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SPLITTING EXTRAPOLATIONS FOR SOLVING BOUNDARY
INTEGRAL EQUATIONS OF MIXED BOUNDARY CONDITIONS
ON POLYGONS BY MECHANICAL QUADRATURE METHODS

Jin Huang, Zi Cai Li*, Tao Lü and Rui Zhu

Abstract. To solve the boundary integral equations (BIE) of mixed bound-
ary conditions, we propose the mechanical quadrature methods (MQM) using
specific quadrature rule to deal with weakly singular integrals. Denote hm as
the mesh width of a curved edge Γm (m = 1, ..., d) of polygons. Then the
multivariate asymptotic expansions of solution errors are found to be O(h3),
where h = max1≤m≤d hm. Hence, by using the splitting extrapolation meth-
ods (SEM), the high convergence rates as O(h5) can be achieved. Moreover,
numerical examples are provided to support our theoretical analysis.

1. INTRODUCTION

In this paper we develop mechanical quadrature methods (MQM) and splitting
extrapolation methods (SEM) for solving boundary integral equations (BIE) of the
mixed boundary value problems:

(1.1)




∆u = 0, in Ω,

αmu+ βm
∂u

∂n
= g, on Γm, m = 1, ..., d,

where Ω ⊂ �2 is a curved polygon with the edges Γ = ∪d
m=1Γm, and the angles

between Γm and Γm+1 are in (0, 2π]. We assume that g is a piecewise continuous
function on Γ, and αm and βm are constants on Γm.
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By Green’s formula, Eq (1.1) is converted into BIE,

(1.2) −
∫

Γ

∂u(x)
∂nx

log |y − x|dsx +
∫

Γ
u(x)

∂

∂nx
log |y − x|dsx = θ(y)u(y),

where |y − x|2 = (y1 − x1)2 + (y2 − x2)2 and θ(y) is a constant dependent on
y ∈ Γ. If one of u(x) and ∂u(x)

∂nx
is given by the boundary conditions of (1.1), then

the other can be solved by (1.2). Once both ∂u(x)
∂nx

and u(x) (x ∈ Γ) are known, the
solution u(y) (y ∈ Ω) can be calculated by

(1.3) u(y) =
1
2π

∫
Γ
u(x)

∂

∂nx
log |y − x|dsx − 1

2π

∫
Γ

∂u(x)
∂nx

log |y − x|dsx.

It is known [4, 9, 17, 24] that if all βm = 0 on Γm (m = 1, ..., d), then (1.1)
becomes a pure Dirichlet problem, and Eq (1.2) is the weakly singular BIE system
of the first kind, whose solution exists and is unique as CΓ �= 1, where CΓ is the
logarithmic capacity (i.e., the transfinite diameter). When Γ is a circle, CΓ is just
the diameter. If all αm = 0 on Γm (m = 1, ..., d), then (1.1) becomes a pure
Neumann problem, and Eq (1.2) is the weakly singular BIE system of the second
kind, whose solution exists if and only if

d∑
m=1

∫
Γm

g/βmds = 0.

Moreover, if αmβm > 0 on Γm (m = 1, ..., d), or both the Dirichlet and the Neuman
boundary conditions are assigned in different Γm (m = 1, ..., d), then (1.1) has a
unique solution, and (1.2) is the weakly singular mixed BIE system.

Galerkin and collocation methods [1, 2, 5, 18, 19, 25] are often applied to solve
BIEs, but they are complicated for calculating discrete matrix. Using Galerkin
methods, Rüde and Zhou [18] established multi-parameter extrapolation methods
for BIE system of the second kind on polygonal domains. Assuming that Ω is a
bounded and simply connected open region with a smooth boundary Γ, and the
inverse matrix of discrete equations exists and is uniformly bounded, Xu and Zhao
[24] established an extrapolation method for solving BIE from the boundary value
problem of the third kind. Assuming that Ω is a bounded simply-connected domain,
and that Γm (m = 1, ..., d) are straight lines or circular arcs, Symm [4] applied
collocation methods to solve (1.2). In this paper, firstly, taking hm as the mesh
width of a curved edge Γm (m = 1, ..., d) of the polygon and using quadrature
rules for weakly singular integrals, we construct the mechanical quadrature methods
(MQM) for solving BIE of mixed boundary conditions. Secondly, we obtain the
multivariate asymptotic expansions of the solutions. Hence, once discrete equations
with coarse grids of Γm (m = 1, ..., d) are solved in parallel, the accuracy of
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approximate solutions can be greatly improved by the splitting extrapolation methods
(SEM). Finally, a posteriori error estimates as self-adaptive algorithms are derived.
Obviously, the mechanical quadrature methods (MQM) are very simple, because of
no needs of calculating any integrals for discrete matrix. In this paper, we will
provide their error analysis.

SEM [11, 13, 14, 16] based on multivariate asymptotic expansions of the errors
is a very effective parallel algorithm, because it possesses a high order of accu-
racy, good stability and almost optimal computational complexity. Since Lin and
Lü published the first SEM paper [14] in 1983, SEM has been applied to many
problems, such as the multidimensional numerical integrations [11, 13], finite dif-
ferential methods and finite element methods [13]. In the paper, MQM and SEM
are also applied to solve BIE of mixed boundary conditions on polygons.

This paper is organized as follows. In Section 2 we discuss the weakly singular
BIE. In Section 3, we establish MQM and prove its convergence. In Section 4, the
multivariate asymptotic expansions of errors are derived, and the SEM is described.
In Section 5, numerical examples are provided.

2. WEAKLY SINGULAR BIE

Define boundary integral operators on Γm,

(2.1) (Aqmwm)(y) = − 1
2π

∫
Γm

wm(x) log |y − x|dsx, y ∈ Γq, m, q = 1, ..., d,

and

(2.2) (Kqmwm)(y)=− 1
2π

∫
Γm

wm(x)
∂

∂nx
log |y−x|dsx, y∈Γq, m, q=1, ..., d,

where

wm(x) =




∂u(x)
∂n

, x ∈ Γm, if βm = 0 on Γm,

u(x), x ∈ Γm, if βm �= 0 on Γm.

Then (1.2) can be converted into a matrix operator equation

(2.3) βθW + αAW + βKW = F,

where θ =diag(θ1(y), ..., θd(y)), A = [Aqm]dq,m=1, K = [Kqm]dq,m=1, W = (w1(x),
..., wd(x))T , α =diag(α1(y), ..., αd(y)), β =diag(β1(y), ..., βd(y)) and F = (f1(y),
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..., fd(y))T with

fq(y) =




θq(y)gq(y) +
d∑

m=1

(Kqmgm)(y), if βq = 0,

d∑
m=1

(Aqmgm)(y), if βq �= 0, q = 1, ..., m.

Assume that Γm can be described by the parameter mapping

(2.4) xm(s) = (xm1(s), xm2(s)) : [0, Tm] → Γm

with |x′
m(s)|2 = |x′

m1(s)|2 + |x′
m2(s)|2 > 0, where Tm is the measurable length of

Γm. Using the trigonometric transformation [20]

(2.5) s = Tmϕp(t) : [0, 1] → [0, Tm], p ∈ N,

with

(2.6) ϕp(t) = ϑp(t)/ϑp(1) and ϑp(t) =
∫ t

0
(sinπt)pds,

the operators (2.1) and (2.2) are also converted into integral operators on [0,1]

(2.7) (Āq0w̄q)(t) = −1
π

∫ 1

0
zq(t) ln |2e−1/2 sinπ(t− τ)|w̄q(τ)dτ, t ∈ [0, 1),

(2.8) (Ā0qw̄q)(t) = −1
π

∫ 1

0

zq(t) ln | x̄q(t)− x̄q(τ)
2e−1/2 sinπ(t− τ)

|w̄q(τ)dτ, t ∈ [0, 1),

(2.9) (Āqmw̄m)(t)=−1
π

∫ 1

0
zq(t) ln |x̄q(t)−x̄m(τ)|w̄m(τ)dτ, q �=m, t∈ [0, 1),

and

(2.10) (K̄qmw̄m)(t) = −1
π

∫ 1

0
zq(t)k̃qm(t, τ)w̄m(τ)dτ, t ∈ [0, 1),

where w̄m(t) = wm(x̄m(t))Tqϕ
′
p(t)|x̄′m(t)| and x̄m(t) = xm(Tmϕp(t)). In (2.7)-

(2.10) |x̄q(t) − x̄m(τ)|2 = (x̄q1(t) − x̄m1(τ))2 + (x̄q2(t) − x̄m2(τ))2 and

(2.11) zq(t) =




1, as βq = 0,

Tqϕ
′
p(t)|x̄′q(t)|, as βq �= 0.
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In (2.10) k̃qm(t, τ) results from ∂
∂nx

log |y − x| under the parameter mapping (2.4)
and the trigonometric transformation (2.5). Then Eq (2.3) can be expressed by

(2.12) (βE + αĀ0 + αĀ1 + αĀ2 + βK̄)W̄ = F̄ ,

where Ā0 =diag(Ā10, ..., Ād0), Ā1 =diag(Ā01, ..., Ā0d), Ā2 = [Āqm]dq,m=1, and
K̄ = [K̄qm]dq,m=1 are matrix operators. In (2.12) W̄ = (w̄1(t), ..., w̄d(t))T and
F̄ = (f̄1(t), ..., f̄d(t))T with

f̄q(t) =




2gq(x̄q(t)) +
d∑

m=1

(K̄qmḡm)(t), as βq = 0,

((Āq0 + Ā0q)ḡq)(t) +
d∑

m=1

(Āqmḡm)(t), as βq �= 0,

where ḡm(t) = gm(x̄m(t))Tqϕ
′
p(t)|x̄′q(t)|. Let aq0(t, τ), a0q(t, τ), aqm(t, τ) and

kqm(t, τ) be the kernels of the integral operators Āq0, Ā0q, Āqm and K̄qm, respec-
tively. Then the following results hold.

(1) The solutions of (2.3) are equivalent to those of (2.12).
(2) aq0(t, τ) is a logarithmically singular function on t ∈ [0, 1] and τ ∈ [0, 1].

(3) a0q(t, τ) is a continuous function [11, 15, 25] on t ∈ [0, 1] and τ ∈ [0, 1].

(4) For Γq ∩ Γm = ∅ (i.e., |q −m| �= 1, or d − 1), aqm(t, τ) and kqm(t, τ) are
continuous functions [1, 5, 11, 22] on t ∈ [0, 1] and τ ∈ [0, 1].

(5) Although ∂uq(x)
∂n at an angular point x = Γq ∩ Γm has the singularity, w̄q(t)

(t ∈ [0, 1]) is a smooth function [11, 21, 22] under (2.4)-(6).

Lemma 1. If Γq ∩ Γm �= ∅ (i.e., |q −m| = 1, or d − 1) and p ≥ 3, then
(1) for βq = 0, ãqm(t, τ) (= sinp(πt)aqm(t, τ)) and ∂n

∂tn ãqm(t, τ) (n = 1, 2, 3) are
continuous on [0, 1]2, and (2) for βq �= 0, aqm(t, τ) and kqm(t, τ) are continuous
on [0, 1]2.

Proof. Without loss of generality, we assume that the origin (0, 0) = Γm ∩ Γq

of coordinates is a vertex with an interior angle θq.
(1) Firstly, for θq ∈ (0, π) ∪ (π, 2π), using the cosine theorem[7] and (2.9) we

get

ãqm(t, τ) = sinp(πt)aqm(t, τ) = −(2π)−1 sinp(πt) ln[a2
0(t) + a2

1(τ)

−2a0(t)a1(τ) cosθq] = −(2π)−1 sinp(πt){ln(a2
0(t) + a2

1(τ))

− ln[1 − 2a0(t)a1(τ) cosθq/(a2
0(t) + a2

1(τ))]},
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where a0(t) = |xm(Tmϕp(t))| and a1(τ) = |xq(Tqϕp(τ))|. Also without loss of
generality, we assume a0(0) = a1(0) = 0. Since

|2a0(t)a1(τ) cos θq/(a2
0(t) + a2

1(τ))| ≤ | cos θq| < 1,

ãqm(t, τ) will be continuous if we can prove that a(t, τ) = sinp(πt) ln(a2
0(t) +

a2
1(τ)) is a bounded function on [0, 1]2. In fact, from ϕ

(j)
p (t)|t=0,1 = 0 (j = 1, ..., p),

we easily get a(j)
i (t)|t=0,t=1 = 0 (j = 1, ..., p, i = 0, 1). Thus we need only prove

that a(t, τ) is bounded on [ε/2, ε]2, ∀ε > 0. For (t, τ) ∈ [ε/2, ε]2, it always holds
that

|a(t, τ)| = O(εp| lnε|) → 0, as ε→ 0,

which means that a(t, τ) is bounded. Similarly, from

| ∂
∂τ
a(t, τ)| = | sinp(πt)

2a1(τ)x̄
′
q(τ)ϕ

′
p(τ)

(a2
0(t) + a2

1(τ))
| = O(εp), as ε→ 0

and

| ∂
2

∂τ2
a(t, τ)| = O(εp−1), | ∂

3

∂τ3
a(t, τ)| = O(εp−2), as ε→ 0, p ≥ 3,

we can prove that ∂n

∂tna(t, τ) (n = 1, 2, 3) are continuous on [0, 1]2.
Secondly, for θq = π, we have

ãqm(t, τ) = − sinp(πt)(ln[a0(t) + a1(τ)])/π.

Following the above proof, we can prove that ∂n

∂tn ãqm(t, τ) (n = 1, 2, 3) are con-
tinuous on [0, 1]2 for p ≥ 3.

(2) Firstly, for θq ∈ (0, π)∪ (π, 2π), we get

(2.13) aqm(t, τ) = −z̄q sinp(πt) ln[a2
0(t) + a2

1(τ) − 2a0(t)a1(τ) cosθq ],

where z̄q = Tq|x̄′q(t)|/ϑp(1)/(2π). For θq = π,

aqm(t, τ) = −2z̄q sinp(πt) ln[a0(t) + a1(τ)].

Hence, for (t, τ) ∈ [ε/2, ε]2 we have

|aqm(t, τ)| = O(εp| lnε|) → 0, as ε→ 0.

Secondly, using the cosine theorem[7] and (2.10) we get

kqm(t, τ) =
−2z̄q sinp(πt)k̃(t, τ)

a2
0(t) + a2

1(τ)− 2a0(t)a1(τ) cos θq
, for θq ∈ (0, π)∪ (π, 2π),
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where k̃(t, τ) = (x′q2(Tqϕp(τ))(x̄m1(τ)−x̄q1(t))−x′q1(Tqϕp(τ))(x̄m2(τ)−x̄q2(t))),
and

kqm(t, τ) = −2z̄q
sinp(πt)k̃(t, τ)
|a0(t) + a1(τ)|2 , forθq = π.

Hence, for (t, τ) ∈ [ε/2, ε]2 we have

|k(t, τ)| = O(ε) → 0, as ε→ 0.

Consequently, we can conclude that aqm(t, τ) and kqm(t, τ) are continuous on
[0, 1]2.

3. MECHANICAL QUADRATURE METHOD

Let hm = 1/nm (nm ∈ N, m = 1, ..., d) be mesh widths and tj = τj =
(j−1/2)hm (j = 1, ..., nm) be nodes. For an integral operator D with continuous
kernel as Ā0q, Āqm or K̄qm, by the midpoint or the trapezoidal rule, we construct
the Nyström approximation [8]

(3.1) (Dhw̄m)(t) = hm

nm∑
j=1

d(t, τj)w̄m(τj), t ∈ [0, 1], q, m = 1, ..., d,

which has the following error bounds [8, 21]

(3.2) (Dw̄m)(t)− (Dhw̄m)(t) = O(h2l
m), l ∈ N.

For the weakly singular operators Āq0, by the quadrature formula [20], we can also
construct the Fredholm approximation,

(3.3)

(Āh
q0w̄q)(ti)

= −zq(ti)hq




nm∑
j=1,t �=τj

ln |2e−1/2 sinπ(ti−τj)zq(τj)|w̄q(τj)


/π

−hq | ln |2πe−1/2hq/(2π)|zq(ti)w̄q(ti)/π, i = 1, ..., nq,

which has the following error bounds [20, 21]

(3.4)

(Āh
q0w̄q)(ti) − (Āq0w̄q)(ti)

=
−2
π

2l−1∑
µ=1

ζ ′(−2µ)
(2µ)!

[zq(ti)w̄q(ti)](2µ)h2µ+1
q +O(h2l

q ),
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where ζ ′(t) is the derivative of the Riemann Zeta function.
Consider the approximate equations of (2.12)

(3.5) (βEh + αĀh
0 + αĀh

1 + αĀh
2 + βK̄h)W̄h = F̄h,

where W̄h = (W̄h
1 , ..., W̄

h
d )T , W̄h

m = (w̄m(t1), ..., w̄m(tnm))T , Āh
0 =diag(Āh

10, ...,

Āh
d0), Ā

h
q0 = [aq0(tj, τi)]

nq

j,i=1, Ā
h
1 =diag(Āh

01, ..., Ā
h
0d), Ā

h
0q = [a0q(tj, τi)]

nq

j,i=1,

Āh
2 = [Āh

qm]dq,m=1, Ā
h
qm = [aqm(tj, τi)]

nq,nm

j,i=1 , K̄
h = [K̄h

qm]dq,m=1, K̄
h
qm = [kqm(tj,

τi)]
nq,nm

j,i=1 , F̄
h = (F̄h

1 , ..., F̄
h
d )T , F̄h

q = (f̄h
q1, ..., f̄

h
qnq

)T and

(3.6) f̄h
qj =




2ḡq(tj) +
d∑

m=1

(K̄h
qmḡm)(tj), as βq = 0,

((Āh
q0 + Āh

0q)ḡq)(tj) +
d∑

m=1

(Āh
qmḡm)(tj), as βq �= 0.

Obviously, (3.6) is a linear equation system with n−unknowns, where n = n1 +
...+ nd. Once W̄h is solved by (3.6), the solution u(y) (y ∈ Ω) can be computed
by

(3.7)
u(y) =

1
2π

d∑
m=1

nm∑
i=1

hm[um(x̄(ti))k̂m(y, x)

−∂u(x̄(ti))
∂nx

ln |y − x̄m(ti)|]|x̄′m(ti)|,

where

k̂m(y, x) =
x̄′m2(ti)(x̄m1(ti) − y1) − x̄′m1(ti)(x̄m2(ti) − y2)

[(x̄m1(ti) − y1)2 + (x̄m2(ti) − y2)2]|x̄′m(ti)| .

To show a unique solution existing for (3.6), we first prove that the opera-
tor βmE

h + αmĀ
h
m0 is invertible. Define Cm =diag(zm(t1), ..., zm(tnm)) with

zm(tj) > 0 (j = 1, ..., nm) and Dm = −hm/πcircular (ln(e−1/2hm), ln(2e−1/2

sin(πhm)), ..., ln(2e−1/2 sin((nm − 1)πhm))). From (3.3), we get Āh
m0 = CmDm.

Lemma 2. The eigenvalues λk (k = 1, ..., nm) of Dm are positive, and there
exists a positive constant c such that λ k > c for nm < 4, or λk > 1/(2πnm) for
nm ≥ 4.

Proof. Since Dm is a symmetric circulant matrix, we have λk = F (εk) with

F (z)=−hm[ln |he−1/2|+
nm−1∑
j=1

zj ln |2e−1/2 sin(jπ/nm)|], and εk =exp(2πki/nm).



Splitting Extrapolations for Solving Boundary 2349

If nm < 4, then λk > c can be easily verified by direct calculations. On the other
hand, if nm ≥ 4, then λk is estimated in two steps:

Step 1. Consider k = 0. Let

(3.8)

λ′0 = ln |hme
−1/2|+

nm−1∑
j=1

ln |2e−1/2 sin(jπ/nm)|

= −nm/2− lnnm + ln |2nm−1
nm−1∏
j=1

sin(jπ/nm)|.

We will discuss the following two cases.

Case 1. For nm = 2l− 1, by the inequality

(3.9) 2x/π < sinx < x, if 0 < x < π/2,

we have

22l−2[(l− 1)!]2

(2l− 1)2l−2
<

l−1∏
j=1

sin2 jπ

2l− 1
=

nm−1∏
j=1

sin
jπ

nm
<
π2l−2[(l− 1)!]2

(2l− 1)2l−2
.

Using Stirling’s rule n! =
√

2πn(n/e)n exp(θ/(12n)) (0 < θ < 1), we obtain

22l−2[(l− 1)!]2

(2l− 1)2l−2
> 2πe2−2l(l − 1)(1− 1/l)2l−2eθ/[6(l−1)]

and

π2l−2[(l− 1)!]2

(2l− 1)2l−2
< 2π(

π

2e
)2l−2(l− 1)eθ/[6(l−1)] = 1/B.

Also since lnB < ln |2nm−1
∏nm−1

j=1 sin(jπ/nm)|−1, we get

λ0 = −λ′0/(πnm) > [3/2− lnπ − 1/(2l− 1)− 1/[6(2l− 1)(l− 1)]/π,

which implies that λ0 > 17/(150π) for l ≥ 3.

Case 2. For nm = 2l, from 0 < (l− 1)/(2l)< 1/2 and (3.9), we obtain

[(l− 1)!]2

l2l−2
<

l−1∏
j=1

sin2 jπ

2l
=

nm−1∏
j=1

sin
jπ

nm
<
π2l−2[(l− 1)!]2

(2l)2l−2
.
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Using

π2l−2[(l− 1)!]2

(2l)2l−2
= 2lπ(

π

2
)2l−2e(−2l+θ/6l)

and the above inequality, we have

λ0 = −λ′0/(πnm) = [1/2 + 1/nm lnnm + 1/nm ln |2nm−1

nm−1∏
j=1

sin(jπ/nm)|−1]/π > [3/2− lnπ]/π,

which implies that λ0 > c > 0 as nm ≥ 4.

Step 2. To estimate λk, k = 1, ..., nm − 1, we write

(3.10)

λ
′
k = ln |e−1/2/nm| +

nm−1∑
j=1

cos(2kjπ/nm) ln |2e−1/2 sin(jπ/nm)|

= − lnnm +
nm−1∑
j=1

cos(2kjπ/nm) ln |2 sin(jπ/nm)|.

Using the expansions of the ψ−special function [7]

ψ(k/n) = −γ − lnn− π/2 cot(kπ/n) +
n∑

j=1

cos(2kjπ/n) ln |2 sin(jπ/n)|

and

ψ(z) = −γ − 1/z + z

∞∑
j=1

1/[j(j + z)],

we obtain
nm−1∑
j=1

cos(2kjπ/nm) ln |2 sin(jπ/nm)|

= lnnm + π/2 cot(kπ/nm) − nm/k + k/nm

∞∑
j=1

[j(j + k/nm)]−1

and

(3.11)
λ

′
k = π/2 cot(kπ/nm)− nm/k + k/nm

∞∑
j=1

[j(j + k/nm)]−1,

1 ≤ k ≤ nm − 1,
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where γ is the Euler’s constant. Substituting

cot(kπ/nm) = nm/(kπ)− kπ/(3nm)− 1/45(kπ/nm)3 − ...

−22jBj/(2j)!(kπ/nm)2j−1 − ...

into (3.11), we have

λ
′
k = −nm/(2k)− kπ2/(6nm) − ...− 22j+1Bj/(2j)!(kπ/nm)2j−1π

−...+ k/nm

∞∑
j=1

[j(j + k/nm)]−1

and

λk = {1/(2k) + kπ2/(6n2
m) + ...+ 22j+1Bj/(2j)!(kπ/nm)2j−1π/nm

+ · · · −k/n2
m

∞∑
j=1

[j(j + k/nm)]−1}/π,

where Bj is the Bernoulli number. Moreover, since

kπ2/(6n2
m)−k/n2

m

∞∑
j=1

[j(j+k/nm)]−1>k/n2
m{

∞∑
j=1

[j−2−(j(j + 1/2))−1]}>0,

we obtain

(3.12) λk > 1/(2πk) + 1/90(k/nm)3/nm + ... > 1/(2πk) > 1/(2πnm).

From the results of Step 1 and Step 2, the proof of Lemma 2 is completed.
From Lemma 2 we have the following corollary.

Corollary 1. (1) The conditional number of Dm isO(nm). (2) Dm is invertible
and ||(Dm)−1|| = O(nm), where ‖ · ‖ denotes the spectral norm.

Lemma 3. (1) If βm = 0, then αmA
h
m0 is invertible and

(3.13) ||(αmA
h
m0)

−1|| = O(nm).

(2) If βm �= 0 and βmαm ≥ 0, then βmE
h+αmĀ

h
m0 is invertible and (βmE

h+
αmĀ

h
m0)

−1 is uniformly bounded, i.e.,

(3.14) ||(βmE
h + αmĀ

h
m0)

−1|| ≤ |β−1
m |.

Proof. (1) If βm = 0, then αmA
h
m0 = αmDm and (3.13) holds.
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(2) If βm �= 0 and βmαm ≥ 0, from Ah
m0 = CmDm and [6,10], we obtain

λ(Āh
m0) ≥ λmin(Āh

m0) > 0 and | λi(βmE
h + αmĀ

h
m0)| = |βm+ αmλ(Āh

m0)|
≥ |βm|. Then (3.13) holds.

Corollary 2. If βm �= 0 and βmαm ≥ 0, then βEh + αĀh
0 =diag(β1E

h +
α1Ā

h
10, ..., βdE

h+αdĀ
h
d0) is invertible and ||(βE h+αĀh

0 )−1||≤1/min1≤m≤d |βm|.

Using Lemma 3, Eqs (3.5) and (3.6) are equivalent to

(3.15) (Eh + (βEh + αĀh
0 )−1(αĀh

1 + αĀh
2 + βK̄h))W̄h = (βEh + αĀh

0)−1F̄h.

Let Shm =span{ej(t), j = 1, ..., nm} ⊂ C[0, 1] denote a piecewise linear function
subspace with the basis points {t i}nm

i=1, where {ej(t), j = 1, ..., nm} are the basis
functions satisfying ej(ti) = δji. Define a prolongation operator Ihm : �nm → Shm

satisfying

(3.16) Ihmv =
nm∑
j=1

vjej(t), ∀v = (v1, ..., vnm) ∈ �nm,

and a restricted operator Rhm : C[0, 1] → �nm satisfying

(3.17) Rhmv = (v(t1), ..., v(tnm)) ∈ �nm, ∀v ∈ C[0, 1].

We have the following lemma.

Lemma 4. If βm = 0, then the operator sequence, {I hm(Āh
m0)

−1RhmĀm0 :
C3[0, 1] → C[0, 1], m = 1, ..., d}, is uniformly bounded and convergent to the
embedding operator I.

Proof. For any given v ∈ C3[0, 1], we construct an operator equation

Ām0v = f,

and its approximate equation: find vh ∈ �nm such that

(Āh
m0v

h)(ti) = f(ti) (i = 1, ..., nm).

Let e ∈ �nm with e(tj) = vh(tj) − v(tj) (j = 1, ..., nm). Then we have the linear
equations

Āh
m0e = ε,
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where eT = (e(t1), ..., e(tnm)) and εT = (ε(t1), ..., ε(tnm)). From (3.3) we obtain

ε(ti) =
∫ 1

0
am0(ti, τ)v(τ)dτ

−

 nm∑

j=1,j �=i

hmam0(ti, tj)v(tj)+c0hm ln(e−1/2/nm)v(ti)


 = O(h3

m).

Thus it implies that ε|| = O(h3
m) and

||e|| = ||(Āh
m0)

−1Rhmε|| = ||Rhm(Ām0)−1f − (Āh
m0)

−1Rhmf ||

= ||Rhmv − (Āh
m0)

−1RhmAm0v|| = O(h2
m).

Since IhmRhm → I, the proof of Lemma 4 is completed.

Corollary 3. Let the Nystrom approximationD h be defined by (3.1). (1) For
βm = 0 and Γq ∩ Γm = ∅, we have

(3.18) Ihm(Āh
m0)

−1RhmDh c.c→ (Ām0)−1D, in C[0, 1] → C[0, 1].

Also Eh + Ihm(Āh
m0)

−1RhmDh is invertible, and its inverse operator is uniformly
bounded.

(2) For βm = 0 and Γq ∩ Γm �= ∅, we have

(3.19) Ihm(Āh
m0)

−1RhmÃh
qm

c.c→ (Ām0)−1Ãqm, in C[0, 1] → C[0, 1].

Also Eh+Ihm(Ahm
00 )−1RhmÃh

qm is invertible, and its inverse operator is uniformly
bounded, where Ãh

qm is the Nyström approximation of the integral operator Ãqm

with kernel ãqm(t, τ) = sinp(πt)aqm(t, τ).
(3) For βm �= 0, we have

(3.20)
Ihm(βmE

h + αmĀ
h
m0)

−1RhmDh c.c→ (βmE + αmĀm0)−1D,

in C[0, 1] → C[0, 1].

Also Eh + Ihm(βmE
h +αmĀ

h
m0)

−1RhmDh is invertible, and its inverse operator
is uniformly bounded.

Proof. If βm = 0 and Γq∩Γm = ∅, obviously, the kernel d(t, τ) of the operator
D and its derivatives of higher order are continuous [5, 11, 15, 21, 25]. Since

||Ihm(Āh
m0)

−1RhmDh||0,0 ≤ ||Ihm(Āh
m0)

−1RhmĀm0||0,3||(Ām0)−1Dh||3,0,



2354 Jin Huang, Zi Cai Li, Tao Lü and Rui Zhu

by Lemma 4 and (Ām0)−1Dh ∈ L(C[0, 1], C3[0, 1]), there exists a constant c such
that

||(Ām0)−1Dh||3,0 ≤ c, and ||Ihm(Āh
m0)

−1RhmĀm0||0,3 ≤ c,

where || · ||m2,m1 is the norm of the linear bounded operator space L(Cm1 [0, 1],
Cm2 [0, 1]). Using the results of [3, 6, 12], the operator sequence {(Ām0)−1Dh :
C[0, 1] → C3[0, 1]}must be collectively compact convergent to (Ām0)−1D. Hence,
we complete the proof of (1). Similarly, we can prove (2) and (3).

Define the subspace

C0[0, 1] = {v(t) ∈ C[0, 1] : v(t)/ sin3(πt) ∈ C[0, 1]}
of the space C[0, 1] with the norm ||v||∗ = max0≤t≤1 |v(t)/ sin3(πt)|. Replacing
(Mh)−1 = (βEh + αĀh

0 )−1, αĀh
1 , αĀ

h
2 , and βK̄h by (M̂h)−1 = Ih(Mh)−1Rh,

Âh
1 = IhαĀh

1R
h, Âh

2 = IhαĀh
2R

h, and K̂h = IhβK̄hRh, respectively, we obtain
the operator

L̂h = Ih(Mh)−1Rh(αĀh
1 + αĀh

2 + βK̄h)Rh,

mapping V to∏d
m=1 S

hm , where Rh = diag(Rh1, ..., Rhd), Ih = diag(Ih1, ..., Ihd),
and

V =




(C[0, 1])d, as βm �= 0, m = 1, ..., d;

(C[0, 1])k × (C0[0, 1])d−k, as βim �= 0, m = 1, ..., k, im ∈ {1, ..., d},
(C0[0, 1])d, as βm = 0, m = 1, ..., d.

Now consider the operator equation

(3.21) (Eh + L̂h)Ŵh = F̂h

with F̂h = Ih(βEh + αĀh
0)−1RhF̄h. Obviously, if Ŵh = IhW̄h is a solution of

(3.21), then RhŴh must be a solution of (3.15); conversely, if W̄h is a solution of
(3.15), then IhW̄h must be a solution of (3.21). Below we prove that there exists
a unique solution Ŵh in (3.21) such that Ŵh converges to W̄ .

Theorem 1. The operator sequence {L̂h} is collectively compact convergent
to L = (βE + αĀ0)−1(αĀ1 + αĀ2 + βK̄) in V , i.e.,
(3.22) L̂h c.c→ L.

Proof. Let Θ = {v : ||v|| ≤ 1, v ∈ V} be a unit ball, and H = {H (1), H (2), ...}
be a mesh sequence, where H (n) = {h(n)

1 , ..., h
(n)
d } denotes a multi-parameter step
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size with max1≤m≤d h
(n)
m → 0 as nm → ∞. For an arbitrary sequence {Zh =

(Zh
1 , ..., Z

h
d) : h ∈ H} ⊂ Θ satisfying

max
1≤m≤d,0≤t≤1

|Zh
m(t)/ sin3(πt)| ≤ 1,

we conclude that there exists a convergent subsequence in {L̂hZh}. Firstly, for
βq = 0 (q = 1, ..., d), since

(3.23)
||Ih1(Āh

10)
−1RhmAh

12||0 = ||Ih1(Āh
00)

−1RhmÃh
12(Z

h
m)/ sin3(πt)||0

≤ ||Ih1(Āh
10)

−1RhmĀ10||0,3||Ā−1
10 Ã

h
12||3,0||Zh

m||∗,

from Corollary 3 we can prove that there exists a convergent subsequence in

{Ih1(Āh
10)

−1RhmAh
12Z

h
m} ⊂ C0[0, 1] ⊂ C[0, 1]

such that

Ih1(Āh
10)

−1RhmĀh
1m

c.c→ (Ā10)−1Ā1m, in L(C[0, 1], C[0, 1]), for 2 < m ≤ d,

and

Ih1(Āh
10)

−1RhmĀh
01

c.c→ (Ā10)−1Ā01, in L(C[0, 1], C[0, 1]).

Also since C0[0, 1] ⊂ C[0, 1], we can find an infinite subsequence H1 ⊂ H such
that the first component of L̂hZh,

(3.24)
d∑

m=1

Ih1(β1E
h1 + α1Ā

h
10)

−1Rh1(α1Ā
h
01 + α1Ā

h
1m + β1K̄

h
1m)Rh1Zh

m

converges as h → 0, where h ∈ H1 (see [3, 6, 11, 12]). Based on the above
methods, we may find a subsequence, Hd ⊂ Hd−1 ⊂ ... ⊂ H1 ⊂ H, such that
{L̂hZh, h ∈ Hd} is a convergent sequence in V , which implies

(3.25) L̂h p→ L,

where the notation p→ denotes the pointwise convergence. From [3, 6, 11, 12], we
conclude that L̂h c.c→ L in V .

Secondly, if βq �= 0 (q = 1, ..., d), from Corollary 3 we obtain

Ih1(βqE
hq + αqĀ

h
q0)

−1RhqαqĀ
h
0q

c.c→ (βqE + αqĀq0)−1αqĀ0q,

Ihq (βqE
hq + αqĀ

h
q0)

−1RhqαqĀ
h
qm

c.c→ (βqE + αqĀq0)−1αqĀqm
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and

Ihq(βqE
hq + αqĀ

h
q0)

−1RhqβqK̄
h
qm

c.c→ (βqE + αqĀq0)−1βqK̄qm.

Using the diagonal process, we can also find a subsequence Hd ⊂ H such that
(3.25) converges as h→ 0. Thus we conclude L̂h c.c→ L in V , too.

Finally, if βim �= 0 (m = 1, ..., k, im ∈ {1, ..., d}), the proof of L̂h c.c→ L in V
is similar.

From Theorem 1 we have the following corollary.

Corollary 4. ([3, 12]). Assume that (1.2) has a unique solution and h =
max1≤m≤d hm is sufficiently small, then there exists a unique solution Ŵh in
(3.21), and Ŵh has the following error bound under the norm of V ,

(3.26) ||Ŵh − W̄ || ≤ ||(I + L)−1|| ||(L̂
h − L)F̂ || + ||(L̂h − L)L̂hW̄ ||

1− ||(I + L̂h)−1(L̂h − L)L̂h|| .

4. MULTIVARIATE ASYMPTOTIC EXPANSIONS OF ERRORS AND SEM

In the section, we shall derive the multi-parameter asymptotic expansions of the
solution errors, and describe the algorithm of the SEM.

Theorem 2. Assume that there exists a unique solution in (1.2), F h is computed
by (3.1) and (3.3), and x̄mi(t), ḡm(t) ∈ C̄4[0, 1] (i = 1, 2, m = 1, ..., d).Then there
exists the vector function� = (�1, ..., �d)T ∈ V independent of h = (h1, ..., hd)T

such that

(4.1) (W̄ − Ŵh)|t=tj = diag(h3
1, ..., h

3
d)�|t=tj +O(h4), h = max

1≤m≤d
hm.

Proof. By the quadrature rule (3.1) and (3.3), there exists the asymptotic
expansion [8, 20]

(4.2) (F̄ − F̂h)|t=ti = diag(h3
1, ..., h

3
d)I

hRhv|t=ti +O(h4),

where h = maxd
m=1 hm and v = (v1, ..., vd)T with vm = −ηmξ

′(−2)(zm(t)ḡm(t))
′′

/π and

ηm =

{
0, asβm = 0,

1, asβm �= 0.
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Using (2.11), (3.2), (3.4), (3.5) and (3.6), we can easily obtain

(βEh + αĀh
0 + αĀh

1 + αĀh
2 + βK̄h)Rh(Ŵh − W̄ )|t=ti

= F̂h − Ih(βEh + αĀh
0 + αĀh

1 + αĀh
2 + βK̄h)RhW̄ |t=ti

= F̂h − [((βE + αĀ0 + αĀ1 + αĀ2 + βK̄)W̄

−diag(h3
1, ..., h

3
d)I

hRhγ)|t=ti +O(h4)]

= (F̂h − F )|t=ti + diag(h3
1, ..., h

3
d)I

hRhγ|t=ti + O(h4)

= diag(h3
1, ..., h

3
d)I

hRhϕ|t=ti + O(h4), h = max
1≤m≤d

hm,

where γ = (γ1, ..., γd)T with γm = αmξ
′(−2)(zp(t)w̄m(t))′′/π, and ϕ = (ϕ1, ...,

ϕd)T with ϕm = vm + γm. From Corollary 3 we get

(4.3) (Eh + L̂h)(W̄ − Ŵh)|t=ti = diag(h3
1, ..., h

3
d)(M̂

h
1 )−1IhRhϕ)|t=ti +O(h4).

Define the auxiliary equation

(4.4) (E + L)� = M−1ϕ,

and its approximate equation

(4.5) (Eh + L̂h)�h = (M̂h)−1IhRhϕ.

Substituting (4.4) and (4.5) into (4.3) yields

(4.6) (Eh + L̂h)(W̄ − Ŵh − diag(h3
1, ..., h

3
d)�

h)|t=ti = O(h4), h = max
1≤m≤d

hm.

Since (Eh + L̂h)−1 is uniformly bounded from Theorem 1, we get

(4.7) (W̄ − Ŵh − diag(h3
1, ..., h

3
d)�

h)|t=ti = O(h4), h = max
1≤m≤d

hm.

Replacing �h in (4.6) by � and applying (3.26), we complete the proof of Theorem
2.

The multi-parameter asymptotic expansions (4.1) imply that SEM can be applied
to solve (1.2). Moreover, the high order O(h4) of accuracy can be obtained by
computing some coarse grids of Γm (m = 1, ..., d) in parallel. The algorithms of
the SEM are described as follows [11, 13]:

Step 1. Take h(0) = (h1, ..., hd) and h(m) = (h1, ..., hm/2, ..., hd), and solve
(3.6) under mesh parameters h(m) in parallel, where W̄h(m)

(ti), ti = (i− 1/2)hm

(i = 1, .., nm, m = 1, ..., d) denote their solutions.
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Step 2. Compute for the solutions at the coarse grid points

(4.8) W̄ ∗(ti) = 8/7[
d∑

m=1

W̄h(m)
(ti) − (d− 7/8)W̄h(0)

(ti)],

and u(y) (y ∈ Ω) can then be obtained by (3.7).
Moreover, using |W̄ ∗(ti) − W̄ (ti)| = O(h4), we obtain a posteriori estimates

(4.9)

|W̄ (ti) − 1
d

d∑
m=1

W̄h(m)
(ti)|

≤ |W̄ (ti) − 8
7
[

d∑
m=1

W̄h(m)
(ti)− (d− 7

8
)W̄h(0)

(ti)]|

+(
8d
7

− 1)|1
d

d∑
m=1

W̄h(m)
(ti)− W̄h(0)

(ti)|

≤ (
8d
7

− 1)|1
d

d∑
m=1

W̄h(m)
(ti)− W̄h(0)

(ti)|+ O(h4).

5. NUMERICAL EXAMPLES

Consider the problem (1.1) in the first quadrant of the unit disc,

Γ : x1 = 0, x2 = 0 and x2
1 + x2

2 = 1, x1 > 0, x2 > 0,

with the mixed boundary conditions[4]




u = 1 on the circular,

u = 0 on x2 = 0,

∂u

∂n
= 0 on x1 = 0.

This problem has the analytic solution: u = 2/π arctan(2x2/(1−x2
1−x2

2)). Using
ϕ4(t) in (2.4)-(2.6), Table 1 lists the errors ep = |u(P ) − uh(P )|, the SEM-errors,
and the error rates rP = |(u(P )−uh(P ))/(u(P )−u2h(P ))| with P = A(0.1, 0.1)
or B(0.9, 0.1) by MQM and SEM, where

SEM − error = |u(P ) − 8/7[
d∑

m=1

uh(m)
(P ) − (d− 7/8)uh(0)

(P )]|,

and uh(m)
(P ) is computed by (3.7). Moreover, in Table 1 we also list the a posteriori

estimates with (a-post-error)=( 8d
7 − 1)| 1d

∑d
m=1 u

h(m)
(P )− uh(0)

(P )|, and average
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errors with (average-error)= | u(P )−1
d

∑d
m=1 u

h(m)
(P )|, where (n1, n2, n3) denotes

the numbers of nodes on three edges of Γ. When n = 64, the numerical results are
given by eA = 1.00E-3 and eB = 1.20E-3 in [4]. For Table 1, when Σ3

m=1nm =
32, the SEM errors for (n1, n2, n3) = (8, 8, 8) are given by eA = 1.23E-4 and
eB = 4.732E-4, which are more accurate.

From Table 1, we can see rA and rB ≈ 8, to indicate the O(h3) convergence
rate for the MQM, and rA and rB ≈ 16 to indicate the O(h4) convergence rate for
the SEM. Those results coincide with the theoretical analysis made.

In summary, the MQM and the SEM have theO(h3) and the O(h4) convergence
rates, respectively. Moreover, their algorithms are simple and easy to carry out.
Hence, the MQM and the SEM are more advantageous over the Galerkin and the
collocation methods, and they are recommended for solving the BIE.

Table 1. The errors, the a posteriori errors and SEM-errors
(n1, n2, n3) eA eB (n1, n2, n3) eA rA eB rB

(4, 4, 4) 2.324(−2) 7.352(−2) (8, 8, 8) 3.653(−3) 6.4 9.815(−3) 7.5

(8, 4, 4) 1.830(−2) 5.193(−2) (16, 8, 8) 2.407(−3) 7.6 6.271(−3) 8.3

(4, 8, 4) 1.444(−2) 3.828(−2) (8, 16, 8) 2.005(−3) 7.2 5.182(−3) 7.4

(4, 4, 8) 1.483(−2) 4.546(−2) (8, 8, 16) 2.088(−3) 7.1 6.131(−3) 7.3

average-error 1.585(−2) 4.522(−2) average-error 2.166(−3) 7.3 5.861(−3) 7.7

a-post-error 1.793(−2) 5.559(−2) a-post-error 2.974(−3) 6.0 7.907(−3) 7.0

SEM-error 2.074(−3) 8.011(−3) SEM-error 1.234(−4) 16.8 4.732(−4) 16.9
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