TAIWANESE JOURNAL OF MATHEMATICS Vol. 12, No. 9, pp. 2327-2340, December 2008 This paper is available online at http://www.tjm.nsysu.edu.tw/

MULTIPLE POSITIVE SOLUTIONS FOR *p*-LAPLACIAN FUNCTIONAL DYNAMIC EQUATIONS ON TIME SCALES

Da-Bin Wang* and Wen Guan

Abstract. In this paper we consider the following boundary value problems for *p*-Laplacian functional dynamic equations on time scales

$$\begin{split} \left[\Phi_p(u^{\triangle}(t)) \right]^{\nabla} + a(t) f(u(t), u(\mu(t))) &= 0, t \in (0, T)_{\mathbf{T}} \,, \\ u_0(t) &= \varphi(t), \ t \in [-r, 0]_{\mathbf{T}} \,, \ u(0) - B_0(u^{\triangle}(\eta)) = 0, \ u^{\triangle}(T) = 0, \text{ or } \\ u_0(t) &= \varphi(t), \ t \in [-r, 0]_{\mathbf{T}} \,, \ u^{\triangle}(0) = 0, u(T) + B_1(u^{\triangle}(\eta)) = 0. \end{split}$$

Some existence criteria of at least three positive solutions are established by using the well-known Leggett-Williams fixed-point theorem. An example is also given to illustrate the main results.

1. INTRODUCTION

Let **T** be a time scale, i.e., **T** is a nonempty closed subset of R. Let 0, T be points in **T**, an interval $[0,T]_{\mathbf{T}}$ denoting time scales interval, that is, $[0,T]_{\mathbf{T}} := [0,T] \cap \mathbf{T}$. Other types of intervals are defined similarly.

The theory of dynamic equations on time scales has been a new important mathematical branch (see, for example, [1, 2, 9, 10, 17]) since it was initiated by Hilger [16]. At the same time, boundary value problems (BVPs) for dynamic equation on time scales have received considerable attention [3-7, 11-15, 18, 20-25]. However, to the best of our knowledge, there is not much concerning for BVPs of *p*-Laplacian dynamic equations on time scales [5, 14, 15, 21, 24, 25], especially for *p*-Laplacian functional dynamic equations on time scales [21].

Received March 26, 2007, accepted May 19, 2007.

Communicated by Yingfei Yi.

²⁰⁰⁰ Mathematics Subject Classification: 39K10, 34B15.

Key words and phrases: Time scale, p-Laplacian functional dynamic equations, Boundary value problem, Positive solution, Fixed point.

^{*}Corresponding author.

For convenience, throughout this paper we denote $\Phi_p(s)$ as the *p*-Laplacian operator, i.e., $\Phi_p(s) = |s|^{p-2} s$, p > 1, $(\Phi_p)^{-1} = \Phi_q$, $\frac{1}{p} + \frac{1}{q} = 1$. In [5], Anderson, Avery and Henderson considered the following BVP on time

scales

$$\left[\Phi_p(u^{\triangle}(t))\right]^{\bigtriangledown} + c(t)f(u) = 0, t \in (a,b)_{\mathbf{T}},$$
$$u(a) - B_0(u^{\triangle}(v)) = 0, \ u^{\triangle}(b) = 0,$$

where $v \in (a, b)_{\mathbf{T}}, f \in C_{\mathbf{ld}}([0, +\infty), [0, +\infty)), c \in C_{\mathbf{ld}}([a, b], [0, +\infty))$ and $K_m x \leq B_0(x) \leq K_M x$ for some positive constants K_m, K_M . They established the existence result of at least one positive solution by a fixed point theorem of cone expansion and compression of functional type.

In [21], by using a double fixed-point theorem due to Avery et al.[8], Song and Xiao considered the existence of at least twin positive solutions to the following *p*-Laplacian functional dynamic equations on time scales

(1.1)
$$\left[\Phi_p(u^{\triangle}(t))\right]^{\bigtriangledown} + a(t)f(u(t), u(\mu(t))) = 0, \ t \in (0, T)_{\mathbf{T}},$$

satisfying the boundary value conditions

(1.2)
$$u_0(t) = \varphi(t), \ t \in [-r, 0]_{\mathbf{T}}, \ u(0) - B_0(u^{\triangle}(\eta)) = 0, \ u^{\triangle}(T) = 0,$$

where $\eta \in (0, \rho(T))_{\mathbf{T}}$.

Very recently, Zhao, Wang and Ge [26] considered the existence of at least three positive solutions to the following *p*-Laplacian problem

$$\left[\Phi_p(u'(t))\right]' + a(t)f(u, u') = 0, \ t \in [0, 1],$$
$$u'(0) = u(1) = 0.$$

The main tool used in [26] is Leggett-Williams fixed-point theorem.

Motivated by the results mentioned above, in this paper, let \mathbf{T} be a time scale such that $-r, 0, T \in \mathbf{T}$, we shall show that the BVP (1.1) with the boundary value conditions (1.2) or boundary value conditions

(1.3)
$$u_0(t) = \varphi(t), \ t \in [-r, 0]_{\mathbf{T}}, \ u^{\triangle}(0) = 0, u(T) + B_1(u^{\triangle}(\eta)) = 0,$$

has at least three positive solutions by using Leggett-Williams fixed-point theorem [19].

In this article, we always assume that:

 (C_1) $f: [0, +\infty)^2 \rightarrow (0, +\infty)$ is continuous;

- $\begin{array}{ll} (C_2) \ a \ : \ \mathbf{T} \ \rightarrow \ (0,+\infty) \ \text{is left dense continuous (i.e., } a \ \in \ C_{\mathbf{ld}}(\mathbf{T},(0,+\infty)) \\ \text{and dose not vanish identically on any closed subinterval of } [0,T]_{\mathbf{T}} \ \text{, where} \\ C_{\mathbf{ld}}(\mathbf{T},(0,+\infty)) \ \text{denotes the set of all left dense continuous functions from} \\ \mathbf{T} \ \text{to} \ (0,+\infty) \ \text{, } \min_{t\in[0,T]_{\mathbf{T}}} a(t) = \Phi_p \ (m) \ \text{, } \max_{t\in[0,T]_{\mathbf{T}}} a(t) = \Phi_p \ (M) \ \text{, and} \\ m < M; \end{array}$
- $(C_3) \ \varphi : [-r, 0]_{\mathbf{T}} \to [0, +\infty)$ is continuous and r > 0;
- (C_4) $\mu: [0,T]_{\mathbf{T}} \to [-r,T]_{\mathbf{T}}$ is continuous, $\mu(t) \leq t$ for all t;
- (C₅) $B_0(v)$ and $B_1(v)$ are both continuous functions defined on R and satisfy that there exist $B \ge 0$ and $A \ge 1$ such that

$$Bx \leq B_j(x) \leq Ax$$
, for all $x \geq 0$, $j = 0, 1$.

In the remainder of this section we list the following well known definitions which can be found in [2, 7, 9, 10].

Definition 1.1. For $t < \sup \mathbf{T}$ and $r > \inf \mathbf{T}$, define the forward jump operator σ and the backward jump operator ρ , respectively,

$$\sigma(t) = \inf\{\tau \in \mathbf{T} | \tau > t\} \in \mathbf{T}, \ \rho(r) = \sup\{\tau \in \mathbf{T} | \tau < r\} \in \mathbf{T}$$

for all $t, r \in \mathbf{T}$. If $\sigma(t) > t, t$ is said to be right scattered, and if $\rho(r) < r, r$ is said to be left scattered. If $\sigma(t) = t, t$ is said to be right dense, and if $\rho(r) = r, r$ is said to be left dense. If **T** has a right scattered minimum m, define $\mathbf{T}_k = \mathbf{T} - \{m\}$; otherwise set $\mathbf{T}_k = \mathbf{T}$. If **T** has a left scattered maximum M, define $\mathbf{T}^k = \mathbf{T} - \{M\}$; otherwise set $\mathbf{T}^k = \mathbf{T}$.

Definition 1.2. For $x : \mathbf{T} \to R$ and $t \in \mathbf{T}^k$, we define the delta derivative of $x(t), x^{\Delta}(t)$, to be the number (when it exists), with the property that, for any $\varepsilon > 0$, there is a neighborhood U of t such that

$$\left| \left[x(\sigma(t)) - x(s) \right] - x^{\Delta}(t) \left[\sigma(t) - s \right] \right| < \varepsilon \left| \sigma(t) - s \right|,$$

for all $s \in U$. For $x : \mathbf{T} \to R$ and $t \in \mathbf{T}_k$, we define the nabla derivative of x(t), $x^{\nabla}(t)$, to be the number (when it exists), with the property that, for any $\varepsilon > 0$, there is a neighborhood V of t such that

$$\left| \left[x(\rho(t)) - x(s) \right] - x^{\nabla}(t) \left[\rho(t) - s \right] \right| < \varepsilon \left| \rho(t) - s \right|,$$

for all $s \in V$.

If $\mathbf{T} = R$, then $x^{\triangle}(t) = x^{\nabla}(t) = x'(t)$. If $\mathbf{T} = Z$, then $x^{\triangle}(t) = x(t+1) - x(t)$ is the forward difference operator while $x^{\nabla}(t) = x(t) - x(t-1)$ is the backward difference operator.

Definition 1.3. If $F^{\triangle}(t) = f(t)$, then we define the delta integral by

$$\int_{a}^{t} f(s) \Delta s = F(t) - F(a).$$

If $\Phi^{\nabla}(t) = f(t)$, then we define the nabla integral by

$$\int_{a}^{t} f(s)\nabla s = \Phi(t) - \Phi(a).$$

Throughout this papers, we assume T is closed subset of R with $0 \in \mathbf{T}_k$ and $T \in \mathbf{T}^k$.

Lemma 1.1. ([15]). The following formulas hold:

$$(i) \left(\int_{a}^{t} f(s) \Delta s\right)^{\Delta} = f(t),$$

$$(ii) \left(\int_{a}^{t} f(s) \Delta s\right)^{\nabla} = f(\rho(t)),$$

$$(iii) \left(\int_{a}^{t} f(s) \nabla s\right)^{\Delta} = f(\sigma(t)),$$

$$(iv) \left(\int_{a}^{t} f(s) \nabla s\right)^{\nabla} = f(t).$$

2. Preliminaries

In this section, we provide some background materials from the theory of cones in Banach spaces and we then state the Leggett-Williams fixed-point theorem.

Definition 2.1. Let *E* be a real Banach space. A nonempty, closed, convex set $P \subset E$ is said to be a cone provided the following conditions are satisfied:

- (i) if $x \in P$ and $\lambda \ge 0$, then $\lambda x \in P$;
- (ii) if $x \in P$ and $-x \in P$, then x = 0.

Every cone $P \subset E$ induces an ordering in E given by

$$x \leq y$$
 if and only if $y - x \in P$.

Definition 2.2. Let *E* be a real Banach space and $P \subset E$ be a cone. A function $\alpha : P \to [0, \infty)$ is called a nonnegative continuous concave functional if α is continuous and

$$\alpha(tx + (1-t)y) \ge t\alpha(x) + (1-t)\alpha(y)$$

for all $x, y \in P$ and $t \in [0, 1]$.

Let a, b, c > 0 be constants, $P_c = \{x \in P : ||x|| < c\}$, $P(\alpha, a, b) = \{x \in P : a \le \alpha(x), ||x|| \le b\}$.

To prove our main results, we need the following theorem [19].

Theorem 2.1. (Leggett-Williams). Let $A : \overline{P}_c \to \overline{P}_c$ be a completely continuous map and α be a nonnegative continuous concave functional on P such that $\alpha(x) \leq ||x||$, $\forall x \in \overline{P}_c$. Suppose there exist a, b, d with $0 < a < b < d \leq c$, such that:

- (i) $\{x \in P(\alpha, b, d) : \alpha(x) > b\} \neq \phi$ and $\alpha(Ax) > b$ for all $x \in P(\alpha, b, d)$;
- (*ii*) ||Ax|| < a for all $x \in \overline{P}_a$;
- (iii) $\alpha(Ax) > b$, for all $x \in P(\alpha, b, c)$ with ||Ax|| > d.

Then A has at least three fixed points x_1, x_2, x_3 satisfying

$$||x_1|| < a, \ b < \alpha(x_2), \ ||x_3|| > a \text{ and } \alpha(x_3) < b.$$

3. POSITIVE SOLUTIONS OF THE BVP (1.1), (1.2)

In this section we consider the existence of three positive solutions for the BVP (1.1), (1.2).

We say u is concave on $[0, T]_{\mathbf{T}}$ if $u^{\triangle \nabla}(t) \leq 0$ for $t \in [0, T]_{\mathbf{T}^k \cap \mathbf{T}_k}$. We note that u(t) is a solution of the BVP (1.1), (1.2) if and only if

$$u(t) = \begin{cases} B_0 \left(\Phi_q \left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \right) & t \in [0, T]_{\mathbf{T}}, \\ + \int_{0}^{t} \Phi_q \left(\int_{s}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \Delta s, \\ \varphi(t), & t \in [-r, 0]_{\mathbf{T}} \end{cases}$$

Let $E = C_{\mathbf{ld}}^{\triangle}([0,T]_{\mathbf{T}}, R)$ with $||u|| = \max \left\{ \max_{t \in [0,T]_{\mathbf{T}}} |u(t)|, \max_{t \in [0,T]_{\mathbf{T}^k}} |u^{\triangle}(t)| \right\}$, $P = \{u \in E : u \text{ is nonnegative, increasing and concave on } [0,T]_{\mathbf{T}} \}$. So E is a Banach space with the norm ||u|| and P is a cone in E. For each $u \in E$, extend u(t) to $[-r,T]_{\mathbf{T}}$ with $u(t) = \varphi(t)$ for $t \in [-r,0]_{\mathbf{T}}$.

Define $F: P \to E$ by

$$(Fu)(t) = B_0 \left(\Phi_q \left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \right) + \int_{0}^{t} \Phi_q \left(\int_{s}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \Delta s, t \in [0, T]_{\mathbf{T}}.$$

It is well known that this operator F is completely continuous. We seek a fixed point, u_1 , of F in the cone P. Define

$$u(t) = \begin{cases} \varphi(t), & t \in [-r, 0]_{\mathbf{T}}, \\ u_1(t), & t \in [0, T]_{\mathbf{T}}. \end{cases}$$

Then u(t) denotes a positive solution of the BVP (1.1), (1.2).

Lemma 3.1. $F: P \rightarrow P$.

Proof. The proof of the lemma is similar to that of [25, Lemma 3.1]. For the sake of convenience, we list it here.

 $\forall u \in P, Fu \in E \text{ and } (Fu)(t) \ge 0, \forall t \in [0,T]_{\mathbf{T}}$. It follows from Lemma 1.1 we have

$$(Fu)^{\triangle}(t) = \Phi_q\left(\int_t^T a(r)f(u(r), u(\mu(r)))\nabla r\right).$$

Obviously $(Fu)^{\triangle}(t)$ is a continuous function and $(Fu)^{\triangle}(t) \ge 0$, that is (Fu)(t) is increasing on $[0,T]_{\mathbf{T}}$. Note that Φ_q is increasing, we have that $(Fu)^{\triangle}(t)$ is decreasing.

If $t \in [0, T]_{\mathbf{T}^k \cap \mathbf{T}_k}$, then from [7, Theorem 2.3] it follows that $(Fu)^{\Delta \nabla}(t) \leq 0$, i.e., Fu is concave on $[0, T]_{\mathbf{T}}$. This implies that $Fu \in P$ and $F: P \to P$.

Let $l \in \mathbf{T}$ be fixed such that $0 < \eta < l < T$, and set

$$Y_1 = \{t \in [0,T]_{\mathbf{T}} : \mu(t) \le 0\}; \ Y_2 = \{t \in [0,T]_{\mathbf{T}} : \mu(t) > 0\}; \ Y_3 = Y_1 \cap [\eta,T]_{\mathbf{T}}.$$

Throughout this section, we assume $Y_3 \neq \phi$ and $\int_{Y_3} a(r) \nabla r > 0$.

Now we define the nonnegative continuous concave functional $\alpha: P \to [0, \infty)$ by

$$\alpha(u) = \min_{t \in [\eta, l]_{\mathbf{T}}} u(t), \ \forall u \in P.$$

It is easy to see that $\alpha(u) = u(\eta) \leq \max_{t \in [0,T]_{\mathbf{T}}} |u(t)| \leq ||u||$ if $u \in P$ and $\alpha(Fu) = (Fu)(\eta)$.

For convenience, we denote

$$\rho = (A+T)\Phi_q\left(\int_0^T a(r)\nabla r\right), \ \delta = (B+\eta)\Phi_q\left(\int_{Y_3} a(r)\nabla r\right).$$

We now state growth conditions on f so that the BVP (1.1), (1.2) has at least three positive solutions.

Theorem 3.1. Let $0 < a < b \leq \frac{m(B+\eta)}{M(A+T)}d < d \leq c$, and suppose that f satisfies the following conditions:

- $\begin{array}{ll} (H_1) \ f(x,\varphi(s)) < \Phi_p(\frac{a}{\rho}), \mbox{ for all } 0 \leq x \leq a, \mbox{ uniformly in } s \in [-r,0]_{\mathbf{T}}; \\ f(x_1,x_2) < \Phi_p(\frac{a}{\rho}), \mbox{ for all } 0 \leq x_i \leq a, \ i=1,2, \end{array}$
- (H₂) $f(x,\varphi(s)) \leq \Phi_p(\frac{c}{\rho})$, for all $0 \leq x \leq c$, uniformly in $s \in [-r,0]_{\mathbf{T}}$; $f(x_1,x_2) \leq \Phi_p(\frac{c}{\rho})$, for all $0 \leq x_i \leq c$, i = 1, 2,
- $(H_3) \ f(x,\varphi(s)) > \Phi_p(\frac{b}{\delta}), \text{ for all } b \leq x \leq d, \text{ uniformly in } s \in [-r,0]_{\mathbf{T}},$
- $(H_4) \min_{x \in [0,c]} f(x,\varphi(s)) \cdot \Phi_p\left(\frac{M}{m}\right) \int_{Y_3} a(r) \nabla r \ge \max_{x_1,x_2 \in [0,c]} f(x_1,x_2) \cdot \int_0^T a(r) \nabla r, \text{ uniformly in } s \in [-r,0]_{\mathbf{T}}.$

Then the BVP (1.1), (1.2) has at least three positive solutions of the form

$$u(t) = \begin{cases} \varphi(t), & t \in [-r, 0]_{\mathbf{T}}, \\ u_i(t), & t \in [0, T]_{\mathbf{T}}, & i = 1, 2, 3, \end{cases}$$

where $||u_1|| < a, b < \alpha(u_2), ||u_3|| > a$ and $\alpha(u_3) < b$.

Proof. We first assert that $F: \overline{P}_c \to \overline{P}_c$.

Indeed, if $u \in \overline{P}_c$, then, in view of lemma 3.1, we have $F\overline{P}_c \subset P$. Furthermore, $\forall u \in \overline{P}_c$, we have $0 \le u \le c$, and then from (H₂), we have

$$\begin{aligned} Fu(t)| &= \left| B_0 \left(\Phi_q \left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \right) \right. \\ &+ \int_{0}^{t} \Phi_q \left(\int_{s}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \Delta s \\ &\leq A \Phi_q \left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \\ &+ T \Phi_q \left(\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \\ &\leq (A + T) \Phi_q \left(\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \\ &= (A + T) \Phi_q \left(\int_{Y_1} a(r) f(u(r), \varphi(\mu(r))) \nabla r \right) \\ &+ \int_{Y_2} a(r) f(u(r), u(\mu(r))) \nabla r \right) \\ &\leq (A + T) \Phi_q \left(\int_{0}^{T} a(r) \nabla r \right) \frac{c}{\rho} \\ &= c, \end{aligned}$$

Da-Bin Wang and Wen Guan

$$\begin{split} \left| (Fu)^{\Delta}(t) \right| &= \left| \Phi_q \left(\int_t^T a(r) f(u(r), u(\mu(r))) \nabla r \right) \right| \\ &\leq \Phi_q \left(\int_0^T a(r) f(u(r), u(\mu(r))) \nabla r \right) \\ &= \Phi_q \left(\int_{Y_1} a(r) f(u(r), \varphi(\mu(r))) \nabla r \right) \\ &+ \int_{Y_2} a(r) f(u(r), u(\mu(r))) \nabla r \right) \\ &\leq \Phi_q \left(\int_0^T a(r) \nabla r \right) \frac{c}{\rho} \\ &= \frac{c}{A+T} \\ &\leq c. \end{split}$$

Therefore, $||Fu|| \leq c$, i.e., $F: \overline{P}_c \to \overline{P}_c$. By (H₁) and in a way similar to above, we arrive that $F: \overline{P}_a \to P_a$. Next, we assert that $\{u \in P(\alpha, b, d) : \alpha(u) > b\} \neq \phi$ and $\alpha(Au) > b$ for all

 $u \in P(\alpha, b, d).$ Let $u = \frac{b+d}{2}$, then $u \in P$, $||u|| = \frac{b+d}{2} \le d$ and $\alpha(u) = \frac{b+d}{2} > b$. That is, $\{u \in P(\alpha, b, d) : \alpha(u) > b\} \ne \phi.$

Moreover, $\forall u \in P(\alpha, b, d)$, we have $b \leq u(t) \leq d, t \in [\eta, T]_{\mathbf{T}}$, then from (H₃), we see that

$$\begin{split} \alpha(Fu) &= (Fu) \left(\eta\right) \\ &= B_0 \left(\Phi_q \left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \right) \\ &+ \int_{0}^{\eta} \Phi_q \left(\int_{s}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \Delta s \\ &\geq B \Phi_q \left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \\ &+ \eta \Phi_q \left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \\ &\geq (B + \eta) \Phi_q \left(\int_{Y_3} a(r) f(u(r), \varphi(\mu(r))) \nabla r \right) \\ &\geq (B + \eta) \Phi_q \left(\int_{Y_3} a(r) \nabla r \right) \frac{b}{\delta} \\ &= b, \end{split}$$

as required.

Finally, we assert that $\alpha(Fu) > b$, for all $u \in P(\alpha, b, c)$ and ||Fu|| > d.

To see this, $\forall u \in P(\alpha, b, c)$ and ||Fu|| > d, then $0 \le u(t) \le c, t \in [0, T]_{\mathbf{T}}$, then from (H₄), we have

$$\Phi_p\left(\frac{M}{m}\right)\int_{Y_3}a(r)f(u(r),\varphi(\mu(r)))\nabla r \ge \int_0^Ta(r)f(u(r),u(\mu(r)))\nabla r,$$

i.e.

$$\int_{Y_3} a(r) f(u(r), \varphi(\mu(r))) \nabla r \ge \frac{\int_0^T a(r) f(u(r), u(\mu(r))) \nabla r}{\Phi_p\left(\frac{M}{m}\right)}$$

holds. So,

$$\begin{aligned} \alpha(Fu) &= (Fu) (\eta) \\ &= B_0 \left(\Phi_q \left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \right) \\ &+ \int_{0}^{\eta} \Phi_q \left(\int_{s}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \Delta s \\ &\geq B \Phi_q \left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \\ &+ \eta \Phi_q \left(\int_{\eta}^{T} a(r) f(u(r), \varphi(\mu(r))) \nabla r \right) \\ &\geq (B + \eta) \Phi_q \left(\int_{Y_3}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \\ &\geq (B + \eta) \Phi_q \left(\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \\ &= \frac{m (B + \eta)}{M} \Phi_q \left(\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \\ &= \frac{m (B + \eta)}{M (A + T)} (A + T) \Phi_q \left(\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r \right) \\ &\geq \frac{m (B + \eta)}{M (A + T)} \|Fu\| \\ &> \frac{m (B + \eta)}{M (A + T)} d \\ &\geq b. \end{aligned}$$

To sum up, all the hypotheses of Theorem 2.1 are satisfied. Hence F has at least three fixed points, i.e., the BVP (1.1), (1.2) has at least three positive solutions

of the form

$$u(t) = \begin{cases} \varphi(t), & t \in [-r, 0]_{\mathbf{T}}, \\ u_i(t), & t \in [0, T]_{\mathbf{T}}, \\ & i = 1, 2, 3, \end{cases}$$

where $||u_1|| < a, b < \alpha(u_2), ||u_3|| > a$ and $\alpha(u_3) < b$.

4. POSITIVE SOLUTIONS OF THE BVP (1.1), (1.3)

In this section we deal with the BVP (1.1), (1.3). We note that u(t) is a solution of the BVP (1.1), (1.3) if and only if

$$u(t) = \begin{cases} B_1\left(\Phi_q\left(\int_0^{\eta} a(r)f(u(r), u(\mu(r)))\nabla r\right)\right) & t \in [0, T]_{\mathbf{T}}, \\ +\int_t^T \Phi_q\left(\int_0^s a(r)f(u(r), u(\mu(r)))\nabla r\right) \Delta s, & t \in [-r, 0]_{\mathbf{T}}. \end{cases}$$

Let $E = C_{\mathbf{ld}}^{\triangle}([0,T]_{\mathbf{T}}, R)$ with $||u|| = \max \left\{ \max_{t \in [0,T]_{\mathbf{T}}} |u(t)|, \max_{t \in [0,T]_{\mathbf{T}}k} |u^{\triangle}(t)| \right\}$, $P_1 = \{u \in E : u \text{ is nonnegative, decreasing and concave on } [0,T]_{\mathbf{T}}\}$. So E is a Banach space with the norm ||u|| and P_1 is a cone in E. For each $u \in E$, extend u(t) to $[-r,T]_{\mathbf{T}}$ with $u(t) = \varphi(t)$ for $t \in [-r,0]_{\mathbf{T}}$.

Define completely continuous operator $G: P_1 \to E$ by

$$(Gu)(t) = B_1 \left(\Phi_q \left(\int_0^{\eta} a(r) f(u(r), u(\mu(r))) \nabla r \right) \right)$$

+
$$\int_t^T \Phi_q \left(\int_0^s a(r) f(u(r), u(\mu(r))) \nabla r \right) \Delta s, \ t \in [0, T]_{\mathbf{T}}.$$

We seek a fixed point, u_1 , of G in the cone P_1 . Define

$$u(t) = \begin{cases} \varphi(t), & t \in [-r, 0]_{\mathbf{T}}, \\ u_1(t), & t \in [0, T]_{\mathbf{T}}. \end{cases}$$

Then u(t) denotes a positive solution of the BVP (1.1), (1.3).

Lemma 4.1. $G: P_1 \rightarrow P_1$.

Proof. The proof is similar to Lemma 3.1, so we omit here. Let $l \in \mathbf{T}$ be fixed such that $0 < \eta < l < T$, and set

$$Y_1 = \{t \in [0,T]_{\mathbf{T}} : \mu(t) \le 0\}; \ Y_2 = \{t \in [0,T]_{\mathbf{T}} : \mu(t) > 0\}; \ Y_3 = Y_1 \cap [0,\eta]_{\mathbf{T}}$$

Throughout this section, we assume $Y_3 \neq \phi$ and $\int_{Y_3} a(r) \nabla r > 0$. Define the nonnegative continuous concave functional $\alpha : P_1 \rightarrow [0, \infty)$ by

$$\alpha(u) = \min_{t \in [\eta, l]_{\mathbf{T}}} u(t), \ \forall u \in P_1$$

It is easy to see that $\alpha(u) = u(l) \leq \max_{t \in [0,T]_{\mathbf{T}}} |u(t)| \leq ||u||$ if $u \in P$ and $\alpha(Fu) = (Fu)(l)$.

Let ρ remains unchanged and we denotes

$$\delta_* = (B + T - l)\Phi_q \left(\int_{Y_3} a(r)\nabla r\right).$$

Similarly to Theorem 3.1, we have

Theorem 4.1. Let $0 < a < b \leq \frac{m(B+T-l)}{M(A+T)}d < d \leq c$, and suppose that f satisfies the following conditions:

- (H₁) $f(x,\varphi(s)) < \Phi_p(\frac{a}{\rho})$, for all $0 \le x \le a$, uniformly in $s \in [-r,0]_{\mathbf{T}}$; $f(x_1,x_2) < \Phi_p(\frac{a}{\rho})$, for all $0 \le x_i \le a$, i = 1, 2,
- $f(x_1, x_2) < \Phi_p(\frac{a}{\rho}), \text{ for all } 0 \le x_i \le a, i = 1, 2,$ (H₂) $f(x, \varphi(s)) \le \Phi_p(\frac{c}{\rho}), \text{ for all } 0 \le x \le c, \text{ uniformly in } s \in [-r, 0]_{\mathbf{T}};$ $f(x_1, x_2) \le \Phi_p(\frac{c}{\rho}), \text{ for all } 0 \le x_i \le c, i = 1, 2,$
- (H_3) $f(x,\varphi(s)) > \Phi_p(\frac{b}{\delta_*})$, for all $b \le x \le d$, uniformly in $s \in [-r,0]_{\mathbf{T}}$,
- $(H_4) \min_{x \in [0,c]} f(x,\varphi(s)) \cdot \Phi_p\left(\frac{M}{m}\right) \int_{Y_3} a(r) \nabla r \ge \max_{x_1, x_2 \in [0,c]} f(x_1, x_2) \cdot \int_0^T a(r) \nabla r,$ uniformly in $s \in [-r,0]_{\mathbf{T}}$.

Then the BVP (1.1), (1.3) has at least three positive solutions of the form

$$u(t) = \begin{cases} \varphi(t), & t \in [-r, 0]_{\mathbf{T}}, \\ u_i(t), & t \in [0, T]_{\mathbf{T}}, & i = 1, 2, 3, \end{cases}$$

where $||u_1|| < a, b < \alpha(u_2), ||u_3|| > a \text{ and } \alpha(u_3) < b.$

5. EXAMPLE

Let $\mathbf{T} = \left[-\frac{3}{4}, -\frac{1}{4}\right] \cup \left\{0, \frac{3}{4}\right\} \cup \left\{\left(\frac{1}{2}\right)^{\mathbb{N}_0}\right\}$, where \mathbb{N}_0 denotes the set of all nonnegative integers.

Consider the following p-Laplacian functional dynamic equation on time scale \mathbf{T}

(5.1)
$$\begin{cases} \left[\Phi_p(u^{\triangle}(t)) \right]^{\bigtriangledown} + a(t) \left[\frac{8u^3(t)}{u^3(t) + u^3(t - \frac{3}{4}) + 1} + \frac{1}{5} \right] = 0, \ t \in (0, 1)_{\mathbf{T}}, \\ u_0(t) = \varphi(t) \equiv 0, \ t \in \left[-\frac{3}{4}, 0 \right]_{\mathbf{T}}, \ u(0) - B_0(u^{\triangle}(\frac{1}{4})) = 0, u^{\triangle}(1) = 0, \end{cases}$$

where
$$T = 1$$
, $p = \frac{3}{2}$, $B = \frac{1}{2}$, $A = 2$, $\mu : [0, 1]_{\mathbf{T}} \to \left[-\frac{3}{4}, 1\right]_{\mathbf{T}}$ and $\mu(t) = t - \frac{3}{4}$,
 $r = \frac{3}{4}, \eta = \frac{1}{4}, l = \frac{1}{2}, f(u, \varphi(s)) = \frac{8u^3}{u^3 + 1} + \frac{1}{5}, f(u_1, u_2) = \frac{8u^3}{u^3_1 + u^2_2 + 1} + \frac{1}{5}$ and
 $a(t) = \begin{cases} 1, & t \in [0, \frac{1}{2}]_{\mathbf{T}}, \\ -\frac{99}{50}t + \frac{199}{100}, & t \in [\frac{1}{2}, 1]_{\mathbf{T}}. \end{cases}$

We deduce that $Y_1 = \begin{bmatrix} 0, \frac{3}{4} \end{bmatrix}_{\mathbf{T}}$, $Y_2 = \begin{pmatrix} \frac{3}{4}, 1 \end{bmatrix}_{\mathbf{T}}$, $Y_3 = \begin{bmatrix} \frac{1}{4}, \frac{3}{4} \end{bmatrix}_{\mathbf{T}}$. Then by [7, Theorem 2.8] we have $\int_{Y_3} a(r) \nabla r = \int_{\frac{1}{4}}^{\frac{3}{4}} a(r) \nabla r = \frac{301}{800}$, $\int_0^T a(r) \nabla r = \int_0^1 a(r)$ $\frac{503}{800}$

Thus it is easy to see by calculation that $\rho = 3 \left(\frac{503}{800}\right)^2$, $\delta = \frac{3}{4} \left(\frac{301}{800}\right)^2$. Choose $a = \frac{1}{10}$, b = 1, d = 42000, c = 45000 then by M = 1, $m = \frac{1}{10000}$ we have $0 < a < b < \frac{m(B+\eta)}{M(A+T)}d < d < c$, then

$$\begin{split} f(u,\varphi(s)) &\leq \frac{8}{1001} + \frac{1}{5} \approx 0.2080 < \Phi_p(\frac{a}{\rho}) = \sqrt{\frac{1}{10}}{\frac{1}{3(\frac{503}{800})^2}} \approx 0.2904, 0 \leq u \leq \\ \frac{1}{10}, \text{ uniformly in } s \in \left[-\frac{3}{4}, 0\right]_{\mathbf{T}}; \\ f(u_1, u_2) &\leq \frac{8}{1002} + \frac{1}{5} \approx 0.2080 < \Phi_p(\frac{a}{\rho}) = \sqrt{\frac{1}{\frac{10}{3(\frac{503}{800})^2}}} \approx 0.2904, 0 \leq u_i \leq \\ \frac{1}{10}, i = 1, 2, \\ f(u,\varphi(s)) < 8.2 < \Phi_p(\frac{c}{\rho}) = \sqrt{\frac{45000}{3(\frac{503}{800})^2}} \approx 195, 0 \leq u \leq 45000, \text{ uniformly} \\ \text{in } s \in \left[-\frac{3}{4}, 0\right]_{\mathbf{T}}; \\ f(u_1, u_2) < 8.2 < \Phi_p(\frac{c}{\rho}) = \sqrt{\frac{45000}{3(\frac{503}{800})^2}} \approx 195, 0 \leq u_i \leq 45000, i = 1, 2, \\ f(u,\varphi(s)) \geq 4.2 > \Phi_p(\frac{b}{\delta}) = \sqrt{\frac{1}{\frac{3}{4}(\frac{301}{800})^2}} \approx 3.0690, 1 \leq u \leq 42000, \text{ uniformly} \\ \text{in } s \in \left[-\frac{3}{4}, 0\right]_{\mathbf{T}} \\ \min_{u \in [0,c]} f(u,\varphi(s)) \cdot \Phi_p\left(\frac{M}{m}\right) \int_{Y_3} a(r) \nabla r = 7.5250 > 5.1558 \approx \frac{41}{5} \cdot \frac{503}{800} > \\ \max_{u_i \in [0,c]} f(u_1, u_2) \cdot \int_0^T a(r) \nabla r, \text{ uniformly in } s \in \left[-\frac{3}{4}, 0\right]_{\mathbf{T}}. \end{split}$$

Thus by Theorem 3.1, the BVP (5.1) has at least three positive solutions of the form

$$u(t) = \begin{cases} u_i(t), & t \in [0, T], \ i = 1, 2, 3, \\ \varphi(t), & t \in [-r, 0], \end{cases}$$

where $||u_1|| < \frac{1}{10}$, $1 < \alpha(u_2)$, $||u_3|| > \frac{1}{10}$ and $\alpha(u_3) < 1$.

References

- R. P. Agarwal and M. Bohner, Quadratic functionals for second order matrix equations on time scales, *Nonlinear Anal.*, 33 (1998), 675-692.
- R. P. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, *Results Math.*, 35 (1999), 3-22.
- 3. R. P. Agarwal, M. Bohner and P. J. Y. Wong, Sturm-Liouville eigenvalue problems on time scales, *Appl. Math. Comput.*, **99** (1999), 153-166.
- D. R. Anderson, Solutions to second-order three-point problems on time scales, J. Difference. Equations Appl., 8(2002), 673-688.
- D. R. Anderson, R. Avery and J. Henderson, Existence of solutions for a one dimensional *p*-Laplacian on time-scales, *J. Difference. Equations Appl.*, 10 (2004), 889-896.
- 6. E. Akin, Boundary value problems for a differential equation on a measure chain, *Panamer. Math. J.*, **10**, (2000), 17-30.
- F. M. Atici and G. SH. Guseinov, On Green's functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math., 141 (2002), 75-99.
- R. I. Avery, C. J. Chyan and J. Henderson, Twin solutions of boundary value problems for ordinary differential equations and finite difference equations, *Comput. Math. Appl.*, 42 (2001), 695-704.
- 9. M. Bohner and A. Peterson, *Dynamic Equations on Time Scales: An Introduction with Applications*, Birkhauser, Boston, 2001.
- M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
- 11. C. J. Chyan and J. Henderson, Eigenvalue problems for nonlinear differential equations on a measure chain, J. Math. Anal. Appl, 245 (2000), 547-559.
- L. Erbe and A. Peterson, Positive solutions for a nonlinear differential equation on a measure chain, *Math. Comput. Modelling.*, **325-6**) ((2000), 571-585.
- 13. J. Henderson, Multiple solutions for 2mth-order Sturm-Liouville boundary value problems on a measure chain, J. Difference Equations. Appl., 6 (2000), 417-429.
- Z. M. He, Double positive solutions of three-point boundary value problems for *p*-Laplacian dynamic equations on time scales, *J. Comput. Appl. Math.*, 182 (2005), 304-315.
- 15. S. H. Hong, Triple positive solutions of three-point boundary value problems for *p*-Laplacian dynamic equations on time scales, *J. Comput. Appl. Math.*, **206** (2007), 967-976.
- S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, *Results Math.*, 18 (1990), 18-56.

- 17. B. Kaymakcalan, V. Lakshmikantham and S. Sivasundaram, *Dynamical Systems on Measure Chains*, Kluwer Academic Publishers, Boston, 1996.
- 18. E. R. Kaufmann, Y. N. Raffoul, Positive solutions for a nonlinear functional dynamic equation on a time scale, *Nonlinear Anal.*, **62** (2005), 1267-1276.
- 19. R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, *Indiana Univ. Math. J.*, 28 (1979), 673-688.
- 20. A. C. Peterson, Y. N. Raffoul and C. C. Tisdell, Three point boundary value problems on time scales, *J. Difference. Equations Appl.*, **10** (2004), 843-849.
- 21. C. X. Song and C. T. Xiao, Positive solutions for *p*-Laplacian functional dynamic equations on time scales, *Nonlinear Anal.*, **66** (2007), 1989-1998.
- 22. H. R. Sun and W. T. Li, Positive solutions for nonlinear *m*-point boundary value problems on time scales, *Acta. Math. Sinica.*, **49** (2006), 369-380, (in Chinese).
- 23. J. P. Sun, A new existence theorem for right focal boundary value problems on a measure chain, *Appl. Math. Letters.*, **18** (2005), 41-47.
- D. B. Wang, Existence, multiplicity and infinite solvability of positive solutions for *p*-Laplacian dynamic equations on time scales, *Electronic J. Differential equations.*, 96 (2006), 1-10.
- 25. D. B. Wang, Three positive solutions of three-point boundary value problems for *p*-Laplacian dynamic equations on time scales, *Nonlinear Anal.*, **68** (2008), 2172-2180.
- 26. D. X. Zhao, H. Z. Wang and W. G. Ge, Existence of triple positive solutions to a class of *p*-Laplacian boundary value problems, *J. Math. Anal. Appl.*, **328** (2007), 972-983.

Da-Bin Wang^{1,2} and Wen Guan² ¹College of Mathematics, Sichuan University, Chengdu, Sichuan 610064, P. R. China

²Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050,
P. R. China
E-mail: wangdb@lut.cn mathgw@cohu.com