′2g′′2

(1 + g′2)3
}
.

Suppose M has pointwise 1-type Gauss map of the second kind. Then, we get

(5.4)
1
u

g′′(1+g′2)+g′′′(1+g′2)−4g′g′′2− g′

u2
(1+g′2)3 = −F (u, v)g′(1+g′2)3,

(5.5)
1
u

(1 + g′2)g′′g′ + g′′2 + g′g′′′(1 + g′2) − 3g′2g′′2

= F (u, v)(1 + g′2)3(1 − c
√

1 + g′2),

where C = (0, 0, c), c �= 0. Equations (5.4) and (5.5) imply

g′′(1 + g′2)2u + g′′′(1 + g′2)2u2 − 3g′g′′2(1 + g′2)u2 − g′(1 + g′2)3

= c
√

1 + g′2{g′′(1 + g′2)u + g′′′(1 + g′2)u2 − 4g′g′′2u2 − g′(1 + g′2)3}.
(5.6)

Let us rewrite equation (5.6) as

(5.7) P (u) = c
√

1 + g′2(u)Q(u),

where

P (u) = g′′(1 + g′2)2u + g′′′(1 + g′2)2u2 − 3g′g′′2(1 + g′2)u2 − g′(1 + g′2)3,

Q(u) = g′′(1 + g′2)u + g′′′(1 + g′2)u2 − 4g′g′′2u2 − g′(1 + g′2)3.

Denote by deg g(u) the degree of g(u). If deg g(u) ≥ 2, it is impossible by com-
paring the degree of P (u) and Q(u). Consequently, deg g(u) = 1. Thus, g′(u) = a
for some constant a �= 0. Therefore, c = 1√

1+a2
. Hence, the parametrization of M

is reduced to

x(u, v) = (u sinh v, u coshv, au), a �= 0, a ∈ R,

that is, the surface of revolution M is part of a hyperbolic cone. Next, let M be
a surface of revolution given by (5.2) for some smooth function g(u). Then, by a
similar discussion as above we can obtain the similar result.
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Case 2. Let M be a surface of revolution parametrized by (5.3) for some
smooth function g(u).

First, we consider the case: g ′2 > 1.

Then, the Gauss map of M is given by

G =
−1√
g′2 − 1

(1, g′ cos v, g′ sin v)

and the Laplacian of the Gauss map ∆G is computed as

∆G =
1

u
√

g′2 − 1

((g′g′′ + ug′′2 + ug′g′′′)(g′2 − 1) − 4ug′2g′′2

(g′2 − 1)3
,

(
(g′′ + ug′′′)(g′2 − 1) − 4ug′g′′2

(g′2 − 1)3
− g′

u
) cosv,

(
(g′′ + ug′′′)(g′2 − 1) − 4ug′g′′2

(g′2 − 1)3
− g′

u
) sinv

)
.

Similarly to computation as above Case 1, we obtain

g′′(g′2 − 1)2u + g′′′(g′2 − 1)2u2 − 3g′g′′2(g′2 − 1)u2 + g′(g′2 − 1)3

= c
√

g′2 − 1{g′′(g′2 − 1)u − g′′′(g′2 − 1)u2 + 4g′g′′2u2 + g′(g′2 − 1)3}.
(5.8)

We may put (5.8) as

(5.9) A(u) = c
√

g′2 − 1B(u),

where

A(u) = g′′(g′2 − 1)2u + g′′′(g′2 − 1)2u2 − 3g′g′′2(g′2 − 1)u2 + g′(g′2 − 1)3,

B(u) = g′′(g′2 − 1)u − g′′′(g′2 − 1)u2 + 4g′g′′2u2 + g′(g′2 − 1)3.

If deg g(u) ≥ 2, we get a contradiction by comparing the degree of A(u) and
B(u). Thus, deg g(u) = 1 and g′(u) = a for some constant a �= 0, |a| �= 1. Thus,
it gives c = 1√

a2−1
. Therefore, the parametrization of M reduces to

x(u, v) = (au, u cosv, u sinv), a > 1 or a < −1,

that is, the surface of revolution M is part of a right cone.
In case of g′2 < 1, we can get a similar result. It completes the proof.

Next, we prove
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Theorem 5.2. There do not exist rational surfaces of revolution of type I or
type II except polynomial surfaces with pointwise 1-type Gauss map of the second
kind.

Proof. Suppose that M is a rational surface of revolution, that is, g(u) is a
rational function in u. The function g(u) and g ′(u) are both rational functions in
u. If g′(u) is not a constant, we may put g′(u) = r(u)/q(u), where r(u) and q(u)
do not have a common factor of degree ≥ 1. Let deg q(u)=m.
In order to prove the theorem, we split the proof into two cases.

Case 1. M is of type I.
From (5.7) we know that

√
1 + g′2(u) is also a rational function. Hence, if

g′(u) is non-constant, then there exists a polynomial p(u) satisfying q2(u)+r2(u) =
p2(u), where q(u), r(u) and p(u) are relatively prime. We put

P1(u) = g′′(u)(1 + g′2(u))2u, P2(u) = g′′′(u)(1 + g′2(u))2u2,

P3(u) = g′(u)g′′2(u)(1 + g′2(u))u2, P4(u) = g′(u)(1 + g′2(u))3,

Q1(u) = g′′(u)(1 + g′2(u))u, Q2(u) = g′′′(u)(1 + g′2(u))u2,

Q3(u) = g′(u)g′′2(u)u2, Q4(u) = P4(u).

(5.10)

Then, P1, ..., P4, Q1, ...Q4 are rational functions, too.

Suppose that m ≥ 1. Then, for each i = 1, · · ·, 4, we see that q7(u)Pi(u) is a
polynomial. Similarly, we see that for each i = 1, 2, 3, q6(u)Qi(u) is a polynomial.
But, q6(u)Q4(u) is given by

(5.11) q6(u)Q4(u) =
r(u)p6(u)

q(u)
.

From (5.7) we get

(5.12) P (u) = c
p(u)
q(u)

Q(u).

Therefore, we see that q6(u)Q4(u) is a polynomial. This is a contradiction because
p(u), q(u), r(u) are relatively prime. Hence, m = 0, that is, g(u) is a polynomial.

Case 2. M is of type II.
The function

√
g′2 − 1 in (5.9) is also a rational function. So, if g′(u) is non-

constant, then there exists a polynomial p(u) satisfying r(u)2 − q(u)2 = p2(u),
where q(u), r(u) and p(u) are relatively prime. It only makes sense in case of
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degree r(u) ≥ degree q(u). Similarly as above, m ≥ 1 derives a contradiction.
Thus, m = 0, that is, g(u) is a polynomial.

Finally, we consider the case of surface of revolution M of type III in E3
1.

The parametrization x of M is assumed to be

(5.13) x(u, v) = (k(u)− u − uv2, k(u) + u − uv2,−2uv).

which is given in (4.6). Let us prove the following

Theorem 5.3. There exists no rational surface of revolution of type III in a
Minkowski 3-space with pointwise 1-type Gauss map of the second kind.

Proof. Let M be a surface of revolution of type III . Suppose the Gauss map
G is of pointwise 1-type of the second kind, that is,

(5.14) ∆G = F (G + C)

for some nonzero smooth function F and a nonzero constant vector C. By Lemma
2.4, the function F depends on u only and the vector C is parallel to the axis of
revolution such that C = (c, c, 0) for some nonzero constant c. From (2.11), we
get

(5.15) F (u) =
2k′(u) − uk′′(u)

16uk′(u)3
k′′(u) +

2k′(u)2k′′′(u)− 3k′(u)k′′(u)2

16k′(u)4
.

Put (5.15) into (2.8) with c1 = c2 = c, we obtain

(5.16)

√
k′(u){2u2k′(u)k′′′(u) − 3u2k′′(u)2 + 2uk′(u)k′′(u) + 4k′(u)2}

+ 2cu{k′(u)k′′′(u) − 2uk′′(u)2 + uk′(u)k′′(u)} = 0.

Since k(u) is a rational function, so is Q(u) =
√

k′(u) because of (5.16). If we
rearrange (5.16) with respect to Q, we obtain

(5.17)
u2Q(u)2Q′′(u)− 2u2Q(u)Q′(u)2 + uQ(u)2Q′(u) + Q(u)3

= −c{u2Q(u)Q′′(u)− 3u2Q′(u)2 + uQ(u)Q′(u)}.
From now on, we regard the rational functionQ as a complex meromorphic function.
Let Q(z) = q(z)/p(z), where p and q are relatively prime polynomials.

First, we show that q(z) = azm for some constant a and a nonnegative integer
m. Suppose q(z0) = 0 for z0 �= 0. Then, Q(z0) = 0 and

Q(z) =
∞∑

n=k

an(z − z0)n
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for some k ≥ 1 and ak �= 0. Since z = z0+(z−z0), we get z2 = z2
0 +2z0(z−z0)+

(z − z0)2. If we compare the lowest degrees of both sides of (5.17) after putting z
in (5.17) instead of u, we see that the lowest degree of the left hand side of (5.17)
is 3k − 2 and that of the right hand side is 2k − 2. Therefore, the coefficient of
term of degree 2k − 2 in the right hand side is zero, that is,

0 = c(z2
0a2

kk(k − 1) − 3z2
0k2a2

k) = −cz2
0a2

k(2k2 + k),

which is a contradiction. Therefore,

Q(z) =
azm

p(z)

for some constant a and a nonnegative integer m.
Suppose m ≥ 1. Let p(z) = zk + a1z

k−1 + · · ·+ ak. Since (p, q) = 1, ak �= 0.
The series expansion of Q(z) at z = 0 looks like

Q(z) = azm + a1z
m+1 + a2z

m+2 + · · · .

Then, the lowest degree of the left hand side of (5.17) is 3m and that of the right
hand side is 2m. Since m ≥ 1, the coefficient of term with degree 2m must be
zero, that is,

0 = −c{m(m− 1)a2 − 3m2a2 + ma2} = 2ca2m2,

a contradiction. Thus, m = 0 and Q has the form

Q(z) =
a

p(z)
.

Finally, suppose that deg p = k ≥ 1. Then for some complex numbers
α1, α2, · · · , αk, p(z) can be written as p(z) = (z − α1)(z − α2) · · · (z − αk).
Since

1
z − α1

=
1
z

( 1
1 − α1/z

)
=

1
z

+
α1

z2
+

α2
1

z3
+ · · · , (|z| > |α1|)

the meromorphic function Q(z) has the form

(5.18) Q(z) =
a

zk
+

a1

zk+1
+

a2

zk+2
+ · · · (|z| > r)

for some r > 0. Putting (5.18) into (5.17) and comparing the degrees of terms in
the both sides, the lowest degree of terms in 1/z of the left hand side is 3k and that
of the right hand side is 2k. Therefore, the coefficient in the term with degree 2k

in 1/z must be zero, in other words,

0 = −ca2{k(k + 1) − 3k2 − k} = 2ca2k2,
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which is a contradiction.
Consequently, if c �= 0, the rational solutions of the equation (5.17) are constant

functions and thus Q(z) = 0 by (5.17). Thus, k′ vanishes. It contradicts that M is
nondegenerate.

Combining Theorem 5.1, 5.2 and Theorem 5.3, we have

Theorem 5.4. (Characterization). Let M be a rational surface of revolution.
Then, M has pointwise 1-type Gauss map of the second kind in E 3

1 if and only if
M is part of either a right cone or a hyperbolic cone.

ACKNOWLEDGMENT

The authors would like to express their deep thanks to the referee who provided
valuable suggestions to improve the paper and they also thank Professor J. Baek
who gave the crucial remarks to revise it.

REFERENCES

1. C. C. Beneki, G. Kaimakamis, and B. J. Papantoniou, Helicoidal surfaces in three-
dimensional Minkowski space, J. Math. Anal. Appl., 275 (2002), 586-614.

2. B. Y. Chen, Total mean curvature and submanifolds of finite type, World Scientific,
Singapore, 1984.

3. B. Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Aust.
Math. Soc., 35 (1987) 161-186.

4. B. Y. Chen, M. Choi and Y. H. Kim, Surfaces of revolution with pointwise 1-type
Gauss map, J. Korean Math. Soc., 42(3) (2005), 447-455.

5. Y. H. Kim and D. W. Yoon, Ruled surfaces with finite type Gauss map in Minkowski
space, Soochow J. Math., 26 (2000), 85-96.

6. —— Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys., 34 (2000),
191-205.

7. —— Classification of ruled surfaces in Minkowski 3-spaces, J. Geom. Phys., 49
(2004), 89-100.

8. O. Kobayashi, Maximal surfaces in the 3-dimensional Minkowski space L3, Tokyo
J. Math., 6 (1983), 297-309.



338 U-Hang Ki, Dong-Soo Kim, Young Ho Kim and Young-Mee Roh

U-Hang Ki
The National Academy of Sciences,
Seoul 137-044,
Republic of Korea
E-mail:uhangki2005@yahoo.co.kr

Dong-Soo Kim
Department of Mathematics,
Chonnam National University,
Kwangju 500-727,
Republic of Korea
E-mail: dosokim@jnu.ac.kr

Young Ho Kim and Young-Mee Roh
Department of Mathematics,
Kyungpook National University,
Taegu 702-701,
Republic of Korea
E-mail: yhkim@knu.ac.kr


