CONVERGENCE OF THE g-NAVIER-STOKES EQUATIONS

Jaiok Roh

Abstract

The 2D g-Navier-Stokes equations have the following form,

$$
\frac{\partial \mathbf{u}}{\partial t}-\nu \Delta \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p=\mathbf{f}, \quad \text { in } \Omega
$$

with the continuity equation

$$
\nabla \cdot(g \mathbf{u})=0, \quad \text { in } \Omega,
$$

where g is a smooth real valued function. We get the Navier-Stokes equations, for $g=1$. In this paper, we investigate solutions $\left\{\mathbf{u}_{g}, p_{g}\right\}$ of the g-NavierStokes equations, as $g \rightarrow 1$ in some suitable spaces.

1. Introduction

We consider the 2-dimensional g-Navier-Stokes equations, for periodic boundary conditions on the domain $\Omega=(0,1) \times(0,1)$,

$$
\begin{align*}
\frac{\partial \mathbf{u}}{\partial t}-\nu \Delta \mathbf{u}+(\mathbf{u} \cdot \nabla) \mathbf{u}+\nabla p & =\mathbf{f} \text { in } \Omega \times(0, T) \tag{1.1}\\
\nabla \cdot(g u) & =0 \text { in } \Omega \times(0, T) \tag{1.2}
\end{align*}
$$

Here ν and f are given, and the velocity u and the pressure p are the unknowns. For the details of the derivation of the g-Navier-Stokes equations, one can refer [5]. We assume that $g(\mathbf{x}) \in C_{p e r}^{\infty}(\Omega)$ and $0<m \leq g(x, y) \leq M$, for all $(x, y) \in \Omega$. Now, we define the Hilbert space $L_{p e r}^{2}(\Omega, g)=L_{p e r}^{2}\left(\Omega, R^{2}, g\right)$ as the set $L_{p e r}^{2}(\Omega)$ with the scalar product and the norm,

$$
<\mathbf{u}, \mathbf{v}>_{g}=\int_{\Omega}(\mathbf{u} \cdot \mathbf{v}) g d \mathbf{x} \quad \text { and } \quad\|\mathbf{u}\|_{\mathrm{g}}^{\mathbf{2}}=<\mathbf{u}, \mathbf{u}>_{\mathrm{g}}
$$

[^0]Similarly, we define $H_{p e r}^{1}(\Omega, g)$ as the set $H_{p e r}^{1}(\Omega)$ under the norm,

$$
\|\mathbf{u}\|_{H^{1}(\Omega, g)}=\left[\langle\mathbf{u}, \mathbf{u}\rangle_{g}+\sum_{i=1}^{2}\left\langle D_{i} \mathbf{u}, D_{i} \mathbf{u}\right\rangle_{g}\right]^{\frac{1}{2}}
$$

For periodic boundary conditions, we use;

$$
\begin{aligned}
H_{g} & =C L_{L_{p e r}^{2}(\Omega, g)}\left\{\mathbf{u} \in C_{p e r}^{\infty}(\Omega): \nabla \cdot g \mathbf{u}=0, \int_{\Omega} \mathbf{u} d \mathbf{x}=\mathbf{0}\right\} \\
V_{g} & =\left\{\mathbf{u} \in H_{p e r}^{1}(\Omega, g): \nabla \cdot g \mathbf{u}=0, \int_{\Omega} \mathbf{u} d \mathbf{x}=\mathbf{0}\right\} \\
Q & =C L_{L_{p e r}^{2}(\Omega, g)}\left\{\nabla \phi: \phi \in C_{p e r}^{1}(\bar{\Omega}, R)\right\}
\end{aligned}
$$

where H_{g} is endowed with the scalar product and the norm in $L_{p e r}^{2}(\Omega, g)$, and V_{g} is the space with the scalar product and the norm given by

$$
\begin{equation*}
<\mathbf{u}, \mathbf{v}>_{V_{g}}=\int_{\Omega}\left(D_{i} \mathbf{u} \cdot D_{i} \mathbf{v}\right) g d \mathbf{x} \quad \text { and } \quad\|\mathbf{u}\|_{V_{g}}^{2}=<\mathbf{u}, \mathbf{u}>_{V_{g}} \tag{1.3}
\end{equation*}
$$

Also, for a given $\mathbf{v} \in L_{\text {per }}^{2}(\Omega, g)$, one obtains

$$
\begin{equation*}
\mathbf{v}=\mathbf{u}+\frac{\mathbf{k}}{g}+\nabla p, \text { for } \mathbf{u} \in H_{g}, \nabla p \in Q, \mathbf{k}=\frac{1}{\int_{\Omega} \frac{1}{g} d \mathbf{x}} \int_{\Omega} \mathbf{v} d \mathbf{x} \tag{1.4}
\end{equation*}
$$

and a orthogonal projection $P_{g}: L_{p e r}^{2}(\Omega, g) \mapsto H_{g}$, as $P_{g} \mathbf{v}=\mathbf{u}$. Then we have $Q \subset H_{g}^{\perp}$. One note that the space Q does not depend on g.

For a linear operator, we consider $A_{g} \mathbf{u}=P_{g}\left(-\Delta_{g} \mathbf{u}\right)$ where

$$
-\Delta_{g} \mathbf{u}=-\frac{1}{g}(\nabla \cdot g \nabla) \mathbf{u}=-\Delta \mathbf{u}-\frac{1}{g}(\nabla g \cdot \nabla) \mathbf{u}
$$

For $\mathbf{u} \in \mathcal{D}\left(A_{g}\right)=V_{g} \cap H^{2}(\Omega)$, we have

$$
\left\langle A_{g}^{\frac{1}{2}} \mathbf{u}, A_{g}^{\frac{1}{2}} \mathbf{u}\right\rangle_{g}=\left\langle A_{g} \mathbf{u}, \mathbf{u}\right\rangle_{g}=\left\langle P_{g}\left[-\frac{1}{g}(\nabla \cdot g \nabla) \mathbf{u}\right], \mathbf{u}\right\rangle_{g}=\int_{\Omega}(\nabla \mathbf{u} \cdot \nabla \mathbf{u}) g d \mathbf{x}
$$

which implies

$$
\begin{equation*}
\left\|A_{g}^{\frac{1}{2}} \mathbf{u}\right\|_{g}^{2}=\|\nabla \mathbf{u}\|_{g}^{2}=\|\mathbf{u}\|_{V_{g}}^{2}, \quad \text { for } \quad \mathbf{u} \in V_{g} \tag{1.5}
\end{equation*}
$$

In addition, for $\mathbf{u} \in \mathcal{D}\left(A_{g}^{\alpha}\right)$ and $0 \leq \alpha \leq 1$, we have some positive constant $\tilde{\delta}=$ $\tilde{\delta}(\alpha, m, M)$ such that

$$
\begin{equation*}
\lambda_{1}^{2 \alpha}\|\mathbf{u}\|_{g}^{2} \leq\left\|A_{g}^{\alpha} \mathbf{u}\right\|_{g}^{2}, \quad \text { and } \quad\|\mathbf{u}\|_{H^{2 \alpha}(\Omega, g)} \leq \tilde{\delta}\left\|A_{g}^{\alpha} \mathbf{u}\right\|_{g} \tag{1.6}
\end{equation*}
$$

where λ_{1} is the first eigenvalue of A_{g}.
We take the orthogonal projection P_{g} into (1.1) to get

$$
\begin{equation*}
\frac{d \mathbf{u}}{d t}+A_{g} \mathbf{u}+B_{g}(\mathbf{u}, \mathbf{u})=\mathbf{q} \quad \text { on } \quad H_{g} \tag{1.7}
\end{equation*}
$$

where $A_{g} \mathbf{u}=P_{g}\left(-\Delta_{g} \mathbf{u}\right), B_{g}(\mathbf{u}, \mathbf{u})=P_{g}(\mathbf{u} \cdot \nabla) \mathbf{u}, \mathbf{q}=P_{g}\left[\mathbf{f}-\frac{1}{g}(\nabla g \cdot \nabla) \mathbf{u}\right]$.
For the g-Navier-Stokes equations, one can also refer [7-9]. With $g=1$ in (1.1)-(1.2), we get the 2 -dimensional Navier-Stokes equations,

$$
\begin{align*}
\frac{\partial \mathbf{v}}{\partial t}-\nu \Delta \mathbf{v}+(\mathbf{v} \cdot \nabla) \mathbf{v}+\nabla p & =\mathbf{f} \text { in } \Omega \times(0, T), \tag{1.8}\\
\nabla \cdot \mathbf{v} & =0 \text { in } \Omega \times(0, T) \tag{1.9}
\end{align*}
$$

One can refer [1, 2, 3, 4, 10, 11] and [12] for the Navier-Stokes equations.
In this paper, we will prove that a solution $\left\{\mathbf{u}_{g}, p_{g}\right\}$ of (1.1)-(1.2) with initial condition $\mathbf{u}_{g}(0)$ converges to a solution $\{\mathbf{v}, p\}$ of (1.8)-(1.9) with initial condition $P_{1} \mathbf{u}_{g}(0)$ in the following sense: for a weak solution

$$
\begin{aligned}
& \mathbf{u}_{g} \rightarrow \mathbf{v} \text { in } L^{2}\left(0, T ; H^{1}(\Omega)\right), \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \\
& \nabla p_{g} \rightarrow \nabla p \text { in } H^{-1}(\Omega \times(0, T)),
\end{aligned}
$$

where $0<T<\infty$, as $g \rightarrow 1$ in $W^{1, \infty}(\Omega)$, and for a strong solution

$$
\begin{aligned}
& \mathbf{u}_{g} \rightarrow \mathbf{v} \text { in } L^{2}\left(0, T ; H^{2}(\Omega)\right), \text { in } L^{\infty}\left(0, T ; H^{1}(\Omega)\right), \\
& \nabla p_{g} \rightarrow \nabla p \text { in } L^{2}(\Omega \times(0, T)),
\end{aligned}
$$

where $0<T<\infty$, as $g \rightarrow 1$ in $W^{2, \infty}(\Omega)$.

2. Preliminaries

In this section we will introduce useful lemmas in [5] and [6]. We define a trilinear form

$$
b_{g}(\mathbf{u}, \mathbf{v}, \mathbf{w})=\sum_{i, j=1}^{2} \int_{\Omega} \mathbf{u}_{i}\left(D_{i} \mathbf{v}_{j}\right) \mathbf{w}_{j} g d x
$$

where $\mathbf{u}, \mathbf{v}, \mathbf{w}$ lie in appropriate subspaces of $L_{p e r}^{2}(\Omega, g)$. Then one obtains $b(\mathbf{u}, \mathbf{v}, \mathbf{w})$ $=-b(\mathbf{u}, \mathbf{w}, \mathbf{v})$ so that $b_{g}(\mathbf{u}, \mathbf{v}, \mathbf{v})=0$ for sufficient smooth functions $\mathbf{u}, \mathbf{v}, \mathbf{w} \in H_{g}$. Moreover, we have the following estimates.

Lemma 2.1. Let $\alpha_{i}, i=1,2,3$ be nonnegative real numbers that satisfy

$$
\alpha_{1}+\alpha_{2}+\alpha_{3} \geq 1
$$

and the vector $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$ is not equal to $(1,0,0)$, nor $(0,1,0)$, nor $(0,0,1)$. Then there are positive constants $\gamma_{i}=\gamma_{i}\left(m, M, \alpha_{1}, \alpha_{2}, \alpha_{3}, \Omega\right)$, for $i=1,2$ such that

$$
|b(\mathbf{u}, \mathbf{v}, \mathbf{w})| \leq \gamma_{1}\|\mathbf{u}\|_{H^{\alpha_{1}}}\|\mathbf{v}\|_{H^{\left(\alpha_{2}+1\right)}}\|\mathbf{w}\|_{H^{\alpha_{3}}}
$$

where $\mathbf{u} \in H^{\alpha_{1}}, \mathbf{v} \in H^{\alpha_{2}+1}$ and $\mathbf{w} \in H^{\alpha_{3}}$, and

$$
|b(\mathbf{u}, \mathbf{v}, \mathbf{w})| \leq \gamma_{2}\left\|A_{g}^{\frac{\alpha_{1}}{2}} \mathbf{u}\right\|_{g}\left\|A_{g}^{\frac{\left(\alpha_{2}+1\right)}{2}} \mathbf{v}\right\|_{g}\left\|A_{g}^{\frac{\alpha_{3}}{2}} \mathbf{w}\right\|_{g}
$$

for all $\mathbf{u} \in V_{g}^{\alpha_{1}}, \mathbf{v} \in V_{g}^{\left(\alpha_{2}+1\right)}$ and $\mathbf{w} \in V_{g}^{\alpha_{3}}$.
We define that

$$
\|\mathbf{f}\|_{2,2}^{2}=\int_{0}^{\infty}\|\mathbf{f}(t)\|_{g}^{2} d t
$$

Lemma 2.1. We assume that $\|\nabla g\|_{\infty}^{2}<\frac{m^{3} \pi^{2}}{M}$ and $\mathbf{f} \in L^{2}\left(0, \infty ; L^{2}(\Omega, g)\right)$. Let $\mathbf{u}=\mathbf{u}(t)$ be a weak solution of (1.7) on $[0, T)$ with initial condition \mathbf{u}_{0}. Then the followings hold:
(i) For $\mathbf{u}_{0} \in H_{g}$, one has

$$
\begin{equation*}
\|\mathbf{u}(t)\|_{g}^{2} \leq e^{-\alpha_{1} t}\left\|\mathbf{u}_{0}\right\|_{g}^{2}+\alpha_{2}\|\mathbf{f}\|_{2,2}^{2} \tag{2.1}
\end{equation*}
$$

for all $0 \leq t<T$ and

$$
\int_{t_{1}}^{t}\left\|A_{g}^{\frac{1}{2}} \mathbf{u}(s)\right\|_{g}^{2} d s \leq 2\left\|\mathbf{u}\left(t_{1}\right)\right\|_{g}^{2}+2 \alpha_{2}\|\mathbf{f}\|_{2,2}^{2}
$$

for $0 \leq t_{1} \leq t \leq T$.
(ii) For $\mathbf{u}_{0} \in V_{g}$, there exist constants, $r_{1}=r_{1}(m, M, \mathbf{f}), r_{2}=r_{2}(m, M, \mathbf{f})$ and $L_{1}=L_{1}(m, M, \mathbf{f})\left(L_{1}\right.$ does not depend on $\left.\mathbf{u}_{0}\right)$ such that for $0 \leq t<T$,

$$
\begin{equation*}
\left\|A_{g}^{\frac{1}{2}} \mathbf{u}(t)\right\|_{g}^{2} \leq r_{1}\left(1+\left\|A_{g}^{\frac{1}{2}} \mathbf{u}_{0}\right\|_{g}^{2}\right) e^{-\alpha_{1} t}+L_{1} \tag{2.2}
\end{equation*}
$$

One should recall that we denote by $H_{1}, V_{1}, P_{1}, A_{1}$ instead of $H_{g}, V_{g}, P_{g}, A_{g}$ for the constant function $g=1$.

Lemma 2.3. Assume that $\nabla p \in Q$ and $p \in H^{3}(\Omega)$. Then we have

$$
\begin{aligned}
P_{g}\left[\frac{d}{d t}(\nabla p(t))\right] & =\frac{d}{d t} P_{g}[\nabla p(t)]=0 \\
P_{g}[-\Delta(\nabla p(t))] & =P_{g}[\nabla(-\Delta p(t))]=0 \\
P_{g}[(\nabla p(t) \cdot \nabla) \nabla p(t)] & =P_{g}\left[\nabla\left(\frac{1}{2}(\nabla p(t) \cdot \nabla p(t))\right)\right]=0 .
\end{aligned}
$$

Lemma 2.4. We have $P_{1} P_{g}(\mathbf{v})=\mathbf{v}$ for $\mathbf{v} \in H_{1}$ and $P_{g} P_{1}(\mathbf{u})=\mathbf{u}$ for $\mathbf{u} \in H_{g}$.

Lemma 2.5. For given $\mathbf{u} \in H_{g}$, we can write as

$$
\begin{equation*}
\mathbf{u}=\mathbf{v}+\nabla p, \quad \text { for } \mathbf{v} \in H_{1}, \quad \nabla p \in Q \tag{2.3}
\end{equation*}
$$

and there exist constants $c_{3}=c_{3}(m, M)$ and $c_{4}=c_{4}(m, M)$ such that

$$
\begin{equation*}
\|\Delta p\| \leq c_{3}\|\nabla g\|_{\infty}\|\mathbf{u}\|, \quad\|p\|_{H^{2}(\Omega)} \leq c_{4}\|\nabla g\|_{\infty}\|\mathbf{u}\| . \tag{2.4}
\end{equation*}
$$

In addition, we have $c_{5}=c_{5}(m, M)$ and $c_{6}=c_{6}(m, M)$ such that

$$
\begin{equation*}
\|\Delta p\| \leq c_{5}\|\nabla g\|_{\infty}\|\mathbf{v}\|, \quad\|p\|_{H^{2}(\Omega)} \leq c_{6}\|\nabla g\|_{\infty}\|\mathbf{v}\| . \tag{2.5}
\end{equation*}
$$

Lemma 2.6. We assume that $\int_{\Omega} \frac{1}{g} d \mathbf{x}=1$. Then, for $\mathbf{u} \in L^{2}(\Omega)$ we have

$$
\begin{equation*}
P_{1} P_{g} \mathbf{u}=P_{1} \mathbf{u}-P_{1}\left(\frac{\mathbf{k}}{g}\right), \tag{2.6}
\end{equation*}
$$

where $\mathbf{k}=\int_{\Omega} \mathbf{u} d \mathbf{x}$. As a result, $P_{1} P_{g} \mathbf{u}=P_{1} \mathbf{u}$ if $\int_{\Omega} \mathbf{u} d \mathbf{x}=0$.
Furthermore, for $\mathbf{u} \in L^{2}(\Omega)$ and $\mathbf{w} \in H_{1}$ we have

$$
\begin{equation*}
\left|\left\langle P_{1} P_{g} \mathbf{u}, \mathbf{w}\right\rangle\right| \leq|\langle\mathbf{u}, \mathbf{w}\rangle|+\frac{1}{m}\|\mathbf{k}\|\|\mathbf{w}\| . \tag{2.7}
\end{equation*}
$$

Next, we want to see the relationship between the norms in H_{g} and H_{1} as well as in V_{g} and V_{1}.

Lemma 2.7. Let $\mathbf{u} \in H_{g}$ with $\mathbf{u}=\mathbf{v}+\nabla p$, for $\mathbf{v} \in H_{1}, \nabla p \in Q$.
Then the followings hold;
(1) We have

$$
\begin{equation*}
\frac{1}{M}\|\mathbf{u}\|_{g}^{2} \leq\|\mathbf{v}\|^{2} \leq \frac{1}{m}\|\mathbf{u}\|_{g}^{2} . \tag{2.8}
\end{equation*}
$$

(2) For $\mathbf{u} \in V_{g}$, we have

$$
\mathbf{u}=\mathbf{v}+\nabla p, \quad \mathbf{v} \in V_{1}, \nabla p \in Q
$$

and

$$
\|\nabla \mathbf{u}\|^{2}=\|\nabla \mathbf{v}\|^{2}+\|\nabla(\nabla q)\|^{2}
$$

In addition, if $\|\nabla g\|_{\infty}^{2}<\frac{m^{3} \pi^{2}}{M}$ then we have

$$
\begin{equation*}
l_{1}\left\|A_{g}^{\frac{1}{2}} \mathbf{u}\right\|_{g}^{2} \leq\left\|A_{1}^{\frac{1}{2}} \mathbf{v}\right\|^{2} \leq \frac{1}{m}\left\|A_{g}^{\frac{1}{2}} \mathbf{u}\right\|_{g}^{2}, \tag{2.9}
\end{equation*}
$$

where

$$
l_{1}=l_{1}(g)=\frac{4 \pi^{2}}{M\left(4 \pi^{2}+c_{6}^{2}\|\nabla g\|_{\infty}^{2}\right)} .
$$

(3) For $\mathbf{u} \in \mathcal{D}\left(A_{g}\right)$, we have

$$
\mathbf{u}=\mathbf{v}+\nabla p, \quad \mathbf{v} \in \mathcal{D}\left(A_{1}\right), \quad \nabla p \in Q
$$

In addition, if $\|\nabla g\|_{\infty}^{2}<\frac{m^{3} \pi^{2}}{M}$ then we have

$$
l_{2}\left\|A_{g} \mathbf{u}\right\|_{g}^{2} \leq\left\|A_{1} \mathbf{v}\right\|^{2} \leq l_{3}\left\|A_{g} \mathbf{u}\right\|_{g}^{2}
$$

where

$$
l_{2}=l_{2}(g)=\frac{4 \pi^{4} m^{2}}{M\left(2 \pi^{2} m+2 \pi\|\nabla g\|_{\infty}+c_{6}\|\nabla g\|_{\infty}^{2}\right)^{2}} .
$$

and

$$
l_{3}=l_{3}(g)=\frac{\left(m \sqrt{\lambda_{1}^{g}}+2\|\nabla g\|_{\infty}\right)^{2}}{m^{3} \lambda_{1}^{g}}
$$

λ_{1}^{g} is the smallest eigenvalue of A_{g}.

3. Main Theorems

In this section we assume $\int_{\Omega} \frac{1}{g} d \mathbf{x}=1$ for simple calculations.

3.1. Weak Solutions

Let us define the set Λ_{w} with the metric inherited from $W^{1, \infty}(\Omega)$ as $g \in \Lambda_{w}$ if
(1) $g(\mathbf{x}) \in C_{p e r}^{\infty}(\Omega)$ with $0<m \leq g(x, y) \leq M$, for all $(x, y) \in \Omega$.
(2) $\|g\|_{W^{1, \infty}}^{2}<\frac{m^{3} \pi^{2}}{M}$.

Theorem 3.1. Assume that $g \in \Lambda_{w}$ and $\mathbf{f} \in L^{2}\left(0, \infty ; L^{2}(\Omega, g)\right)$ with $\int_{\Omega} \mathbf{f} d \mathbf{x}$ $=0$. Let $\left(\mathbf{u}_{g}(t), p_{g}(t)\right)$ be a weak solution of $(1.1)-(1.2)$ with $\mathbf{u}_{0}=\mathbf{u}_{g}(0) \in H_{g}$. And $(\mathbf{v}(t), p(t))$ be a weak solution of $(1.8)-(1.9)$ with $\mathbf{v}(0)=P_{1} \mathbf{u}_{0} \in H_{1}$. Then we have

$$
\begin{equation*}
\mathbf{u}_{g} \rightarrow \mathbf{v} \text { in } L^{2}\left(0, T ; H^{1}(\Omega)\right), \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) \tag{3.1}
\end{equation*}
$$

$$
\nabla p_{g} \rightarrow \nabla p \text { in } H^{-1}(\mathcal{Q})
$$

for $\mathcal{Q}=\Omega \times(0, T)$ and for $0<T<\infty$, as $\|\nabla g\|_{\infty} \rightarrow 0$.
Proof. For $\mathbf{u}_{g} \in H_{g}$, we have $\mathbf{v}_{g} \in H_{1}$ and $\nabla q_{g} \in Q$ such that $\mathbf{u}_{g}=\mathbf{v}_{g}+\nabla q_{g}$. Since $\mathbf{u}_{g}(t)$ is a strong solution of equations (1.1)-(1.2) for $t \geq t_{0}>0$, by lemma and lemma, we obtain
(3.3) $\frac{d \mathbf{v}_{g}}{d t}+A_{1} \mathbf{v}_{g}+P_{1}\left(\mathbf{v}_{g} \cdot \nabla\right) \mathbf{v}_{g}+P_{1}\left(\mathbf{v}_{g} \cdot \nabla\right) \nabla q_{g}+P_{1} P_{g}\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g}=P_{1} \mathbf{f}$,
for all $t \geq t_{0}>0$. Let $\mathbf{v}_{g}-\mathbf{v}=\mathbf{w}$ then we get
(3.4) $\frac{d \mathbf{w}}{d t}+A_{1} \mathbf{w}+P_{1}\left(\mathbf{v}_{g} \cdot \nabla\right) \mathbf{w}+P_{1}(\mathbf{w} \cdot \nabla) \mathbf{v}+P_{1}\left(\mathbf{v}_{g} \cdot \nabla\right) \nabla q_{g}+P_{1} P_{g}\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g}=0$
for $t \geq t_{0}>0$. So, we have

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\|\mathbf{w}\|^{2}+\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|^{2} & \leq|\langle(\mathbf{w} \cdot \nabla) \mathbf{v}, \mathbf{w}\rangle|+\left|\left\langle\left(\mathbf{v}_{g} \cdot \nabla\right) \nabla q_{g}, \mathbf{w}\right\rangle\right| \\
& +\left|\left\langle P_{1} P_{g}\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g}, \mathbf{w}\right\rangle\right| \tag{3.5}\\
& =|I|+|I I|+|I I I|, \text { for } t \geq t_{0}>0 .
\end{align*}
$$

First, we obtain

$$
\begin{align*}
|I| & =|\langle(\mathbf{w} \cdot \nabla) \mathbf{v}, \mathbf{w}\rangle| \leq 2\|\mathbf{w}\|\|\nabla \mathbf{w}\|\|\nabla \mathbf{v}\| \\
& \leq \frac{1}{4}\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|^{2}+4\left\|A_{1}^{\frac{1}{2}} \mathbf{v}\right\|^{2}\|\mathbf{w}\|^{2} \tag{3.6}
\end{align*}
$$

Also, by lemma , (1.6), (2.1), (2.4) and the Young inequality, we get

$$
\begin{align*}
|I I| & =\left|\left\langle\left(\mathbf{v}_{g} \cdot \nabla\right) \nabla q_{g}, \mathbf{w}\right\rangle\right| \leq \gamma_{1}\left\|\mathbf{v}_{g}\right\|_{H^{1}}\left\|q_{g}\right\|_{H^{2}}\|\mathbf{w}\|_{H^{1}} \\
& \leq \frac{1}{4}\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|^{2}+c_{7}\|\nabla g\|_{\infty}^{2}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}\right\|^{2} \tag{3.7}
\end{align*}
$$

for some constant $c_{7}=c_{7}\left(m, M,\left\|\mathbf{v}_{0}\right\|,\|\mathbf{f}\|_{2,2}\right)$. Similar to $|I I|$, by (2.7) we get

$$
\begin{align*}
|I I I| & =\left|\left\langle P_{1} P_{g}\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g}, \mathbf{w}\right\rangle\right| \leq\left|\left\langle\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g}, \mathbf{w}\right\rangle\right|+\frac{1}{m}\|\mathbf{k}\|\|\mathbf{w}\| \tag{3.8}\\
& \leq \frac{1}{4}\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|^{2}+c_{8}\|\nabla g\|_{\infty}^{2}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}\right\|^{2}+\frac{1}{m}\|\mathbf{k}\|\|\mathbf{w}\|
\end{align*}
$$

for some constant $c_{8}=c_{8}\left(m, M,\left\|\mathbf{v}_{0}\right\|,\|\mathbf{f}\|_{2,2}\right)$, where $\mathbf{k}=\int_{\Omega}\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g} d \mathbf{x}$.
Since we have

$$
\|\mathbf{k}\|=\left|\int_{\Omega}\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g} d \mathbf{x}\right| \leq\left\|\nabla q_{g}\right\|\left\|\nabla \mathbf{v}_{g}\right\|
$$

by (1.5), (2.5) and the Young inequality, we obtain

$$
\begin{equation*}
|I I I| \leq \frac{1}{4}\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|^{2}+\frac{1}{2}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}\right\|^{2}\|\mathbf{w}\|^{2}+c_{9}\|\nabla g\|_{\infty}^{2}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}\right\|^{2} \tag{3.9}
\end{equation*}
$$

for some constant $c_{9}=c_{9}\left(m, M,\left\|\mathbf{v}_{0}\right\|,\|\mathbf{f}\|_{2,2}\right)$.
Therefore, from (3.5), (3.6), (3.7) and (3.9) we have

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}\|\mathbf{w}\|^{2}+\frac{1}{4}\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|^{2} & \leq\left(4\left\|A_{1}^{\frac{1}{2}} \mathbf{v}\right\|^{2}+\frac{1}{2}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}\right\|^{2}\right)\|\mathbf{w}\|^{2} \\
& +\left(c_{7}+c_{9}\right)\|\nabla g\|_{\infty}^{2}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}\right\|^{2}
\end{aligned}
$$

for all $t \geq t_{0}>0$. So, we can rewrite as

$$
\frac{d}{d t}\|\mathbf{w}\|^{2} \leq \beta_{5}(t)\|\mathbf{w}\|^{2}+\beta_{6}(t)
$$

where

$$
\begin{aligned}
& \beta_{5}(t)=8\left\|A_{1}^{\frac{1}{2}} \mathbf{v}(t)\right\|^{2}+\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(t)\right\|^{2} \\
& \beta_{6}(t)=2\left(c_{7}+c_{9}\right)\|\nabla g\|_{\infty}^{2}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(t)\right\|^{2}
\end{aligned}
$$

By the Gronwall inequality and taking $\lim _{t_{0} \rightarrow 0}$ we obtain

$$
\begin{equation*}
\|\mathbf{w}(t)\|^{2} \leq e^{\int_{0}^{t} \beta_{5}(s) d s}\left[\|\mathbf{w}(0)\|^{2}+\int_{0}^{t} \beta_{6}(t) d s\right] \tag{3.11}
\end{equation*}
$$

for all $t>0$. One note that by the classical theory of the Navier-Stokes equations, there exist constant $c_{10}=c_{10}\left(\left\|\mathbf{v}_{0}\right\|,\|\mathbf{f}\|_{2,2}\right)$ such that for all $0<t \leq T$,

$$
\begin{equation*}
\int_{0}^{t}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}(s)\right\|^{2} d s \leq c_{10} \tag{3.12}
\end{equation*}
$$

Also, with $g \in \Lambda_{w}$, by lemma and lemma we have some positive constant $c_{11}=$ $c_{11}\left(m, M,\left\|\mathbf{v}_{0}\right\|,\|\mathbf{f}\|_{2,2}\right)$ such that for all $0<t \leq T$,

$$
\begin{equation*}
\int_{0}^{t}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(s)\right\|^{2} d s \leq \frac{1}{m} \int_{0}^{t}\left\|A_{g}^{\frac{1}{2}} \mathbf{u}_{g}(s)\right\|^{2} d s \leq c_{11} \tag{3.13}
\end{equation*}
$$

Since $\|\mathbf{w}(0)\|^{2}=0$, we have some constant $c_{12}=c_{12}\left(m, M,\left\|\mathbf{v}_{0}\right\|,\|\mathbf{f}\|_{2,2}\right)$ such that

$$
\begin{equation*}
\|\mathbf{w}(t)\|^{2} \leq c_{12}\|\nabla g\|_{\infty}^{2}, \text { for all } 0<t<T \tag{3.14}
\end{equation*}
$$

So, by (2.1), (2.4) and (3.14), we get

$$
\begin{aligned}
\left\|\mathbf{u}_{g}(t)-\mathbf{v}(t)\right\|^{2} & =\left\|\mathbf{v}_{g}(t)-\mathbf{v}(t)\right\|^{2}+\left\|\mathbf{u}_{g}(t)-\mathbf{v}_{g}(t)\right\|^{2} \\
& =\|\mathbf{w}(t)\|^{2}+\left\|\nabla q_{g}(t)\right\|^{2} \\
& \leq c_{12}\|\nabla g\|_{\infty}^{2}+c_{4}^{2}\|\nabla g\|_{\infty}^{2}\left\|\mathbf{u}_{g}(t)\right\|^{2} \leq c_{13}\|\nabla g\|_{\infty}^{2}
\end{aligned}
$$

for some positive constant $c_{13}=c_{13}\left(m, M,\left\|\mathbf{v}_{0}\right\|,\|\mathbf{f}\|_{2,2}\right)$ and for all $0<t<T$. It means that

$$
\left\|\mathbf{u}_{g}-\mathbf{v}\right\|_{L^{\infty}\left(0, T ; L^{2}(\Omega)\right)}^{2}:=\operatorname{ess} \sup _{0<t<T}\left\|\mathbf{u}_{g}-\mathbf{v}\right\|^{2} \leq c_{13}\|\nabla g\|_{\infty}^{2} \rightarrow 0
$$

as $g \rightarrow 1$ in $W^{1, \infty}(\Omega)$.
Next, to prove the first part of (3.1), we take the integral from t_{0} to T and take $\lim _{t_{0} \rightarrow 0}$ both sides of (3.10). Then, by (3.10), (3.12), (3.13) and (3.14), we obtain
$\int_{0}^{T}\left\|A_{1}^{\frac{1}{2}} \mathbf{w}(s)\right\|^{2} d s \leq\left(16 c_{10} c_{12}+2 c_{11} c_{12}+4 c_{7} c_{11}+4 c_{9} c_{11}\right)\|\nabla g\|_{\infty}^{2}+2\|\mathbf{w}(0)\|^{2}$.
Since $\|\mathbf{w}(0)\|^{2}=0$, we have

$$
\begin{equation*}
\int_{0}^{T}\left\|A_{1}^{\frac{1}{2}} \mathbf{w}(s)\right\|^{2} d s \leq c_{14}\|\nabla g\|_{\infty}^{2} \tag{3.15}
\end{equation*}
$$

for some constant $c_{14}=c_{14}\left(m, M,\left\|\mathbf{v}_{0}\right\|,\|\mathbf{f}\|_{2,2}\right)$.
Therefore, we obtain from (1.6), (2.5), (3.13) and (3.15) that

$$
\begin{aligned}
\int_{0}^{T}\left\|\mathbf{u}_{g}-\mathbf{v}\right\|_{H^{1}}^{2} d s & \leq \int_{0}^{T}\left\|\mathbf{u}_{g}-\mathbf{v}_{g}+\mathbf{v}_{g}-\mathbf{v}\right\|_{H^{1}}^{2} d s \\
& \leq 2 \int_{0}^{T}\left(\left\|\mathbf{u}_{g}-\mathbf{v}_{g}\right\|_{H^{1}}^{2}+\left\|\mathbf{v}_{g}-\mathbf{v}\right\|_{H^{1}}^{2}\right) d s \\
& \leq 2 \int_{0}^{T}\left(\left\|\nabla q_{g}\right\|_{H^{1}}^{2}+\|\mathbf{w}\|_{H^{1}}^{2}\right) d s \\
& \leq 2 \int_{0}^{T}\left(\left\|q_{g}\right\|_{H^{2}}^{2}+\tilde{\delta}^{2}\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|^{2}\right) d s \\
& \leq 2 \int_{0}^{T}\left(c_{6}^{2}\|\nabla g\|_{\infty}^{2}\left\|\mathbf{v}_{g}\right\|^{2}+\tilde{\delta}^{2}\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|^{2}\right) d s \\
& \leq 2\left(c_{6}^{2} c_{11}+c_{14} \tilde{\delta}^{2}\right)\|\nabla g\|_{\infty}^{2}
\end{aligned}
$$

which goes to zero as $\|\nabla g\| \rightarrow 0$.
At last, to prove (3.2), one note that for all $\mathbf{w} \in V_{1}$, we obtain $\frac{\mathrm{w}}{g} \in V_{g}$. So, we obtain

$$
\begin{aligned}
& \left\langle\mathbf{u}_{g}^{\prime}, \mathbf{w}\right\rangle+\left\langle\Delta \mathbf{u}_{g}, \mathbf{w}\right\rangle+\left\langle-\left(\mathbf{u}_{g} \cdot \nabla\right) \mathbf{u}_{g}, \mathbf{w}\right\rangle-\langle\mathbf{f}, \mathbf{w}\rangle \\
= & \left\langle\mathbf{u}_{g}^{\prime}, \frac{\mathbf{w}}{g}\right\rangle_{g}+\left\langle\Delta \mathbf{u}_{g}, \frac{\mathbf{w}}{g}\right\rangle_{g}+\left\langle-\left(\mathbf{u}_{g} \cdot \nabla\right) \mathbf{u}_{g}, \frac{\mathbf{w}}{g}\right\rangle_{g}-\left\langle\mathbf{f}, \frac{\mathbf{w}}{g}\right\rangle_{g}=0 .
\end{aligned}
$$

Therefore, by proposition 1.1 in chapter I of Temam[11], we have suitable $\nabla p_{g} \in Q$ such that

$$
\begin{equation*}
\nabla p_{g}=\mathbf{f}-\mathbf{u}_{g}^{\prime}+\Delta \mathbf{u}_{g}-\left(\mathbf{u}_{g} \cdot \nabla\right) \mathbf{u}_{g} \tag{3.16}
\end{equation*}
$$

Also, by classical theory of the Navier-Stokes equations, we have

$$
\begin{equation*}
\nabla p=\mathbf{f}-\mathbf{v}^{\prime}+\Delta \mathbf{v}-(\mathbf{v} \cdot \nabla) \mathbf{v} \tag{3.17}
\end{equation*}
$$

Hence, to prove (3.2), we claim for any $\mathbf{w} \in H^{1}(\mathcal{Q})$

$$
\begin{align*}
& \left|\int_{0}^{T}\left\langle\nabla p_{g}-\nabla p, \mathbf{w}(t)\right\rangle d t\right| \leq\left|\int_{0}^{T}\left\langle\mathbf{u}_{g}^{\prime}-\mathbf{v}^{\prime}, \mathbf{w}(t)\right\rangle d t\right| \\
+ & \left|\int_{0}^{T}\left\langle\Delta \mathbf{u}_{g}-\Delta \mathbf{v}, \mathbf{w}(t)\right\rangle d t\right|+\left|\int_{0}^{T}\left\langle\left(\mathbf{u}_{g} \cdot \nabla\right) \mathbf{u}_{g}-(\mathbf{v} \cdot \nabla) \mathbf{v}, \mathbf{w}(t)\right\rangle d t\right| \tag{3.18}\\
= & |I|+|I I|+|I I I| \leq C(g)\|\mathbf{w}\|_{H^{1}(\mathcal{Q})} \rightarrow 0
\end{align*}
$$

as $\|\nabla g\|_{\infty} \rightarrow 0$, where $C(g)$ is some constant which depends on g.
First, by using the integration by parts and (3.1), we obtain

$$
\begin{align*}
|I I| & =\left|\int_{0}^{T}\left\langle-\Delta\left(\mathbf{u}_{g}-\mathbf{v}\right), \mathbf{w}(t)\right\rangle d t\right|=\int_{0}^{T}\left|\left\langle\nabla\left(\mathbf{u}_{g}-\mathbf{v}\right), \nabla \mathbf{w}(t)\right\rangle\right| d t \\
& \leq\left(\int_{0}^{T}\left\|\mathbf{u}_{g}-\mathbf{v}\right\|_{H^{1}}^{2} d t\right)^{\frac{1}{2}}\|\mathbf{w}\|_{H^{1}(\mathcal{Q})} \rightarrow 0 \tag{3.19}
\end{align*}
$$

for any $\mathbf{w} \in H_{p e r}^{1}(\mathcal{Q})$, as $\|\nabla g\|_{\infty} \rightarrow 0$.
Also, since $\mathbf{v} \in L^{2}\left(0, T ; V_{1}\right)$ and $\mathbf{u}_{g} \in L^{2}\left(0, T ; V_{g}\right)$, by (3.1) we obtain

$$
\begin{align*}
& |I I I| \\
= & \left|\int_{0}^{T}\left\langle\left(\mathbf{u}_{g} \cdot \nabla\right) \mathbf{u}_{g}-(\mathbf{v} \cdot \nabla) \mathbf{v}, \mathbf{w}(t)\right\rangle d t\right| \\
= & \left|\int_{0}^{T}\left\langle\left(\left(\mathbf{u}_{g}-\mathbf{v}\right) \cdot \nabla\right) \mathbf{u}_{g}, \mathbf{w}(t)\right\rangle d t\right|+\left|\int_{0}^{T}\left\langle(\mathbf{v} \cdot \nabla)\left(\mathbf{u}_{g}-\mathbf{v}\right), \mathbf{w}(t)\right\rangle d t\right| \tag{3.20}\\
\leq & \|\mathbf{w}(t)\|_{H^{1}(Q)}\left(\int_{0}^{T}\left\|\mathbf{u}_{g}-\mathbf{v}\right\|_{H^{1}}^{2} d t\right)^{\frac{1}{2}}\left(\int_{0}^{T}\left\|\mathbf{u}_{g}\right\|_{H^{1}}^{2} d t\right)^{\frac{1}{2}} \\
+ & \|\mathbf{w}(t)\|_{H^{1}(Q)}\left(\int_{0}^{T}\left\|\mathbf{u}_{g}-\mathbf{v}\right\|_{H^{1}}^{2} d t\right)^{\frac{1}{2}}\left(\int_{0}^{T}\|\mathbf{v}\|_{H^{1}}^{2} d t\right)^{\frac{1}{2}} \rightarrow 0,
\end{align*}
$$

for any w $\in H_{p e r}^{1}(\mathcal{Q})$, as $\|\nabla g\|_{\infty} \rightarrow 0$.
Next, one should note that we can assume $\mathbf{w}(T)=0$, because the set of $\mathbf{w}(t) \in$ $H_{\text {per }}^{1}(\mathcal{Q})$ with $\mathbf{w}(T)=0$ is dense in the space $H_{\text {per }}^{1}(\mathcal{Q})$. So, by the integration by parts, we have

$$
\begin{align*}
& |I|=\left|\int_{0}^{T}\left\langle\frac{\partial}{\partial t}\left(\mathbf{u}_{g}-\mathbf{v}\right), \mathbf{w}(t)\right\rangle d t\right| \\
& \leq\left|\left\langle\left(\mathbf{u}_{g}(0)-\mathbf{v}(0)\right), \mathbf{w}(0)\right\rangle\right|+\left|\int_{0}^{T}\left\langle\mathbf{u}_{g}-\mathbf{v}, \frac{\partial}{\partial t} \mathbf{w}(t)\right\rangle d t\right| \tag{3.21}\\
& \leq\left\|\mathbf{u}_{g}(0)-\mathbf{v}(0)\right\|\|\mathbf{w}(0)\|+\|\mathbf{w}(t)\|_{H^{1}(Q)}\left(\int_{0}^{T}\left\|\mathbf{u}_{g}-\mathbf{v}\right\|^{2} d t\right)^{\frac{1}{2}} .
\end{align*}
$$

Since $P_{1} \mathbf{u}_{g}(0)=\mathbf{v}(0)$, as $\|\nabla g\|_{\infty} \rightarrow 0$, we have

$$
\begin{equation*}
\left\|\mathbf{u}_{g}(0)-\mathbf{v}(0)\right\|=\left\|\mathbf{u}_{g}(0)-P_{1} \mathbf{u}_{g}(0)\right\| \leq c_{6}\|\nabla g\|_{\infty}\|\mathbf{v}(0)\| \rightarrow 0 \tag{3.22}
\end{equation*}
$$

Also, by (3.1), the second term of (3.21) also goes to 0 as $\|\nabla g\|_{\infty} \rightarrow 0$. So, from (3.21) and (3.22), $|I|$ goes to zero as $\|\nabla g\|_{\infty} \rightarrow 0$.

Therefore, by (3.18), (3.19), (3.20) and (3.21), we complete the proof of (3.2)

3.2. Strong Solutions

Let us define the set Λ_{s} with the metric inherited from $W^{2, \infty}(\Omega)$ as $g \in \Lambda_{s}$, if $g \in \Lambda_{w}$ and $\|g\|_{W^{2, \infty}} \leq M_{0}$ for some constant M_{0}.

Before we prove main theorem we will prove the following useful lemmas by using equation (3.3).

Lemma 3.2. Assume that $g \in \Lambda_{s}$ and $\mathbf{f} \in L^{2}\left(0, \infty ; L^{2}(\Omega, g)\right)$ with $\int_{\Omega} \mathbf{f} d \mathbf{x}=$ 0 Let $\mathbf{u}_{g}=\mathbf{v}_{g}+\nabla q_{g}$ be a strong solution of (1.1)-(1.2) with $\mathbf{u}_{0}=\mathbf{u}_{g}(0) \in V_{g}$.

Then there exists some constant $c_{15}=c_{15}\left(m, M, M_{0},\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(0)\right\|,\|\mathbf{f}\|_{2,2}\right)$ such that

$$
\begin{equation*}
\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(t)\right\|^{2} \leq c_{15} \tag{3.23}
\end{equation*}
$$

for all $0 \leq t<T$.
Proof. By taking the scalar product with $A_{1} \mathbf{v}_{g}$ to the equation (3.3) we obtain

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}\right\|^{2}+\left\|A_{1} \mathbf{v}_{g}\right\|^{2} & \leq\left|\left\langle P_{1} P_{g}\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g}, A_{1} \mathbf{v}_{g}\right\rangle\right| \\
& +\left|\left\langle\left(\mathbf{v}_{g} \cdot \nabla\right) \nabla q_{g}, A_{1} \mathbf{v}_{g}\right\rangle\right|+\left|\left\langle\mathbf{f}, A_{1} \mathbf{v}_{g}\right\rangle\right| \tag{3.24}\\
& =|I|+|I I|+|I I I|
\end{align*}
$$

because $\left\langle\left(\mathbf{v}_{g} \cdot \nabla\right) \mathbf{v}_{g}, A_{1} \mathbf{v}_{g}\right\rangle=0$. From (1.6) and (2.9), Note

$$
\begin{equation*}
\left\|q_{g}\right\|_{H^{3}}^{2} \leq \frac{\tilde{\delta}^{2} \delta_{0}^{2} M_{0}^{2}}{l_{1}}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}\right\|^{2} \tag{3.25}
\end{equation*}
$$

for some positive constant $\delta_{0}=\delta_{0}(m, M, \alpha)$. So, by lemma, (1.6), (3.25) and the Young inequality, we have

$$
\begin{align*}
|I I| & =\left|\left\langle\left(\mathbf{v}_{g} \cdot \nabla\right) \nabla q_{g}, A_{1} \mathbf{v}_{g}\right\rangle\right| \leq \gamma_{1}\left\|\mathbf{v}_{g}\right\|_{H^{1}}\left\|q_{g}\right\|_{H^{3}}\left\|A_{1} \mathbf{v}_{g}\right\| \\
& \leq \frac{1}{4}\left\|A_{1} \mathbf{v}_{g}\right\|^{2}+\frac{\gamma_{1}^{2} \tilde{\delta}^{4} \delta_{0}^{2} M_{0}^{2}}{l_{1}}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}\right\| \tag{3.26}
\end{align*}
$$

Also, by (2.7) we have

$$
\begin{equation*}
|I|=\left|\left\langle P_{1} P_{g}\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g}, A_{1} \mathbf{v}_{g}\right\rangle\right| \leq\left|\left\langle\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g}, A_{1} \mathbf{v}_{g}\right\rangle\right|+\frac{1}{m}\|\mathbf{k}\|\left\|A_{1} \mathbf{v}_{g}\right\| \tag{3.27}
\end{equation*}
$$

where $\mathbf{k}=\int_{\Omega}\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g} d \mathbf{x}$. Similar to $|I I|$, we obtain

$$
\begin{aligned}
\left|\left\langle\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g}, A_{1} \mathbf{v}_{g}\right\rangle\right| & \leq \gamma_{1}\left\|q_{g}\right\|_{H^{3}}\left\|\mathbf{v}_{g}\right\|_{H^{1}}\left\|A_{1} \mathbf{v}_{g}\right\| \\
& \leq \frac{1}{4}\left\|A_{1} \mathbf{v}_{g}\right\|^{2}+\frac{\gamma_{1}^{2} \tilde{\delta}^{4} \delta_{0}^{2} M_{0}^{2}}{l_{1}}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}\right\|^{4}
\end{aligned}
$$

Since

$$
\|\mathbf{k}\|=\left|\int_{\Omega}\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g} d \mathbf{x}\right| \leq\left\|\nabla q_{g}\right\|\left\|\nabla \mathbf{v}_{g}\right\|
$$

we have by (1.5), (2.5) and the Young inequality that

$$
\begin{align*}
\frac{1}{m}\|\mathbf{k}\|\left\|A_{1} \mathbf{v}_{g}\right\| & \leq \frac{1}{m}\left\|\nabla q_{g}\right\|\left\|\nabla \mathbf{v}_{g}\right\|\left\|A_{1} \mathbf{v}_{g}\right\| \\
& \leq \frac{1}{4}\left\|A_{1} \mathbf{v}_{g}\right\|^{2}+\frac{c_{6}^{2} M_{0}^{2}}{m^{2}}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}\right\| \tag{3.29}
\end{align*}
$$

Therefore, by (3.27), (3.28) and (3.29) we have

$$
\begin{equation*}
|I| \leq \frac{1}{2}\left\|A_{1} \mathbf{v}_{g}\right\|^{2}+\left(\frac{\gamma_{1}^{2} \tilde{\delta}^{4} \delta_{0}^{2}}{l_{1}}+\frac{c_{6}^{2}}{m^{2}}\right) M_{0}^{2}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}\right\|^{4} \tag{3.30}
\end{equation*}
$$

Also we have

$$
\begin{equation*}
|I I I|=\left|\left\langle\mathbf{f}, A_{1} \mathbf{v}_{g}\right\rangle\right| \leq \frac{1}{8}\left\|A_{1} \mathbf{v}_{g}\right\|^{2}+8\|\mathbf{f}\|^{2} \tag{3.31}
\end{equation*}
$$

Hence, by (3.24), (3.26), (3.30) and (3.31) we obtain

$$
\begin{equation*}
\frac{d}{d t}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(t)\right\|^{2}+\frac{1}{4}\left\|A_{1} \mathbf{v}_{g}(t)\right\|^{2} \leq \beta_{7}(t)\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(t)\right\|^{2}+\beta_{8}(t) \tag{3.32}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\frac{d}{d t}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(t)\right\|^{2} \leq \beta_{7}(t)\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(t)\right\|^{2}+\beta_{8}(t), \quad 0<t<T \tag{3.33}
\end{equation*}
$$

where

$$
\begin{align*}
& \beta_{7}=\left(\frac{4 \gamma_{1}^{2} \tilde{\delta}^{4} \delta_{0}^{2}}{l_{1}}+\frac{2 c_{6}^{2}}{m^{2}}\right) M_{0}^{2}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(t)\right\|^{2} \tag{3.34}\\
& \beta_{8}=16\|\mathbf{f}(t)\|^{2} .
\end{align*}
$$

Therefore, by (3.13), (3.33) and the Gronwall inequality, there exists a constant $c_{15}=c_{15}\left(m, M, M_{0},\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(0)\right\|,\|\mathbf{f}\|_{2,2}\right)$ such that

$$
\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(t)\right\|^{2} \leq e^{\int_{0}^{T} \beta_{7}(s) d s}\left[\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(0)\right\|^{2}+\int_{0}^{T} \beta_{8}(s) d s\right] \leq c_{15}
$$

for all $0 \leq t<T$.
Lemma 3.3. Assume that $g \in \Lambda_{s}$ and $\mathbf{f} \in L^{2}\left(0, \infty ; L^{2}(\Omega, g)\right)$ with $\int_{\Omega} \mathbf{f} d \mathbf{x}=$ 0 Let $\mathbf{u}_{g}=\mathbf{v}_{g}+\nabla q_{g}$ be a strong solution of (1.1)-(1.2) with $\mathbf{u}_{0}=\mathbf{u}_{g}(0) \in V_{g}$. Then there exists some constant $c_{16}=c_{16}\left(m, M, M_{0},\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(0)\right\|,\|\mathbf{f}\|_{2,2}\right)$ such that

$$
\begin{equation*}
\int_{0}^{T}\left\|A_{1} \mathbf{v}_{g}\right\|^{2} d s \leq c_{16} \tag{3.35}
\end{equation*}
$$

Proof. First we note from (3.23) and (3.34) that

$$
\begin{align*}
\beta_{7}(t) & =\left(\frac{4 \gamma_{1}^{2} \tilde{\delta}^{4} \delta_{0}^{2}}{l_{1}}+\frac{2 c_{6}^{2}}{m^{2}}\right) M_{0}^{2}\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(t)\right\|^{2} \\
& \leq c_{15}\left(\frac{4 \gamma_{1}^{2} \tilde{\delta}^{4} \delta_{0}^{2}}{l_{1}}+\frac{2 c_{6}^{2}}{m^{2}}\right) M_{0}^{2} \tag{3.36}
\end{align*}
$$

for all $0 \leq t<T$. So, by integrating from 0 to T both sides of (3.32) we obtain from (3.13) that

$$
\begin{aligned}
& \int_{0}^{T}\left\|A_{1} \mathbf{v}_{g}(s)\right\|^{2} d s \\
\leq & 4\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(0)\right\|^{2}+4 \int_{0}^{T}\left(\beta_{7}(s)\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(s)\right\|^{2}+\beta_{8}(s)\right) d s \\
\leq & 4\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(0)\right\|^{2}+4 c_{11} c_{15}\left(\frac{4 \gamma_{1}^{2} \tilde{\delta}^{4} \delta_{0}^{2}}{l_{1}}+\frac{2 c_{6}^{2}}{m^{2}}\right) M_{0}^{2}+64\|\mathbf{f}\|_{2,2}^{2} \leq c_{16}
\end{aligned}
$$

for some positive constant c_{16}.
Lemma 3.4. For given $\mathbf{u} \in L_{\text {per }}^{2}(\Omega)$ we have

$$
\begin{equation*}
\left\|P_{g} \mathbf{u}-P_{1} \mathbf{u}\right\| \leq \frac{2}{m}\|\nabla g\|_{\infty}\|\mathbf{u}\|+\frac{\|1-g\|_{\infty}}{m}\|\mathbf{k}\|, \tag{3.37}
\end{equation*}
$$

where $\mathbf{k}=\int_{\Omega} \mathbf{u} d \mathbf{x}$.
Proof. For any $\mathbf{u} \in L_{p e r}^{2}(\Omega)$, we can write as

$$
\begin{equation*}
P_{g} \mathbf{u}+\nabla r_{g}+\frac{\mathbf{k}}{g}=\mathbf{u}=P_{1} \mathbf{u}+\nabla r_{1}+\mathbf{k}, \quad \text { for } \nabla r_{g}, \nabla r_{1} \in Q . \tag{3.38}
\end{equation*}
$$

So, we have

$$
\frac{1}{g}(\nabla \cdot g \nabla) r_{g}=\frac{1}{g}(\nabla \cdot g \mathbf{u})=\nabla \cdot \mathbf{u}+\frac{\nabla g}{g} \cdot \mathbf{u} \text { and } \Delta r_{1}=\nabla \cdot \mathbf{u} .
$$

Now, one note $\frac{1}{g}(\nabla \cdot g \nabla) r_{g}=\Delta r_{g}+\left(\frac{\nabla g}{g} \cdot \nabla\right) r_{g}$. Therefore, we get

$$
\Delta r_{1}-\Delta r_{g}=\frac{\nabla g}{g} \cdot \mathbf{u}-\left(\frac{\nabla g}{g} \cdot \nabla\right) r_{g}
$$

Hence, we have

$$
\left\|\nabla r_{1}-\nabla r_{g}\right\| \leq\left\|\Delta\left(r_{1}-r_{g}\right)\right\| \leq \frac{2}{m}\|\nabla g\|_{\infty}\|\mathbf{u}\|
$$

So, we have from (3.38) that

$$
\begin{aligned}
\left\|P_{1} \mathbf{u}-P_{g} \mathbf{u}\right\| & \leq\left\|\nabla r_{1}-\nabla r_{g}\right\|+\left\|\frac{\mathbf{k}}{g}-\mathbf{k}\right\| \\
& \leq \frac{2}{m}\|\nabla g\|_{\infty}\|\mathbf{u}\|+\frac{\|1-g\|_{\infty}}{m}\|\mathbf{k}\| .
\end{aligned}
$$

Remark 3.5. Let $\mathbf{u}=\mathbf{v}+\nabla p$, for $\mathbf{u} \in H^{\alpha}(\Omega), \mathbf{v} \in H_{g}$ and $\nabla p \in Q$. Then we have a constant $\delta_{0}=\delta_{0}(m, M, \alpha)$ such that $\|p\|_{H^{\alpha+2}} \leq \delta_{0}\|g\|_{\alpha+1, \infty}\|\mathbf{u}\|_{H^{\alpha}}$, where $\|g\|_{k, \infty}=\sum_{1 \leq j \leq k}\left\|D^{j} g\right\|_{\infty}$.

Theorem 3.6. Let $g \in \Lambda_{s}$ and $\mathbf{f} \in L^{2}\left(0, \infty ; L^{2}(\Omega, g)\right)$ with $\int_{\Omega} \mathbf{f} d \mathbf{x}=0$. Let $\left(\mathbf{u}_{g}(t), p_{g}(t)\right)$ be a strong solution of $(1.1)-(1.2)$ with $\mathbf{u}_{0}=\mathbf{u}_{g}(0) \in V_{g}$. And $(\mathbf{v}(t), p(t))$ be a strong solution of $(1.8)-(1.9)$ with $\mathbf{v}(0)=P_{1} \mathbf{u}_{0} \in V_{1}$. Then we have

$$
\begin{equation*}
\mathbf{u}_{g} \rightarrow \mathbf{v} \text { in } L^{\infty}\left(0, T ; H^{1}(\Omega)\right), \text { in } L^{2}\left(0, T ; H^{2}(\Omega)\right) \tag{3.39}
\end{equation*}
$$

$$
\begin{equation*}
\nabla p_{g} \rightarrow \nabla p \text { in } L^{2}(\mathcal{Q}) \tag{3.40}
\end{equation*}
$$

for $\mathcal{Q}=\Omega \times(0, T)$ and for $0<T<\infty$, as $\|g\|_{2, \infty} \rightarrow 0$
Proof. By taking the scalar product with $A_{1} \mathbf{w}$ to both sides of (3.4) we have

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|^{2}+\left\|A_{1} \mathbf{w}\right\|^{2} \\
\leq & \left|\left\langle\left(\mathbf{v}_{g} \cdot \nabla\right) \mathbf{w}, A_{1} \mathbf{w}\right\rangle\right|+\left|\left\langle(\mathbf{w} \cdot \nabla) \mathbf{v}, A_{1} \mathbf{w}\right\rangle\right| \tag{3.41}\\
+ & \left|\left\langle\left(\mathbf{v}_{g} \cdot \nabla\right) \nabla q_{g}, A_{1} \mathbf{w}\right\rangle\right|+\left|\left\langle P_{1} P_{g}\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g}, A_{1} \mathbf{w}\right\rangle\right| \\
= & |I|+|I I|+|I I I|+|I V|
\end{align*}
$$

for all $t \geq 0$. By lemma and the Young inequality we have

$$
\begin{align*}
|I| & =\left|\left\langle\left(\mathbf{v}_{g} \cdot \nabla\right) \mathbf{w}, A_{1} \mathbf{w}\right\rangle\right| \leq \gamma_{2}\left\|A_{1} \mathbf{v}_{g}\right\|\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|\left\|A_{1} \mathbf{w}\right\| \\
& \leq \frac{1}{8}\left\|A_{1} \mathbf{w}\right\|^{2}+8 \gamma_{2}^{2}\left\|A_{1} \mathbf{v}_{g}\right\|^{2}\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|^{2} \tag{3.42}
\end{align*}
$$

Similar to $|I|$ we obtain

$$
\begin{align*}
|I I| & =\left|\left\langle(\mathbf{w} \cdot \nabla) \mathbf{v}, A_{1} \mathbf{w}\right\rangle\right| \leq \gamma_{2}\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|\left\|A_{1} \mathbf{v}\right\|\left\|A_{1} \mathbf{w}\right\| \\
& \leq \frac{1}{8}\left\|A_{1} \mathbf{w}\right\|^{2}+8 \gamma_{2}^{2}\left\|A_{1} \mathbf{v}\right\|^{2}\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|^{2} \tag{3.43}
\end{align*}
$$

Next, by using lemma , (1.6), (2.1), (2.4) and (2.8), there exists some constant c_{17} $=c_{17}\left(m, M,\left\|\mathbf{v}_{0}\right\|,\|\mathbf{f}\|_{2,2}\right)$ such that

$$
\begin{align*}
|I I I| & =\left|\left\langle\left(\mathbf{v}_{g} \cdot \nabla\right) \nabla q_{g}, A_{1} \mathbf{w}\right\rangle\right| \leq \gamma_{1}\left\|\mathbf{v}_{g}\right\|_{H^{2}}\left\|q_{g}\right\|_{H^{2}}\left\|A_{1} \mathbf{w}\right\| \\
& \leq \frac{1}{8}\left\|A_{1} \mathbf{w}\right\|^{2}+c_{17}\|\nabla g\|_{\infty}^{2}\left\|A_{1} \mathbf{v}_{g}\right\|^{2} \tag{3.44}
\end{align*}
$$

By applying (2.7) we have

$$
\begin{equation*}
|I V|=\left|\left\langle P_{1} P_{g}\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g}, A_{1} \mathbf{w}\right\rangle\right| \leq\left|\left\langle\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g}, A_{1} \mathbf{w}\right\rangle\right|+\frac{1}{m}\|\mathbf{k}\|\left\|A_{1} \mathbf{w}\right\| \tag{3.45}
\end{equation*}
$$

where $\mathbf{k}=\int_{\Omega}\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g} d \mathbf{x}$. Similar to $|I I I|$, we obtain

$$
\begin{align*}
\left|\left\langle\left(\nabla q_{g} \cdot \nabla\right) \mathbf{v}_{g}, A_{1} \mathbf{w}\right\rangle\right| & \leq \gamma_{1}\left\|q_{g}\right\|_{H^{2}}\left\|\mathbf{v}_{g}\right\|_{H^{2}}\left\|A_{1} \mathbf{w}\right\| \\
& \leq \frac{1}{8}\left\|A_{1} \mathbf{w}\right\|^{2}+c_{17}\|\nabla g\|_{\infty}^{2}\left\|A_{1} \mathbf{v}_{g}\right\|^{2} . \tag{3.46}
\end{align*}
$$

Also, by (2.1), (2.4) and (2.8) we obtain

$$
\begin{align*}
\frac{1}{m}\|\mathbf{k}\|\left\|A_{1} \mathbf{w}\right\| & \leq \frac{1}{m}\left\|q_{g}\right\|_{H^{2}}\left\|\nabla \mathbf{v}_{g}\right\|\left\|A_{1} \mathbf{w}\right\| \tag{3.47}\\
& \leq \frac{1}{8}\left\|A_{1} \mathbf{w}\right\|^{2}+c_{18}\|\nabla g\|_{\infty}^{2}\left\|A_{1} \mathbf{v}_{g}\right\|^{2}
\end{align*}
$$

for some constant $c_{18}=c_{18}\left(m, M,\left\|\mathbf{v}_{0}\right\|,\|\mathbf{f}\|_{2,2}\right)$. So, from (3.45), (3.46) and (3.47) we have

$$
\begin{equation*}
|I V| \leq \frac{1}{4}\left\|A_{1} \mathbf{w}\right\|^{2}+\left(c_{17}+c_{18}\right)\|\nabla g\|_{\infty}^{2}\left\|A_{1} \mathbf{v}_{g}\right\|^{2} \tag{3.48}
\end{equation*}
$$

Therefore, from (3.41), (3.42), (3.43), (3.44) and (3.48), we have

$$
\begin{align*}
\frac{1}{2} \frac{d}{d t}\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|^{2}+\frac{3}{8}\left\|A_{1} \mathbf{w}\right\|^{2} & \leq 8 \gamma_{2}^{2}\left(\left\|A_{1} \mathbf{v}_{g}\right\|^{2}+\left\|A_{1} \mathbf{v}\right\|^{2}\right)\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|^{2} \tag{3.49}\\
& +\left(2 c_{17}+c_{18}\right)\|\nabla g\|_{\infty}^{2}\left\|A_{1} \mathbf{v}_{g}\right\|^{2}
\end{align*}
$$

for all $t \geq 0$. So, we have

$$
\frac{d}{d t}\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|^{2} \leq \beta_{9}(t)\left\|A_{1}^{\frac{1}{2}} \mathbf{w}\right\|^{2}+\beta_{10}(t), \text { for all } t \geq 0
$$

where

$$
\begin{equation*}
\beta_{9}(t)-16 \gamma_{2}^{2}\left(\left\|A_{1} \mathbf{v}_{g}(t)\right\|^{2}+\left\|A_{1} \mathbf{v}(t)\right\|^{2}\right) \tag{3.50}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{10}(t)=\left(4 c_{17}+2 c_{18}\right)\|\nabla g\|_{\infty}^{2}\left\|A_{1} \mathbf{v}_{g}(t)\right\|^{2} \tag{3.51}
\end{equation*}
$$

By the Gronwall inequality, we get

$$
\begin{equation*}
\left\|A_{1}^{\frac{1}{2}} \mathbf{w}(t)\right\|^{2} \leq e^{\int_{0}^{t} \beta_{9}(s) d s}\left[\left\|A_{1}^{\frac{1}{2}} \mathbf{w}(0)\right\|^{2}+\int_{0}^{t} \beta_{10}(s) d s\right] \tag{3.52}
\end{equation*}
$$

for all $t \geq 0$. Now, by (3.35) and the classical theory of the Navier-Stokes equations for periodic boundary conditions, there exists $c_{19}=c_{19}\left(m, M, M_{0},\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{0}\right\|\right.$, $\|\mathbf{f}\|_{2,2}$) such that

$$
\begin{equation*}
\int_{0}^{T} \beta_{9}(s) d s=\int_{0}^{T} 16 \gamma_{2}^{2}\left(\left\|A_{1} \mathbf{v}_{g}(s)\right\|^{2}+\left\|A_{1} \mathbf{v}(s)\right\|^{2}\right) d s \leq c_{19} \tag{3.53}
\end{equation*}
$$

and there exists $c_{20}=c_{20}\left(m, M, M_{0},\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{0}\right\|,\|\mathbf{f}\|_{2,2}\right)$ such that

$$
\begin{equation*}
\int_{0}^{T} \beta_{10}(s) d s=\int_{0}^{T}\left(4 c_{17}+2 c_{18}\right)\|\nabla g\|_{\infty}^{2}\left\|A_{1} \mathbf{v}_{g}(s)\right\|^{2} d s \leq c_{20}\|\nabla g\|_{\infty}^{2} \tag{3.54}
\end{equation*}
$$

Therefore, from (3.52), (3.53) and (3.54) we have

$$
\left\|A_{1}^{\frac{1}{2}} \mathbf{w}(t)\right\|^{2} \leq e^{c_{19}}\left[\left\|A_{1}^{\frac{1}{2}} \mathbf{w}(0)\right\|^{2}+c_{20}\|\nabla g\|_{\infty}^{2}\right], \text { for all0 } \leq t<T
$$

which implies

$$
\begin{equation*}
\left\|\nabla\left(\mathbf{v}_{g}(t)-\mathbf{v}(t)\right)\right\|^{2}=\left\|A_{1}^{\frac{1}{2}} \mathbf{w}(t)\right\|^{2} \leq c_{20} e^{c_{19}}\|\nabla g\|_{\infty}^{2} \tag{3.55}
\end{equation*}
$$

because $\mathbf{w}(0)=0$.
Next, by (2.1), (2.4) and (2.8), there exists constant $c_{21}=c_{21}\left(m, M,\left\|\mathbf{v}_{0}\right\|\right.$, $\|\mathbf{f}\|_{2,2}$) such that
(3.56) $\left\|\nabla\left(\mathbf{u}_{g}-\mathbf{v}_{g}\right)\right\|^{2}=\left\|\nabla\left(\nabla q_{g}\right)\right\|^{2} \leq c_{4}\|\nabla g\|_{\infty}^{2}\left\|\mathbf{u}_{g}\right\|^{2} \leq c_{21}\|\nabla g\|_{\infty}^{2}$.

Since $\int_{\Omega} \mathbf{u}_{g} d \mathbf{x}=\int_{\Omega} \mathbf{v} d \mathbf{x}=0$ and $\mathbf{u}_{g}, \mathbf{v} \in H_{\text {per }}^{1}(\Omega)$, we have

$$
\left\|\mathbf{u}_{g}-\mathbf{v}\right\|_{H^{1}} \leq 2\left\|\nabla\left(\mathbf{u}_{g}-\mathbf{v}\right)\right\|
$$

So, we obtain from (3.55) and (3.56)

$$
\begin{aligned}
\left\|\mathbf{u}_{g}(t)-\mathbf{v}(t)\right\|_{H^{1}}^{2} & \leq 2\left\|\nabla\left(\mathbf{u}_{g}-\mathbf{v}\right)\right\|^{2} \leq 4\left(\left\|\nabla\left(\mathbf{u}_{g}-\mathbf{v}_{g}\right)\right\|^{2}+\left\|\nabla\left(\mathbf{v}_{g}-\mathbf{v}\right)\right\|^{2}\right) \\
& \leq 4\left(c_{21}+c_{20} e^{c_{19}}\right)\|\nabla g\|_{\infty}^{2}
\end{aligned}
$$

Next, to prove second part of (3.39), we take the integral from 0 to T both sides of (3.49). Then, we obtain by (3.53), (3.54) and (3.55) that

$$
\begin{aligned}
\frac{3}{4} \int_{0}^{T}\left\|A_{1} \mathbf{w}(s)\right\|^{2} d s & \leq \int_{0}^{T} \beta_{9}(s)\left\|A_{1}^{\frac{1}{2}} \mathbf{w}(s)\right\|^{2} d s+\int_{0}^{T} \beta_{10}(s) d s \\
& \leq\left(c_{19} c_{20} e^{c_{19}}+c_{20}\right)\|\nabla g\|_{\infty}^{2}
\end{aligned}
$$

because $\left\|A_{1}^{\frac{1}{2}} \mathbf{w}(0)\right\|=0$. So, by (1.6), we obtain
(3.57) $\int_{0}^{T}\|\mathbf{w}(s)\|_{H^{2}}^{2} d s \leq \tilde{\delta}^{2} \int_{0}^{T}\left\|A_{1} \mathbf{w}(s)\right\|^{2} \leq \frac{4 \tilde{\delta}^{2}}{3}\left(c_{19} c_{20} e^{c_{19}}+c_{20}\right)\|\nabla g\|_{\infty}^{2}$.

Also, we obtain due to lemma, (2.9) and remark that

$$
\begin{align*}
& \int_{0}^{T}\left\|\mathbf{u}_{g}(s)-\mathbf{v}_{g}(s)\right\|_{H^{2}}^{2} d s=\int_{0}^{T}\left\|\nabla q_{g}\right\|_{H^{2}}^{2} d s \leq \int_{0}^{T}\left\|q_{g}\right\|_{H^{3}}^{2} d s \tag{3.58}\\
\leq & \delta_{0}^{2}\|g\|_{2, \infty}^{2} \int_{0}^{T}\left\|\mathbf{u}_{g}\right\|_{H^{1}}^{2} d s \leq c \delta_{0}^{2}\|g\|_{2, \infty}^{2}
\end{align*}
$$

for some constant $c=c\left(m, M,\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{0}\right\|,\|\mathbf{f}\|_{2,2}\right)$. So, from (3.57) and (3.58), we get

$$
\begin{aligned}
& \int_{0}^{T}\left\|\mathbf{u}_{g}(s)-\mathbf{v}(s)\right\|_{H^{2}}^{2} d s \\
\leq & 2\left(\int_{0}^{T}\left\|\mathbf{u}_{g}(s)-\mathbf{v}_{g}(s)\right\|_{H^{2}}^{2} d s+\int_{0}^{T}\left\|\mathbf{v}_{g}(s)-\mathbf{v}(s)\right\|_{H^{2}}^{2} d s\right) \\
= & 2\left(\int_{0}^{T}\left\|\mathbf{u}_{g}(s)-\mathbf{v}_{g}(s)\right\|_{H^{2}}^{2} d s+\int_{0}^{T}\|\mathbf{w}(s)\|_{H^{2}}^{2} d s\right) \rightarrow 0
\end{aligned}
$$

which completes the proof of the second part in (3.39).
At last, to prove (3.40) one note by (3.16) and (3.17) that

$$
\begin{equation*}
\nabla p_{g}=\mathbf{f}-\mathbf{u}_{g}^{\prime}-\Delta \mathbf{u}_{g}-\left(\mathbf{u}_{g} \cdot \nabla\right) \mathbf{u}_{g} \tag{3.59}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla p=\mathbf{f}-\mathbf{v}^{\prime}-\Delta \mathbf{v}-(\mathbf{v} \cdot \nabla) \mathbf{v} \tag{3.60}
\end{equation*}
$$

By (3.39), we obtain

$$
\begin{equation*}
\int_{0}^{T}\left\|\Delta\left(\mathbf{u}_{g}-\mathbf{v}\right)\right\|^{2} d t \leq \int_{0}^{T}\left\|\mathbf{u}_{g}-\mathbf{v}\right\|_{H^{2}}^{2} d t \rightarrow 0 \tag{3.61}
\end{equation*}
$$

as $\|g\|_{2, \infty} \rightarrow 0$.
Also, by (3.39), the Hölder inequality and the Sobolev inequality, we obtain

$$
\begin{align*}
& \int_{0}^{T}\left\|\left(\mathbf{u}_{g} \cdot \nabla\right) \mathbf{u}_{g}-(\mathbf{v} \cdot \nabla) \mathbf{v}\right\|^{2} d t \\
\leq & 2 \int_{0}^{T}\left\|\left[\left(\mathbf{u}_{g}-\mathbf{v}\right) \cdot \nabla\right] \mathbf{u}_{g}\right\|^{2}+\left\|(\mathbf{v} \cdot \nabla)\left(\mathbf{u}_{g}-\mathbf{v}\right)\right\|^{2} d t \\
\leq & 2 \int_{0}^{T}\left\|\mathbf{u}_{g}-\mathbf{v}\right\|_{H^{2}}^{2} d t\left(\sup _{0 \leq t<T}\left\|\mathbf{u}_{g}(t)\right\|_{H^{1}}^{2}+\sup _{0 \leq t<T}\|\mathbf{v}(t)\|_{H^{1}}^{2}\right) \tag{3.62}\\
\leq & 2 c_{22} \int_{0}^{T}\left\|\mathbf{u}_{g}-\mathbf{v}\right\|_{H^{2}}^{2} d t \rightarrow 0
\end{align*}
$$

for some constant $c_{22}=c_{22}\left(m, M,\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{0}\right\|,\|\mathbf{f}\|\right)$, as $\|g\|_{2, \infty} \rightarrow 0$. By (2.9) note that for all $g \in \Lambda_{s}$,

$$
l_{1}\left\|A_{g}^{\frac{1}{2}} \mathbf{u}_{g}(0)\right\| \leq\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{g}(0)\right\|=\left\|A_{1}^{\frac{1}{2}} \mathbf{v}(0)\right\|
$$

So, for all $g \in \Lambda_{s}$, we can have constant c_{22} depending on $\left\|A_{1}^{\frac{1}{2}} \mathbf{v}(0)\right\|$ rather than on $\left\|A_{1}^{\frac{1}{2}} \mathbf{u}_{g}(0)\right\|$. Next, we want to prove

$$
\int_{0}^{T}\left\|\mathbf{u}_{g}^{\prime}-\mathbf{v}^{\prime}\right\|^{2} d t \rightarrow 0, \text { as } g \rightarrow 1 \text { in } W^{2, \infty}(\Omega)
$$

Before we do that, one should remind that \mathbf{u}_{g} satisfies

$$
\begin{equation*}
\mathbf{u}_{g}^{\prime}=P_{g} \mathbf{f}-P_{g}\left(-\Delta \mathbf{u}_{g}\right)-P_{g}\left(\left(\mathbf{u}_{g} \cdot \nabla\right) \mathbf{u}_{g}\right) \tag{3.63}
\end{equation*}
$$

and \mathbf{v} satisfies

$$
\begin{equation*}
\mathbf{v}^{\prime}=P_{1} \mathbf{f}-P_{1}(-\Delta \mathbf{v})-P_{1}((\mathbf{v} \cdot \nabla) \mathbf{v}) \tag{3.64}
\end{equation*}
$$

Since $\int_{\Omega} \mathbf{f} d \mathbf{x}=0$, by lemma, we obtain

$$
\begin{align*}
\int_{0}^{T}\left\|P_{g} \mathbf{f}-P_{1} \mathbf{f}\right\|^{2} d t & \leq \int_{0}^{T} \frac{4}{m^{2}}\|\nabla g\|_{\infty}^{2}\|\mathbf{f}\|^{2} d t \tag{3.65}\\
& \leq \frac{4}{m^{2}}\|\nabla g\|_{\infty}^{2}\|\mathbf{f}\|_{2,2}^{2} \rightarrow 0
\end{align*}
$$

as $\|g\|_{2, \infty} \rightarrow 0$. By lemma and lemma, we have $\mathbf{u}_{g}=\mathbf{v}_{g}+\nabla q_{g}$ and

$$
P_{g}\left(\Delta \mathbf{u}_{g}\right)=P_{g}\left(\Delta \mathbf{v}_{g}\right) \quad \text { and } \quad P_{1}\left(\Delta \mathbf{u}_{g}\right)=P_{1}\left(\Delta \mathbf{v}_{g}\right)
$$

So, we obtain due to lemma that

$$
\begin{aligned}
& \left\|P_{g}\left(-\Delta \mathbf{u}_{g}\right)-P_{1}(-\Delta \mathbf{v})\right\| \\
\leq & \left\|P_{g}\left(-\Delta \mathbf{u}_{g}\right)-P_{1}\left(-\Delta \mathbf{u}_{g}\right)\right\|+\left\|P_{1}\left(-\Delta \mathbf{u}_{g}\right)-P_{1}(-\Delta \mathbf{v})\right\| \\
= & \left\|P_{g}\left(-\Delta \mathbf{v}_{g}\right)-P_{1}\left(-\Delta \mathbf{v}_{g}\right)\right\|+\left\|P_{1}\left(-\Delta \mathbf{u}_{g}\right)-P_{1}(-\Delta \mathbf{v})\right\| \\
\leq & \frac{2}{m}\|\nabla g\|_{\infty}\left\|-\Delta \mathbf{v}_{g}\right\|+\left\|-\Delta\left(\mathbf{u}_{g}-\mathbf{v}\right)\right\| \\
\leq & \frac{2}{m}\|\nabla g\|_{\infty}\left\|\mathbf{v}_{g}\right\|_{H^{2}}+\left\|\left(\mathbf{u}_{g}-\mathbf{v}\right)\right\|_{H^{2}}
\end{aligned}
$$

which implies

$$
\begin{align*}
& \int_{0}^{T}\left\|P_{g}\left(-\Delta \mathbf{u}_{g}\right)-P_{1}(-\Delta \mathbf{v})\right\|^{2} d t \tag{3.66}\\
\leq & \frac{4}{m^{2}}\|\nabla g\|_{\infty}^{2} \int_{0}^{T}\left\|\mathbf{v}_{g}\right\|_{H^{2}}^{2} d t+\int_{0}^{T}\left\|\mathbf{u}_{g}-\mathbf{v}\right\|_{H^{2}}^{2} d t .
\end{align*}
$$

Therefore, by lemma, (1.6) and (3.39), (3.66) goes to zero as $\|g\|_{2, \infty} \rightarrow 0$.
Next, we get by lemma that

$$
\begin{align*}
& \left\|P_{g}\left(\mathbf{u}_{g} \cdot \nabla\right) \mathbf{u}_{g}-P_{1}(\mathbf{v} \cdot \nabla) \mathbf{v}\right\| \\
= & \left\|P_{g}\left(\mathbf{u}_{g} \cdot \nabla\right) \mathbf{u}_{g}-P_{g}(\mathbf{v} \cdot \nabla) \mathbf{v}\right\|+\left\|P_{g}(\mathbf{v} \cdot \nabla) \mathbf{v}-P_{1}(\mathbf{v} \cdot \nabla) \mathbf{v}\right\| \tag{3.67}\\
\leq & \left\|\left(\mathbf{u}_{g} \cdot \nabla\right) \mathbf{u}_{g}-(\mathbf{v} \cdot \nabla) \mathbf{v}\right\|+\frac{2}{m}\|\nabla g\|_{\infty}\|(\mathbf{v} \cdot \nabla) \mathbf{v}\|
\end{align*}
$$

Also, by (3.62) we obtain

$$
\begin{equation*}
\int_{0}^{T}\left\|\left(\mathbf{u}_{g} \cdot \nabla\right) \mathbf{u}_{g}-(\mathbf{v} \cdot \nabla) \mathbf{v}\right\|^{2} d t \leq 2 c_{22} \int_{0}^{T}\left\|\mathbf{u}_{g}-\mathbf{v}\right\|_{H^{2}}^{2} d t \rightarrow 0 \tag{3.68}
\end{equation*}
$$

as $\|g\|_{2, \infty} \rightarrow 0$. Moreover, by the Hölder inequality, the Sobolev inequality and the classical theory of the Navier-Stokes equations, we obtain

$$
\begin{equation*}
\int_{0}^{T}\|(\mathbf{v} \cdot \nabla) \mathbf{v}\|^{2} d t \leq c \int_{0}^{T}\|\mathbf{v}\|_{H^{2}}^{2}\|\mathbf{v}\|_{H^{1}}^{2} d t \leq c_{23} \tag{3.69}
\end{equation*}
$$

for some constant $c_{23}=c_{23}\left(\left\|A_{1}^{\frac{1}{2}} \mathbf{v}_{0}\right\|,\|\mathbf{f}\|_{2,2}\right)$. Refer chapter 3 in Temma[12] for the details of (3.69). Therefore, from (3.67), (3.68) and (3.69), we have

$$
\begin{equation*}
\int_{0}^{T}\left\|P_{g}\left(\mathbf{u}_{g} \cdot \nabla\right) \mathbf{u}_{g}-P_{1}(\mathbf{v} \cdot \nabla) \mathbf{v}\right\|^{2} d t \rightarrow 0, \text { as }\|g\|_{2, \infty} \rightarrow 0 \tag{3.70}
\end{equation*}
$$

So, from (3.63), (3.64), (3.65), (3.66) and (3.70) we obtain

$$
\begin{equation*}
\int_{0}^{T}\left\|\mathbf{u}_{g}^{\prime}-\mathbf{v}^{\prime}\right\|^{2} d t \rightarrow 0, \quad \text { as } g \rightarrow 1 \text { in } W^{2, \infty}(\Omega) \tag{3.71}
\end{equation*}
$$

Hence, by (3.59), (3.60), (3.61), (3.62) and (3.71), we complete the proof of (3.40).

4. Dirichlet Problem

In this section, we consider for Dirichlet boundary conditions on bounded domain $\Omega \subset R^{2}$. We assume that g satisfies $g(\mathbf{x}) \in C^{\infty}(\Omega)$ and $0<m \leq g(\mathbf{x}) \leq M$, for all $\mathbf{x} \in \Omega$. For a mathematical setting, we use

$$
\begin{aligned}
H_{g} & =C L_{L^{2}(\Omega, g)}\left\{\mathbf{u} \in C_{0}^{\infty}(\Omega) ; \nabla \cdot g \mathbf{u}=0\right\} \text { and } \\
V_{g} & =\left\{\mathbf{u} \in H_{0}^{1}(\Omega, g) ; \nabla \cdot g \mathbf{u}=0\right\}
\end{aligned}
$$

Also, for a orthogonal projection, $P_{g}: L^{2}(\Omega, g) \mapsto H_{g}$, we define $P_{g} \mathbf{u}=\mathbf{v} \in H_{g}$ where $\mathbf{u}=\mathbf{v}+\nabla p$ and p is the solution of $\frac{1}{g}(\nabla \cdot g \nabla) p=\frac{1}{g}(\nabla \cdot g \mathbf{u})$.

For the Poincaré inequality, there exists some constant $c>0$ such that for $\mathbf{u} \in V_{g}$,

$$
\frac{1}{M}\|\nabla \mathbf{u}\|_{g}^{2} \leq\|\nabla \mathbf{u}\|^{2} \leq c\|\mathbf{u}\|^{2} \leq c M\|\mathbf{u}\|_{g}^{2}
$$

Moreover, for lemma, we have better results,

$$
P_{1} P_{g} \mathbf{u}=P_{1} \mathbf{u}, \text { for all } \mathbf{u} \in L^{2}(\Omega)
$$

which implies

$$
\left\langle P_{1} P_{g} \mathbf{u}, \mathbf{w}\right\rangle=\langle\mathbf{u}, \mathbf{w}\rangle, \text { for } \mathbf{u} \in L^{2}(\Omega) \text { and } \mathbf{w} \in H_{1} .
$$

Finally, we can obtain similar results for main theorems.

References

1. P. Constantin and C. Foias, NavierStokes equations, Chicago Lectures in Mathematics, The University of Chiago Press, 1988.
2. R. Courant and D. Hilbert, Methods of Mathematical Physics Vol. 1, Interscience Publ., New York 1989.
3. C. Foias and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures et Appl., 58 (1979), 334-368.
4. O. Ladyzhenskaya, On the dynamical system generated by the navier-Stokes equations, Zapiskii of nauchnish seminarovs LOMI, 27 (1972), 91-114; English tranlation in J. of Soviet Math., 3 (1975).
5. J. Roh, g-NavierStokes equations, Thesis, University of Minnesota, 2001.
6. J. Roh, Dynamics of the g-Navier-Stokes equations, J. Differential equations, 211 (2005), 452-484.
7. H. Bae and J. Roh, Existence of solutions of the g-Navier-Stokes equations, Taiwanese Journal of Mathematics, 8(1) (2004), 85-102.
8. H. Kwean and J. Roh, The global attractor of the 2D g-Navier-Stokes equations on some unbounded domains, Commun. Korean Math. Soc., 20(4) (2005), 731-749.
9. M. Kwak, H. Kwean and J. Roh, The dimension of attractor of the 2D g-NavierStokes equations, Journal of Mathematical Analysis and Applications, 315 (2006), 436-461.
10. G. R. Sell and Y. You, Dynamics of evolutionary equations, Applied Mathematical Sciences, 143. Springer-Verlag, New York, 2002.
11. R. Temam, NavierStokes equations: theory and numerical analysis, 1977.
12. R. Temam, NavierStokes equations and Nonlinear functional analysis, 1983.

Jaiok Roh
Department of Mathematics,
Hallym University,
Chuncheon,
Korea
E-mail: joroh@dreamwiz.com

[^0]: Received May 18, 2007, accepted July 21, 2007.
 Communicated by J. C. Yao.
 2000 Mathematics Subject Classification: Primary 34C35, 35Q30, 76D05; Secondary 35K55.
 Key words and phrases: g-Navier-Stokes equation, Weak solution, Strong solution, Convergence.

