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SPLITTING EXTRAPOLATIONS FOR SOLVING BOUNDARY
INTEGRAL EQUATIONS OF MIXED BOUNDARY CONDITIONS
ON POLYGONS BY MECHANICAL QUADRATURE METHODS

Jin Huang, Zi Cai Li*, Tao Lu and Rui Zhu

Abstract. To solve the boundary integral equations (BIE) of mixed bound-
ary conditions, we propose the mechanical quadrature methods (MQM) using
specific quadrature rule to deal with weakly singular integrals. Denote h,,, as
the mesh width of a curved edge T, (m = 1,...,d) of polygons. Then the
multivariate asymptotic expansions of solution errors are found to be O(h?),
where h = max;<m<q hm. Hence, by using the splitting extrapolation meth-
ods (SEM), the high convergence rates as O(h’) can be achieved. Moreover,
numerical examples are provided to support our theoretical analysis.

1. INTRODUCTION

In this paper we develop mechanical quadrature methods (MQM) and splitting
extrapolation methods (SEM) for solving boundary integral equations (BIE) of the
mixed boundary value problems:

Au =0, in Q,

(1.1) 5
Ot + Pt = g, on Ty, m=1,...,d,
on

where Q C R? is a curved polygon with the edges I' = Uﬂnzll“m, and the angles
between I'y,, and I',, 41 are in (0, 27]. We assume that g is a piecewise continuous
function on I', and «,, and 3, are constants on I';,.
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By Green’s formula, Eq (1.1) is converted into BIE,

ou(z) 0
12)  — | LY g |y — zlds, log |y — z|ds, = ,
12— [ S ogly — alds, + [ u(e)g—logly — alds, = Olu)uly)

where |y — 2|2 = (y1 — 21)? + (y2 — x2)? and 6(y) is a constant dependent on

y € I'. If one of u(z) and %“T(:) is given by the boundary conditions of (1.1), then

the other can be solved by (1.2). Once both 9ul@) and u(z) (z € T') are known, the

ong
solution u(y) (y € §2) can be calculated by

1 Ju(x)

1 B
1. - log |y — 2|ds, — —
(1.3)  u(y) 5 /F u(z) o ogly — x|ds 57 | on,

log|y — x|ds,.

It is known [4, 9, 17, 24] that if all 5,,, =0 on [';;, (m = 1,...,d), then (1.1)
becomes a pure Dirichlet problem, and Eq (1.2) is the weakly singular BIE system
of the first kind, whose solution exists and is unique as Ct # 1, where Cr is the
logarithmic capacity (i.e., the transfinite diameter). When I’ is a circle, Cr is just
the diameter. If all o, = 0 on I';, (m = 1,...,d), then (1.1) becomes a pure
Neumann problem, and Eq (1.2) is the weakly singular BIE system of the second
kind, whose solution exists if and only if

d
T;Anlg/ﬁmds =0.

Moreover, if oy, 3, > 0 on Iy, (m = 1, ..., d), or both the Dirichlet and the Neuman
boundary conditions are assigned in different I';,, (m = 1, ...,d), then (1.1) has a
unique solution, and (1.2) is the weakly singular mixed BIE system.

Galerkin and collocation methods [1, 2, 5, 18, 19, 25] are often applied to solve
BIEs, but they are complicated for calculating discrete matrix. Using Galerkin
methods, Riide and Zhou [18] established multi-parameter extrapolation methods
for BIE system of the second kind on polygonal domains. Assuming that € is a
bounded and simply connected open region with a smooth boundary I', and the
inverse matrix of discrete equations exists and is uniformly bounded, Xu and Zhao
[24] established an extrapolation method for solving BIE from the boundary value
problem of the third kind. Assuming that €2 is a bounded simply-connected domain,
and that I';,, (m = 1,...,d) are straight lines or circular arcs, Symm [4] applied
collocation methods to solve (1.2). In this paper, firstly, taking h,, as the mesh
width of a curved edge I';;, (m = 1,...,d) of the polygon and using quadrature
rules for weakly singular integrals, we construct the mechanical quadrature methods
(MQM) for solving BIE of mixed boundary conditions. Secondly, we obtain the
multivariate asymptotic expansions of the solutions. Hence, once discrete equations
with coarse grids of I',,, (m = 1,...,d) are solved in parallel, the accuracy of
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approximate solutions can be greatly improved by the splitting extrapolation methods
(SEM). Finally, a posteriori error estimates as self-adaptive algorithms are derived.
Obviously, the mechanical quadrature methods (MQM) are very simple, because of
no needs of calculating any integrals for discrete matrix. In this paper, we will
provide their error analysis.

SEM [11, 13, 14, 16] based on multivariate asymptotic expansions of the errors
is a very effective parallel algorithm, because it possesses a high order of accu-
racy, good stability and almost optimal computational complexity. Since Lin and
Lu published the first SEM paper [14] in 1983, SEM has been applied to many
problems, such as the multidimensional numerical integrations [11, 13], finite dif-
ferential methods and finite element methods [13]. In the paper, MQM and SEM
are also applied to solve BIE of mixed boundary conditions on polygons.

This paper is organized as follows. In Section 2 we discuss the weakly singular
BIE. In Section 3, we establish MQM and prove its convergence. In Section 4, the
multivariate asymptotic expansions of errors are derived, and the SEM is described.
In Section 5, numerical examples are provided.

2. WEAKLY SINGULAR BIE

Define boundary integral operators on [,

1

2.1) (Agmwm)(y) = ~5- wm(z)log |y — z|dsz,y € Ty, m,q=1,....d,
F"L
and
1 0

(2.2) (quwm)(y) :_% - Wi () O log |y —x|dsy, yely, m,q=1,...d,
where

0

WE) e, i B, =0onT,,
w(z) = on

u(zx), x € Ty, if By # 0 on Ty,
Then (1.2) can be converted into a matrix operator equation
(2.3) BOW + a AW + BKW = F,

where 6 =diag(61 (y)v 3 ed(y))v A= [Aqm]g,mzlv K = [qu]g,mzlv W= (’U)l((L'),
ey Wa(2))

T o =diag(a1(y), ..., 2a(y)), 8 =diag(B1(y), ..., Ba(y)) and F = (f1(y),
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vy fa(y))T with

d
00 )90(y) + D> (Kgmgm)(y), if 8, =0,
fq(y) = d m=1
Z(Aqmgm)(y)v if ﬁq 7é 0, ¢g=1,...,m.

m=1

Assume that I'y,, can be described by the parameter mapping
(2.4) T (8) = (xm1(8), Tma(s)) : [0, Tin) — T

with |z,,(s)|? = |z, (8)|> + |2,5(s)|? > 0, where T}, is the measurable length of
T';,. Using the trigonometric transformation [20]

(2.5) s = Tmpp(t) :10,1] = [0,T,], p € N,
with
t
(2.6) o(t) = 9, (8)/0,(1) and 9 () = / (sin t)Pds,
0

the operators (2.1) and (2.2) are also converted into integral operators on [0,1]

1
Q7 (Agig)(t) = —= / 2 (8) 0|26 2 sin(t — 7|, (7)dr, ¢ € [0, 1),
0

s

@8 (ugw)(0) = =1 [ 2(0) |25 =20 oy, < 0.1),

@9 (Ain) 0= [ 402020 (r)ar, am, 1€0.1),
and
(2.10) (Rt (£) = —% /0 2o (O (ts ) (7) T, £ € [0, 1),

where @n(£) = Wi (Zn () T2y (8) | T (£)] and Zpn(t) = @ (Trpp(t)). In (2.7)-
(2.10) |24(t) = 2 (7)> = (Zq1(t) = Zpn1 (7)) + (Zg2(t) — Tma(7))? and

, as 3, =0,
(2.11) 2(t) =
Typp(D)]74(t)], as By # 0.
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In (2.10) l%qm(t, 7) results from % log |y — x| under the parameter mapping (2.4)
and the trigonometric transformation (2.5). Then Eq (2.3) can be expressed by

(2.12) (BE + aAg + aAy + ads + BK)W = F,

where Ay =diag(Aj, ..., Ag), A1 =diag(Aoy, ..., Agd), Az = [Aqm]g,m:p and
I_( [qu]gm | are matrix operators. In (2.12) W = (wy(t), ..., wq(t))T and

= (fit), .. falt))" with

d
294(Z4(t) —i—ZI_( mm)(t), as B4 =0,
fa(t) = mt d
((AqO + AOq gq (t + Z qmgm 7 as ﬁq 7é 07
=1

where g, (t) = gm(fm(t))Tqap;(t)\fg(t)\. Let aq_o(t, T_), aog(t, T), agm(t, 7) and
kqm(t, T) be the kernels of the integral operators Aqy, Aoq, Agm and Ky, respec-
tively. Then the following results hold.

(1) The solutions of (2.3) are equivalent to those of (2.12).

(2) aqo(t, ) is a logarithmically singular function on ¢ € [0, 1] and 7 € [0, 1].
(3) aoq(t, ) is a continuous function [11, 15, 25] on ¢ € [0,1] and 7 € [0, 1].
(4) For Ty NIy, =0 (ie., |¢g —m| # 1, or d — 1), agm(t,7) and kg, (¢, T) are
continuous functions [1, 5, 11, 22] on ¢t € [0, 1] and 7 € [0, 1].

(5) Although ‘Z( ) at an angular point z = I'y N T, has the singularity, w(t)
(t €]0,1)) 1s "a smooth function [11, 21, 22] under (2.4)-(6).

Lemma 1. [fT,NT,, #0 (ie, m| =1,0rd—1) and p > 3, then

(1) for By =0, agm(t, 7) (= sinP(nt)agm(t, 7)) and %&qm(t, T) (n=1,2,3) are

continuous on [0,1]2, and (2) for B, # 0, agm(t,T) and kgn(t, T) are continuous
n [0, 1]

Proof. Without loss of generality, we assume that the origin (0,0) =I';,, N T,
of coordinates is a vertex with an interior angle 0.

(1) Firstly, for 6§, € (0,7) U (m,2), using the cosine theorem!”! and (2.9) we
get

Ggm (t, 7) = sinP (1t)agm(t, 7) = —(27) " sin? (t) In[ad () + a}(7)
—2ag(t)ay1(7) cosby] = —(2m) L sin? () {In(ad(t) + a3(7))

—In[1 — 2a0(t)ay (7) cos O,/ (a2(t) + a3(1))]},
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where ag(t) = |Tm(Tmep(t))| and a1 (1) = |z¢(Teep(7))|. Also without loss of
generality, we assume ag(0) = a1(0) = 0. Since

[2a0(t)ax1(7) cos 0/ (ag(t) + aF(r))] < [ cos | <1,

aqm(t, 7) will be continuous if we can prove that a(t 7) = sin?(7t) In(ad(t) +
a2(r)) is a bounded function on [0, 1)2. In fact, from % (£)];—0,1 = 0 (j = 1, ..., p),

we easily get a(j)( t)t=0t=1 =0 (¢ =1,...,p,7 =0, 1). Thus we need only prove
that a(t, 7) is bounded on [£/2,€]%, Ve > 0. For (t,7) € [¢/2,¢]?, it always holds
that

la(t, )| = O(eP|lne|) — 0, as e — 0,

which means that a(¢, 7) is bounded. Similarly, from

9 = |sinP (7 ();() (): ePl), as e —
and
2 3
\%a(tm)\ =0, ‘%a(tﬁ)\ = O0(P7?), as e — 0, p> 3,

we can prove that 2 atn a(t,7) (n = 1,2, 3) are continuous on [0, 1]2.
Secondly, for 6, = m, we have

aqm(t, 7) = —sin® (7t) (In[ag(t) + a1(7)]) /7.

Following the above proof, we can prove that 2=,y (t,7) (n = 1,2, 3) are con-
tinuous on [0, 1]? for p > 3.

(2) Firstly, for 6, € (0,7) U (7, 2m), we get
(2.13) agm (t, 7) = —Zgsin? () In[ad(t) + a3 (T) — 2a0(t)as(7) cosb,),
where 2, = Ty|z,(t)|/0,(1)/(2m). For 0, =,
agm(t, 7) = —2Z¢sin (wt) In[ag(t) + a1 (7)].
Hence, for (t,7) € [g/2, €]* we have
|agm (t, 7)| = O(eP|Ine|) — 0, as e — 0.
Secondly, using the cosine theorem!”) and (2.10) we get

—2%, sin? (7t)k(t, T)

kqm(tv T) = a%(t) + a%(r) — 261,0(75)@1(7_) Cos 0‘1

, for 8, € (0,7) U (7, 2m),
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where k(t, 7) = (2} (Typp(7)) (1 (1) =21 (£)) =2y (Typp(T)) (Bma (1) —Zg2(1))),
and

o5 sin? (mt)k(t, 7)
Tlao(t) + ax (7)*’

kqm(t, ) = forf, = .

Hence, for (¢, 7) € [¢/2, ] we have
|k(t,7)] =O(e) — 0, as e — 0.

Consequently, we can conclude that ag,(t,7) and kg (t,7) are continuous on
[0, 1]%

3. MECHANICAL QUADRATURE METHOD

Let hy, = 1/ny (N, € N, m = 1,...,d) be mesh widths and t; = 7; =
(j—1/2)hy, (j =1, ..., ny,) be nodes. For an integral operator D with continuous
kernel as Agg, Agm or Kym, by the midpoint or the trapezoidal rule, we construct
the Nystrom approximation [8]

Nm

G (D o)) = b S d(t 7)), € [0,1], g = 1,...,d,
j=1

which has the following error bounds [8, 21]
(3.2) (D@, )(t) = (D"wyn) () = O(hy), 1 € N.

For the weakly singular operators 4,0, by the quadrature formula [20], we can also
construct the Fredholm approximation,

(Abyg)(ti)
(3.3) = —z(ti)hgq Y In|2e7Zsing(t;—7;)zq (7)) Wg(7)) ¢ /7
jzlat7£7-]'

—hg|In|2me V2R, ) (27) | 2g(t:) Ty (t:) /7, i = 1, ..., ng,

which has the following error bounds [20, 21]

(Agowq)(ti) - (Aqou_)q)(ti)

3.4 Cp2-1
- 2 CE el 0

T
p=1
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where (’(t) is the derivative of the Riemann Zeta function.
Consider the approximate equations of (2.12)

(3.5) (BE" + a Al + 0 Al + oAb + pKMYWh = Fh,

where Wh = (Wi, .., WhT Wh = (wm(tl) oy Win(tny )) Al =diag(Ah,, ...,

m

Ago) AI(;O = [aqo(twﬂ‘)]?,z:p A1 —dlag(Am,.. Agd) AOq = [an(tjsz)]jz 1

Ah [Al‘;m]qm 1 Agm = [aqm(tﬁﬂ)]?z nlm7 Kh [K(l;m]qm 1> Rgm = [kqm(tjv
)i Fl= (F o BT FY = (f o fin,) T and
d
2G,(tj) + Y (Kpp@m)(t;), as By =0,
(3.6) Il = m=1 J
((AZO +A )+ Z Aqmgm ), as B # 0.
m=1

Obviously, (3.6) is a linear equation system with n—unknowns, where n = n; +
..+ ng. Once W" is solved by (3.6), the solution u(y) (y € Q) can be computed
by

d nm
o) = 5 33l (3(0) (0.2
(3.7) m=1 i=1
Ju(z(t)) | . _,
on, Y = Ent)l][Zn ()],

where

Tyna (1) (B (8:) = y1) = T3 () (B (ti) — y2)
[(Zma(t1) — 91)? +($m2(tz)— 2)?]15, (t:)]

To show a unique solution existing for (3.6), we first prove that the opera-
tor B E" + a Al is invertible. Define C,, =diag(2zn(t1), ..., zm(tn,,)) With
Zm(tj) >0 (j =1, ..., ny) and Dy, = —hy,/wcircular (In(e~'/2h,,), In(2e~1/2
sin(mhom)), .., In(2e™Y2sin((ny, — 1)7hyy,))). From (3.3), we get A® = C,, D,y,.

l%m(yv (L‘) =

m0 —
Lemma 2. The eigenvalues Ny, (k = 1,...,ny,) of Dy, are positive, and there

exists a positive constant ¢ such that X > ¢ for ny, < 4, or A\, > 1/(2wn,,) for
Ny > 4.

Proof. Since D,, is a symmetric circulant matrix, we have A\, = F'(gx) with

N —1
F(2)=—hp[In |he 2|+ Z 21 |2e7 Y2 sin(jr /)], and e, =exp(2mki/nuy,).
j=1
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If n,, < 4, then A\ > c can be easily verified by direct calculations. On the other
hand, if n,,, > 4, then A\ is estimated in two steps:

Step 1. Consider £ = 0. Let

Ny —1
A =In[hme 2|+ Y In|2e7 2 sin(m/npy)|
=1
(3.8) I S
= /2 — Inn, +In 2"t H sin(jm/ny,)|.
j=1

We will discuss the following two cases.
Case 1. For n,, = 2] — 1, by the inequality
(3.9) 2e/m <sinz <z, if 0 <x<7m/2,

we have

= H s1n—< (U 1)!]2.

(20 — 1)2-2

2212[ 1[2
#<HSIH

Using Stirling’s rule n! = v/2mn(n/e)™" exp(0/(12n)) (0 < 6 < 1), we obtain

21—-2 2
2 [(l 1)'] > el 2l(l _ 1)(1 _ 1/[)21_260/[6(1_1)]

(20 — 1)2-2

and
7T2l—2 l_ 1 ' 2 T B -
# <2m( ) (- 1)/ =1/ B,

Also since In B < In |2~ [T sin(jm /n,)| !, we get
o = <N/ (mmm) > [3/2 — Inm — 1/(2 — 1) — 1/[6(2 — 1)(I — 1)/,
which implies that Ao > 17/(1507) for [ > 3.

Case 2. For n,, = 2[, from 0 < (I — 1)/(2l) < 1/2 and (3.9), we obtain

l_l <Hsm Hsm—< m 2[(l_1)] .

l2l 2 (2[)21 2
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Using

20—2 2
™ (2[5(;21_—21)!] :QZW(g)2l_2e(_2l+6/6l)

and the above inequality, we have

Ao = =N/ (mnm) = [1/2 + 1/np, Inng, + 1/n,, In 27!

Ny —1

H sin(jm/nm)| /7 > [3/2 — In7] /7,

j=1
which implies that A\g > ¢ > 0 as n,,, > 4.

Step 2. To estimate A\, k=1, ..., n,, — 1, we write

Nm—1
A, = Inle V2 /n,,| + Z cos(2kjm /) In [2e Y2 sin(j /np,)|
(3.10) i=1

Ny —1

= —lnn,, + Z cos(2kjm/ny,) In |2 sin(j7/ny)|.
j=1

Using the expansions of the )—special function [7]

Y(k/n) = —y —Inn—x/2cot(km/n) + Zcos(ijw/n) In|2sin(j7/n)|

=1
and
¢u>:—v—1m+w§§uuu+zm
we obtain -
nfl CO8(2KkF /1) In |2 sin (i /1)
=1
= Innm + /2 cot(km /1) — non /K + k /1, i[j(j +k/ngy)]
=
and j
Gl Ap = /2 cot(km/num) — o [k + k /1o jf;[j(j + k/nm)] 7Y

1<k<n,—1,
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where v is the Euler’s constant. Substituting

cot(km/ny) = nm/(lm) —km/(3ny,) - 1/45(km /np)® — ...
—2%B; /(2N (kT [rp)?  — ...

into (3.11), we have

A = =/ (2k) — kn? ) (6n) — ... — 25T B; /(20) (K fr) P A
—ee K/, Z[ﬂ(] + k/nm)]_l

and

Mo = {1/(2k) + kn?/(6n2) + ... + 22 B, /(2)! (k7 fnm) /i,

o0

+oe =k, > [+ /)]

j=1

where Bj is the Bernoulli number. Moreover, since
o0 o0

ke [ (6n) =k /i, > [ (G+k/mn)) ™ > k/np 0> 172G +1/2) 71} >0,
j=1 j=1

we obtain

(3.12) A\ > 1/(27k) + 1/90(k /1) /1 + ... > 1/ (21k) > 1/(270).

From the results of Step 1 and Step 2, the proof of Lemma 2 is completed.
From Lemma 2 we have the following corollary.

Corollary 1. (1) The conditional number of D 1, is O(ny,). (2) Dy, is invertible
and ||(Dm) Y| = O(n), where || - || denotes the spectral norm.

Lemma 3. (1) If 3,, = 0, then a,,, Al is invertible and
(3.13) [1(amAL0) Il = O(nm).

(2) If By # 0 and Bycvy > 0, then B E" 4y, AR is invertible and (3., E" +
am/_l’;no)_l is uniformly bounded, i.e.,

(3.14) H(BmE" + amALLg) | < 18-

Proof. (1) If B, = 0, then a,,, A" ; = a,,, Dy, and (3.13) holds.
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2) If B, # 0 and Gy, > 0, from Aho =C Dm and [6,10], we obtain
)‘(Ah ) > )‘mln(Alran) > 0 and | A (ﬁmEh + amA )‘ = |Bm+ am)‘(Alran)‘
> |Bm|. Then (3.13) holds.

Corollary 2. ]fﬂm # 0 and Bmoy, > 0, then BE" + oAl =diag(p1 EM +
ARy, ..., BaE"+aq Al is invertible and ||(ﬁEh—|—aAh) Hi< 1/ minj<m<d | Bm |-

Using Lemma 3, Eqs (3.5) and (3.6) are equivalent to
(3.15) (E" + (BE" + aAl) L (a A} + oAl + BEM) YW = (BEM + aAR)~1F.
Let S"m =span{e;(t), j = 1,...,n,,} C C[0,1] denote a piecewise linear function
subspace with the basis points {t }im , where {e;(t), j = 1,...,n,,} are the basis

functions satisfying e;(¢;) = ¢;;. Define a prolongation operator I hm . gnm . Ghm
satisfying

(3.16) I'my = Zvjej ), Vo = (v1,...,vp,,) € R"™,

and a restricted operator R : C[0, 1] — R™ satisfying
(3.17) Ry = (v(ty), ..., v(tn,,)) € R Vv € C[0,1].
We have the following lemma.

Lemma 4. [f 3,, = 0, then the operator sequence, {I" (AR Y"I1RMm A
C3[0,1] — C[0,1], m = 1,...,d}, is uniformly bounded and convergent to the
embedding operator I.

Proof. For any given v € C3[0, 1], we construct an operator equation
Amov = f,
and its approximate equation: find v € R™ such that
(Anov")(ti) = f(ti) (i =1, ..., np).

Let e € R™ with e(t;) = v"(t;) — v(t;) (j = 1, ..., ). Then we have the linear
equations

Al e=¢,

m0
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where el = (e(t1), ..., e(tn,,)) and €T = (g(t1), ..., &(tn,,)). From (3.3) we obtain
1
() = / o (13, 70 (7)dr
0
Nm,
— | D hmamo(ti, t)v(t;) +cohim (e I )u(ts) | = O(h).
j=1ii
Thus it implies that ¢|| = O(h3,) and
llell = [[(Afg) "' R e[| = [|R'™ (Amo) " f = (Alhg) " R f]
= [|R"™ v — (A7) 'R Aov|| = O(h3,).
Since I"m Rhm — I, the proof of Lemma 4 is completed.

Corollary 3. Let the Nystrom approximation D" be defined by (3.1). (1) For
Bm =0and Ty NIy, =0, we have

(3.18) I (Al )"IR' DM 5 (A,,0)71D, in C[0,1] — C[0,1].

Also E"+ 1 hm([llﬁno)_thm D" is invertible, and its inverse operator is uniformly
bounded.
(2) For B, =0 and Ty N Ty, # 0, we have

(3.19) I (Al g) PR AR LSS (Ag) Tt Agn, in €0, 1] — C[0,1].

Also EM+1 hm(Agén)_thm flf}m is invertible, and its inverse operator is uniformly
bounded, where flf}m is the Nystrom approximation of the integral operator flqm
with kernel g (t, T) = sin? (7t)agm (¢, 7).

(3) For B, # 0, we have

1" (B E" + app AR VLRI DP 55 (8, E + aip Aro) 1D,
(3.20)
in C[0,1] — C[0,1].

Also E" 4 1" (8, E" + ai, AR ) "L R D" is invertible, and its inverse operator
is uniformly bounded.

Proof. If B, = 0 and Ty NI, = 0, obviously, the kernel d(¢, 7) of the operator
D and its derivatives of higher order are continuous [5, 11, 15, 21, 25]. Since

|17 (Alo) " R D0 < [T (Al) " R Apollo,3]|(Amo) "' D" |30,
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by Lemma 4 and (A,,0) ' D" € £(C]0, 1], C3[0, 1]), there exists a constant ¢ such
that

1(Amo) ' D"[|50 < ¢, and [|[T" (Al) " R"™ Apllos < c,

where || - |[5,m, is the norm of the linear bounded operator space £(C™[0, 1],
C™2[0,1]). Using the results of [3, 6, 12], the operator sequence {(A0) ' D" :
C[0,1] — C3[0, 1]} must be collectively compact convergent to (A,,0)~ 1D Hence,
we complete the proof of (1). Similarly, we can prove (2) and (3).

Define the subspace

Col0,1] = {w(t) € C[0,1] : v(t)/sin®(xt) € C[0, 1]}

of the space C10, 1] with the norm HUH = maxo<i<1 |v(t )/sm (mt)|. Replacing
(MM~ = (BE" + aAf) ™!, @A}, aA, and BK"M by (Mh)~! = [h(MM)LRh,
A’f = ["a AP R, Ah = I"a A} R", and Kh = I"BK"R" respectively, we obtain
the operator

" = M) RMa Al + a Al + BK™)RY,

mapping V to [[% _, S"m, where R" = diag(R™, ..., R'), I" = diag(I™, ..., I"4),
and

(C[o,1))4, as B #0, m=1,...,d;

V=< (C[0,1])F x (Co[0,1])4*, as B;, #0,m=1,.... ki, € {1,...,d},
(Col0, 1)), as B =0, m=1,...,d.

Now consider the operator equation

(3.21) (E" + LMywh = F"

with FF = [M(BE" + a AR)~'RFFR. Obviously, if W" = I"W" is a solution of
(3.21), then R"W" must be a solution of (3.15); conversely, if W" is a solution of
(3.15), then T"W" must be a solution of (3.21). Below we prove that there exists
a unique solution W in (3.21) such that Wwh converges to 1.

Theorem 1. The operator se_quence_{flh} is collectively compact convergent
to L= (BE + ady) HaA) +ady +BK) inV, ie,

(3.22) LML

Proof. Let® = {v: ||v|]| < 1,0 € V} beaunitball,and H = {HD H® .}
be a mesh sequence, where H (n) = {h(ln), ey h&”)} denotes a multi-parameter step
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(n)

size with maxi<,,<q hy’ — 0 as n,, — oo. For an arbitrary sequence {Zy =
(Zp,.... 2" h € H} C © satisfying

max | Z(t)/sin®(nt)] < 1,

WU

we conclude that there exists a convergent subsequence in {L"Z,}. Firstly, for
By =0(g=1,...,d),since

(3.23) || 171 (Abg) LRI Aly||g = || M (Aky) ~1Rhm AR,y (Z1,) [ sin® (nt) o
< |17 (Ahy) T R Ayollo,3]| ATy Ay ll30l| Z5 |,

from Corollary 3 we can prove that there exists a convergent subsequence in
{rh (A TIRM AL ZM Y € Cpl0,1] € €0, 1]
such that
IM(Ar)TIRMm AL CS (A10) Ay, in £(C0, 1], C[0,1]), for 2 < m < d,
and
IM(Ak )7L R AR S5 (A1) Agy, in £(C]0, 1], C[0, 1]).

Also since Cy[0,1] C C]0, 1], we can find an infinite subsequence H1 C H such
that the first component of L"Z),,

d
324 D I"(BEM + a Aly) I RM (e Afy + n AT, + BiKT,, ) RM Z),

m=1

converges as h — 0, where h € H; (see [3, 6, 11, 12]). Based on the above
methods, we may find a subsequence, H; C Hy—1 C ... C H; C H, such that
{L"Zy, h € Hy} is a convergent sequence in , which implies

(3.25) "2,

where the notation = denotes the pointwise convergence. From [3, 6, 11, 12], we
conclude that L" <5 L in V.
Secondly, if 3, # 0 (¢ = 1, ..., d), from Corollary 3 we obtain

1" (B,E" + agAly) ' RMa Al 5 (BeE + agAqn) " agAog,

1" (B,E" + agAly) ' RMag AL, 5 (B,E + agAg) g Agm
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and
1"(B,E" + agAly) T RMBKE S (BB + agAg) T BeK gm.

Using the diagonal process, we can also find a subsequence Hy; C H such that
(3.25) converges as h — 0. Thus we conclude LM ES L in V), too.

Finally, if 8;,, # 0 (m =1, ..., k, iy, € {1, ...,d}), the proof of L" %5 L in V
is similar.

From Theorem 1 we have the following corollary.

Corollary 4. ([3, 12]). Assume that (1.2) has a unique solution and h =

maxi<m<d lm is sufficiently small, then there exists a unique solution Wh in
(3.21), and W" has the following error bound under the norm of V,

(L" — L)F|| +[|(L" - L) L"W||

3.26 wh - < 1+ ) i i [
( ) H H—H( ) H 1—H(I+Lh)_1(Lh_L)LhH

4. MULTIVARIATE ASYMPTOTIC EXPANSIONS OF ERRORS AND SEM

In the section, we shall derive the multi-parameter asymptotic expansions of the
solution errors, and describe the algorithm of the SEM.

Theorem 2. Assume that there exists a unique solution in (1.2), F " is computed
by (3.1) and (3.3), and T i (t), Gm(t) € C*0,1] (i = 1,2, m = 1, ..., d). Then there
exists the vector function w = (w1 ..., wq)’ € V independent of h = (hy, ..., ha)T
such that

@.1) (W =Wz, = diag(h3, ..., h}) @]z, + O(h*), h = max fp.

Proof. By the quadrature rule (3.1) and (3.3), there exists the asymptotic
expansion [8, 20]

(4.2) (F — FM)| =y, = diag(h3, ..., B3 I"RM| iy, + O(h*),

where h = max?,_| hy, and v = (v1, ..., v)T with vy, = =1 (—2) (2 (t) G (1))”

/7 and
0, asf, =0,
N =
1, as@,, # 0.
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Using (2.11), (3.2), (3.4), (3.5) and (3.6), we can easily obtain
(BE" + a Al + oAl 4+ a Al + BRMRMWh — W)=,
= " — T"(BE" + 0 A} + A} + oAb 4+ BERMYRMW |1y,

Fh— [((ﬁE—l— 04/_10 —I—Oé/_ll + 04/_12 +ﬁI_()W

—diag(h3, ..., K)I"R"y) 1=, + O(hY)]
= (F" — F)|y—s, + diag(h3, ..., ) I" Ry iy, + O(R?)

1 3 3\ 7h ph 4 _
= diag(hy, ..., hy) I"R"pli=t, + O(h*), h = 1I§nr%)§(dhm’

where v = (71, ..., Ya)T With v = am€ (=2) (2, () 0m (1)) /7, and o = (1, ...,
©a)T with ©,, = v, + Y. From Corollary 3 we get

(4.3) (E" + Lp)(W = W")|i—y, = diag(h3, ..., B3 (M) LI RMp) |1, + O(h*).
Define the auxiliary equation

(4.4) (E+ L)yw = Mg,

and its approximate equation

(4.5) (E" + LMo = (MM~ " Rh.

Substituting (4.4) and (4.5) into (4.3) yields

(4.6) (E" + LMY(W — Wh — diag(h3, ..., h3)@")|s=s, = O(h), h = max iy,

Since (E" + L")~! is uniformly bounded from Theorem 1, we get

(4.7) (W — W — diag(h3, ..., ) @") |1, = O(R*), h = max iy,

Replacing " in (4.6) by w and applying (3.26), we complete the proof of Theorem
2.

The multi-parameter asymptotic expansions (4.1) imply that SEM can be applied
to solve (1.2). Moreover, the high order O(h*) of accuracy can be obtained by
computing some coarse grids of I, (m =1, ..., d) in parallel. The algorithms of
the SEM are described as follows [11, 13]:

Step 1. Take h(®) = (hy, ..., hg) and A" = (hy, ..., hyn/2, ..., hq), and solve
(3.6) under mesh parameters h(™) in parallel, where W™ (t;), t; = (i — 1/2)hn,
(t=1, .., nm, m=1, ..., d) denote their solutions.
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Step 2. Compute for the solutions at the coarse grid points

d
(4.8) —8/72 M () — (d —T/8)W (1)),

and u(y) (y € 2) can then be obtained by (3.7).
Moreover, using [W*(t;) — W (t;)| = O(h*), we obtain a posteriori estimates

< W (n) — 2130 W (1) — (@~ D (1)
49 8d 1m:C1l
Ho =Dl W () - ()
m=1
8d 1 d = m 0
< (& = Dl S W () - W ()] + Ok

5. NUMERICAL EXAMPLES
Consider the problem (1.1) in the first quadrant of the unit disc,
I':21 =0, xQ:Oandx%—i—x%:l, z1 >0, z9 >0,
with the mixed boundary conditions!!

u=1 on the circular,

u=20 on xzo =0,

0
a—Z:O on z1 =0.

This problem has the analytic solution: u = 2/ arctan(2x2/(1 — 2% — 22)). Using
©4(t) in (2.4)-(2.6), Table 1 lists the errors e, = |u(P ) — u"(P)|, the SEM-errors,
and the error rates rp = |(u(P) —u"(P))/(u(P) — u?"(P))| with P = A(0.1,0.1)
or B(0.9,0.1) by MQM and SEM, where

d
SEM — error = [u(P) — 8/7[Y_ u"™(P) — (d — 7/8)u"” (P)],
m=1

and v (P) is computed by (3. 7) Moreover, in Table 1 we also list the a posteriori
estimates with (a-post-error)=(3¢ — 1)|% S un™ (P) — uh® (P)|, and average
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errors with (average-error)= | u(P)—2% anzl uh™ (P)|, where (n1, n2, n3) denotes
the numbers of nodes on three edges of I'. When n = 64, the numerical results are
given by e4 = 1.00FE-3 and ep = 1.20FE-3 in [4]. For Table 1, when mezlnm =
32, the SEM errors for (ng, ng, ng) = (8, 8, 8) are given by e4 = 1.23E-4 and
ep = 4.732FE-4, which are more accurate.

From Table 1, we can see 74 and 75 ~ 8, to indicate the O(h?) convergence
rate for the MQM, and r4 and rg = 16 to indicate the O(h4) convergence rate for
the SEM. Those results coincide with the theoretical analysis made.

In summary, the MQM and the SEM have the O(h?) and the O(h*) convergence
rates, respectively. Moreover, their algorithms are simple and easy to carry out.
Hence, the MQM and the SEM are more advantageous over the Galerkin and the
collocation methods, and they are recommended for solving the BIE.

Table 1. The errors, the a posteriori errors and SEM-errors

(n1,n2,n3) ea en (n1,m2,n3) ea ra en TB
(4,4,4) | 2.324(—2) | 7.352(=2) | (8,8,8) | 3.653(—3) | 6.4 | 9.815(—3) | 7.5
(8,4,4) | 1.830(—2) | 5.193(=2) | (16,8,8) | 2.407(—3) | 7.6 | 6.271(—3) | 8.3
(4,8,4) | 1.444(—2) | 3.828(=2) | (8,16,8) | 2.005(—3) | 7.2 | 5.182(=3) | 7.4
(4,4,8) | 1.483(—2) | 4.546(—2) | (8,8,16) | 2.088(—3) | 7.1 | 6.131(-3) | 7.3
average-error | 1.585(—2) | 4.522(—2)| average-error| 2.166(—3)| 7.3 | 5.861(—3)| 7.7
a-post-error | 1.793(—2) | 5.559(—2) | a-post-error | 2.974(—3)| 6.0 | 7.907(-3)| 7.0
SEM-error 2.074(-3) | 8.011(-3) SEM-error 1.234(—4)| 16.8 | 4.732(—4)| 16.9
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