MULTIPLE POSITIVE SOLUTIONS FOR p-LAPLACIAN FUNCTIONAL DYNAMIC EQUATIONS ON TIME SCALES

Da-Bin Wang* and Wen Guan

Abstract

In this paper we consider the following boundary value problems for p-Laplacian functional dynamic equations on time scales $$
\begin{aligned} & {\left[\Phi_{p}\left(u^{\triangle}(t)\right)\right]^{\nabla}+a(t) f(u(t), u(\mu(t)))=0, t \in(0, T)_{\mathbf{T}}, } \\ u_{0}(t)= & \varphi(t), t \in[-r, 0]_{\mathbf{T}}, u(0)-B_{0}\left(u^{\triangle}(\eta)\right)=0, u^{\triangle}(T)=0, \text { or } \\ u_{0}(t)= & \varphi(t), t \in[-r, 0]_{\mathbf{T}}, u^{\triangle}(0)=0, u(T)+B_{1}\left(u^{\triangle}(\eta)\right)=0 . \end{aligned}
$$

Some existence criteria of at least three positive solutions are established by using the well-known Leggett-Williams fixed-point theorem. An example is also given to illustrate the main results.

1. Introduction

Let \mathbf{T} be a time scale, i.e., \mathbf{T} is a nonempty closed subset of R. Let $0, T$ be points in \mathbf{T}, an interval $[0, T]_{\mathbf{T}}$ denoting time scales interval, that is, $[0, T]_{\mathbf{T}}:=$ $[0, T] \cap \mathbf{T}$. Other types of intervals are defined similarly.

The theory of dynamic equations on time scales has been a new important mathematical branch (see, for example, [1, 2, 9, 10, 17]) since it was initiated by Hilger [16]. At the same time, boundary value problems (BVPs) for dynamic equation on time scales have received considerable attention [3-7, 11-15, 18, 20-25]. However, to the best of our knowledge, there is not much concerning for BVPs of p-Laplacian dynamic equations on time scales [5, 14, 15, 21, 24, 25], especially for p-Laplacian functional dynamic equations on time scales [21].

[^0]For convenience, throughout this paper we denote $\Phi_{p}(s)$ as the p-Laplacian operator, i.e., $\Phi_{p}(s)=|s|^{p-2} s, p>1,\left(\Phi_{p}\right)^{-1}=\Phi_{q}, \frac{1}{p}+\frac{1}{q}=1$.

In [5], Anderson, Avery and Henderson considered the following BVP on time scales

$$
\begin{gathered}
{\left[\Phi_{p}\left(u^{\triangle}(t)\right)\right]^{\nabla}+c(t) f(u)=0, t \in(a, b)_{\mathbf{T}}} \\
u(a)-B_{0}\left(u^{\triangle}(v)\right)=0, u^{\triangle}(b)=0
\end{gathered}
$$

where $v \in(a, b)_{\mathbf{T}}, f \in C_{\mathbf{l d}}([0,+\infty),[0,+\infty)), c \in C_{\mathbf{l d}}([a, b],[0,+\infty))$ and $K_{m} x \leq B_{0}(x) \leq K_{M} x$ for some positive constants K_{m}, K_{M}. They established the existence result of at least one positive solution by a fixed point theorem of cone expansion and compression of functional type.

In [21], by using a double fixed-point theorem due to Avery et al.[8], Song and Xiao considered the existence of at least twin positive solutions to the following p-Laplacian functional dynamic equations on time scales

$$
\begin{equation*}
\left[\Phi_{p}\left(u^{\triangle}(t)\right)\right]^{\nabla}+a(t) f(u(t), u(\mu(t)))=0, t \in(0, T)_{\mathbf{T}} \tag{1.1}
\end{equation*}
$$

satisfying the boundary value conditions

$$
\begin{equation*}
u_{0}(t)=\varphi(t), t \in[-r, 0]_{\mathbf{T}}, u(0)-B_{0}\left(u^{\triangle}(\eta)\right)=0, u^{\triangle}(T)=0 \tag{1.2}
\end{equation*}
$$

where $\eta \in(0, \rho(T))_{\mathbf{T}}$.
Very recently, Zhao, Wang and Ge [26] considered the existence of at least three positive solutions to the following p-Laplacian problem

$$
\begin{gathered}
{\left[\Phi_{p}\left(u^{\prime}(t)\right)\right]^{\prime}+a(t) f\left(u, u^{\prime}\right)=0, t \in[0,1]} \\
u^{\prime}(0)=u(1)=0
\end{gathered}
$$

The main tool used in [26] is Leggett-Williams fixed-point theorem.
Motivated by the results mentioned above, in this paper, let \mathbf{T} be a time scale such that $-r, 0, T \in \mathbf{T}$, we shall show that the BVP (1.1) with the boundary value conditions (1.2) or boundary value conditions

$$
\begin{equation*}
u_{0}(t)=\varphi(t), t \in[-r, 0]_{\mathbf{T}}, u^{\triangle}(0)=0, u(T)+B_{1}\left(u^{\triangle}(\eta)\right)=0 \tag{1.3}
\end{equation*}
$$

has at least three positive solutions by using Leggett-Williams fixed-point theorem [19].

In this article, we always assume that:
$\left(C_{1}\right) f:[0,+\infty)^{2} \rightarrow(0,+\infty)$ is continuous ;
$\left(C_{2}\right) a: \mathbf{T} \rightarrow(0,+\infty)$ is left dense continuous (i.e., $a \in C_{\mathbf{l d}}(\mathbf{T},(0,+\infty))$ and dose not vanish identically on any closed subinterval of $[0, T]_{\mathbf{T}}$, where $C_{\mathbf{l d}}(\mathbf{T},(0,+\infty))$ denotes the set of all left dense continuous functions from \mathbf{T} to $(0,+\infty), \min _{t \in[0, T]_{\mathbf{T}}} a(t)=\Phi_{p}(m), \max _{t \in[0, T]_{\mathbf{T}}} a(t)=\Phi_{p}(M)$, and $m<M$;
$\left(C_{3}\right) \varphi:[-r, 0]_{\mathbf{T}} \rightarrow[0,+\infty)$ is continuous and $r>0$;
(C4) $\mu:[0, T]_{\mathbf{T}} \rightarrow[-r, T]_{\mathbf{T}}$ is continuous, $\mu(t) \leq t$ for all t;
$\left(C_{5}\right) B_{0}(v)$ and $B_{1}(v)$ are both continuous functions defined on R and satisfy that there exist $B \geq 0$ and $A \geq 1$ such that

$$
B x \leq B_{j}(x) \leq A x, \text { for all } x \geq 0, j=0,1 .
$$

In the remainder of this section we list the following well known definitions which can be found in [2, 7, 9, 10].

Definition 1.1. For $t<\sup \mathbf{T}$ and $r>\inf \mathbf{T}$, define the forward jump operator σ and the backward jump operator ρ, respectively,

$$
\sigma(t)=\inf \{\tau \in \mathbf{T} \mid \tau>t\} \in \mathbf{T}, \rho(r)=\sup \{\tau \in \mathbf{T} \mid \tau<r\} \in \mathbf{T}
$$

for all $t, r \in \mathbf{T}$. If $\sigma(t)>t, t$ is said to be right scattered, and if $\rho(r)<r, r$ is sad to be left scattered. If $\sigma(t)=t, t$ is said to be right dense, and if $\rho(r)=r, r$ is said to be left dense. If \mathbf{T} has a right scattered minimum m, define $\mathbf{T}_{k}=\mathbf{T}-\{m\}$; otherwise set $\mathbf{T}_{k}=\mathbf{T}$. If \mathbf{T} has a left scattered maximum M, define $\mathbf{T}^{k}=\mathbf{T}-\{M\}$; otherwise set $\mathbf{T}^{k}=\mathbf{T}$.

Definition 1.2. For $x: \mathbf{T} \rightarrow R$ and $t \in \mathbf{T}^{k}$, we define the delta derivative of $x(t), x^{\Delta}(t)$, to be the number (when it exists), with the property that, for any $\varepsilon>0$, there is a neighborhood U of t such that

$$
\left|[x(\sigma(t))-x(s)]-x^{\Delta}(t)[\sigma(t)-s]\right|<\varepsilon|\sigma(t)-s|,
$$

for all $s \in U$. For $x: \mathbf{T} \rightarrow R$ and $t \in \mathbf{T}_{k}$, we define the nabla derivative of $x(t)$, $x^{\nabla}(t)$, to be the number (when it exists), with the property that, for any $\varepsilon>0$, there is a neighborhood V of t such that

$$
\left|[x(\rho(t))-x(s)]-x^{\nabla}(t)[\rho(t)-s]\right|<\varepsilon|\rho(t)-s|
$$

for all $s \in V$.
If $\mathbf{T}=R$, then $x^{\Delta}(t)=x^{\nabla}(t)=x^{\prime}(t)$. If $\mathbf{T}=Z$, then $x^{\Delta}(t)=x(t+1)-x(t)$ is the forward difference operator while $x^{\nabla}(t)=x(t)-x(t-1)$ is the backward difference operator.

Definition 1.3. If $F^{\triangle}(t)=f(t)$, then we define the delta integral by

$$
\int_{a}^{t} f(s) \triangle s=F(t)-F(a)
$$

If $\Phi^{\nabla}(t)=f(t)$, then we define the nabla integral by

$$
\int_{a}^{t} f(s) \nabla s=\Phi(t)-\Phi(a)
$$

Throughout this papers, we assume \mathbf{T} is closed subset of \mathbf{R} with $0 \in \mathbf{T}_{k}$ and $T \in \mathbf{T}^{k}$.

Lemma 1.1. ([15]). The following formulas hold:
(i) $\left(\int_{a}^{t} f(s) \triangle s\right)^{\triangle}=f(t)$,
(ii) $\left(\int_{a}^{t} f(s) \triangle s\right)^{\nabla}=f(\rho(t))$,
(iii) $\left(\int_{a}^{t} f(s) \nabla s\right)^{\triangle}=f(\sigma(t))$,
(iv) $\left(\int_{a}^{t} f(s) \nabla s\right)^{\nabla}=f(t)$.

2. Preliminaries

In this section, we provide some background materials from the theory of cones in Banach spaces and we then state the Leggett-Williams fixed-point theorem.

Definition 2.1. Let E be a real Banach space. A nonempty, closed, convex set $P \subset E$ is said to be a cone provided the following conditions are satisfied:
(i) if $x \in P$ and $\lambda \geq 0$, then $\lambda x \in P$;
(ii) if $x \in P$ and $-x \in P$, then $x=0$.

Every cone $P \subset E$ induces an ordering in E given by

$$
x \leq y \text { if and only if } y-x \in P
$$

Definition 2.2. Let E be a real Banach space and $\mathrm{P} \subset E$ be a cone. A function $\alpha: P \rightarrow[0, \infty)$ is called a nonnegative continuous concave functional if α is continuous and

$$
\alpha(t x+(1-t) y) \geq t \alpha(x)+(1-t) \alpha(y)
$$

for all $x, y \in P$ and $t \in[0,1]$.
Let $a, b, c>0$ be constants, $P_{c}=\{x \in P:\|x\|<c\}, P(\alpha, a, b)=\{x \in P: a$ $\leq \alpha(x),\|x\| \leq b\}$.

To prove our main results, we need the following theorem [19].
Theorem 2.1. (Leggett-Williams). Let $A: \bar{P}_{c} \rightarrow \bar{P}_{c}$ be a completely continuous map and α be a nonnegative continuous concave functional on P such that $\alpha(x) \leq$ $\|x\|, \forall x \in \bar{P}_{c}$. Suppose there exist a, b, d with $0<a<b<d \leq c$, such that:
(i) $\{x \in P(\alpha, b, d): \alpha(x)>b\} \neq \phi$ and $\alpha(A x)>b$ for all $x \in P(\alpha, b, d)$;
(ii) $\|A x\|<a$ for all $x \in \bar{P}_{a}$;
(iii) $\alpha(A x)>b$, for all $x \in P(\alpha, b, c)$ with $\|A x\|>d$.

Then A has at least three fixed points x_{1}, x_{2}, x_{3} satisfying

$$
\left\|x_{1}\right\|<a, b<\alpha\left(x_{2}\right),\left\|x_{3}\right\|>a \text { and } \alpha\left(x_{3}\right)<b
$$

3. Positive Solutions of the BVP (1.1), (1.2)

In this section we consider the existence of three positive solutions for the BVP (1.1), (1.2).

We say u is concave on $[0, T]_{\mathbf{T}}$ if $u^{\Delta \nabla}(t) \leq 0$ for $t \in[0, T]_{\mathbf{T}^{k} \cap \mathbf{T}_{k}}$.
We note that $u(t)$ is a solution of the BVP (1.1), (1.2) if and only if

$$
u(t)= \begin{cases}B_{0}\left(\Phi_{q}\left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right)\right) & \\ +\int_{0}^{t} \Phi_{q}\left(\int_{s}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \triangle s, & \\ \varphi(t), & t \in[-r, 0]_{\mathbf{T}}\end{cases}
$$

Let $E=C_{\mathbf{l d}}^{\triangle}\left([0, T]_{\mathbf{T}}, R\right)$ with $\|u\|=\max \left\{\max _{t \in[0, T]_{\mathbf{T}}}|u(t)|, \max _{t \in[0, T]_{\mathbf{T}^{k}}}\right.$ $\left.\left|u^{\triangle}(t)\right|\right\}, P=\left\{u \in E: u\right.$ is nonnegative, increasing and concave on $\left.[0, T]_{\mathbf{T}}\right\}$. So E is a Banach space with the norm $\|u\|$ and P is a cone in E. For each $u \in E$, extend $u(t)$ to $[-r, T]_{\mathbf{T}}$ with $u(t)=\varphi(t)$ for $t \in[-r, 0]_{\mathbf{T}}$.

Define $F: P \rightarrow E$ by

$$
\begin{aligned}
(F u)(t)= & B_{0}\left(\Phi_{q}\left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right)\right) \\
& +\int_{0}^{t} \Phi_{q}\left(\int_{s}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \triangle s, t \in[0, T]_{\mathbf{T}}
\end{aligned}
$$

It is well known that this operator F is completely continuous. We seek a fixed point, u_{1}, of F in the cone P. Define

$$
u(t)= \begin{cases}\varphi(t), & t \in[-r, 0]_{\mathbf{T}}, \\ u_{1}(t), & t \in[0, T]_{\mathbf{T}} .\end{cases}
$$

Then $u(t)$ denotes a positive solution of the BVP (1.1), (1.2).
Lemma 3.1. $F: P \rightarrow P$.
Proof. The proof of the lemma is similar to that of [25, Lemma 3.1]. For the sake of convenience, we list it here.
$\forall u \in P, F u \in E$ and $(F u)(t) \geq 0, \forall t \in[0, T]_{\mathbf{T}}$. It follows from Lemma 1.1 we have

$$
(F u)^{\triangle}(t)=\Phi_{q}\left(\int_{t}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right)
$$

Obviously $(F u)^{\triangle}(t)$ is a continuous function and $(F u)^{\triangle}(t) \geq 0$, that is $(F u)(t)$ is increasing on $[0, T]_{\mathbf{T}}$. Note that Φ_{q} is increasing, we have that $(F u)^{\Delta}(t)$ is decreasing.

If $t \in[0, T]_{\mathbf{T}^{k} \cap \mathbf{T}_{k}}$, then from [7, Theorem 2.3] it follows that $(F u)^{\Delta \nabla}(t) \leq 0$, i.e., $F u$ is concave on $[0, T]_{\mathbf{T}}$. This implies that $F u \in P$ and $F: P \rightarrow P$.

Let $l \in \mathbf{T}$ be fixed such that $0<\eta<l<T$, and set

$$
Y_{1}=\left\{t \in[0, T]_{\mathbf{T}}: \mu(t) \leq 0\right\} ; Y_{2}=\left\{t \in[0, T]_{\mathbf{T}}: \mu(t)>0\right\} ; Y_{3}=Y_{1} \cap[\eta, T]_{\mathbf{T}} .
$$

Throughout this section, we assume $Y_{3} \neq \phi$ and $\int_{Y_{3}} a(r) \nabla r>0$.
Now we define the nonnegative continuous concave functional $\alpha: P \rightarrow[0, \infty)$ by

$$
\alpha(u)=\min _{t \in[\eta,]_{\mathbf{T}}} u(t), \forall u \in P .
$$

It is easy to see that $\alpha(u)=u(\eta) \leq \max _{t \in[0, T]_{\mathbf{T}}}|u(t)| \leq\|u\|$ if $u \in P$ and $\alpha(F u)=(F u)(\eta)$.

For convenience, we denote

$$
\rho=(A+T) \Phi_{q}\left(\int_{0}^{T} a(r) \nabla r\right), \delta=(B+\eta) \Phi_{q}\left(\int_{Y_{3}} a(r) \nabla r\right) .
$$

We now state growth conditions on f so that the $\operatorname{BVP}(1.1)$, (1.2) has at least three positive solutions.

Theorem 3.1. Let $0<a<b \leq \frac{m(B+\eta)}{M(A+T)} d<d \leq c$, and suppose that f satisfies the following conditions:
$\left(H_{1}\right) f(x, \varphi(s))<\Phi_{p}\left(\frac{a}{\rho}\right)$, for all $0 \leq x \leq a$, uniformly in $s \in[-r, 0]_{\mathbf{T}} ;$
$f\left(x_{1}, x_{2}\right)<\Phi_{p}\left(\frac{a}{\rho}\right)$, for all $0 \leq x_{i} \leq a, i=1,2$,
$\left(H_{2}\right) f(x, \varphi(s)) \leq \Phi_{p}\left(\frac{c}{\rho}\right)$, for all $0 \leq x \leq c$, uniformly in $s \in[-r, 0]_{\mathbf{T}}$; $f\left(x_{1}, x_{2}\right) \leq \Phi_{p}\left(\frac{c}{\rho}\right)$, for all $0 \leq x_{i} \leq c, i=1,2$,
$\left(H_{3}\right) f(x, \varphi(s))>\Phi_{p}\left(\frac{b}{\delta}\right)$, for all $b \leq x \leq d$, uniformly in $s \in[-r, 0]_{\mathbf{T}}$,
$\left(H_{4}\right) \min _{x \in[0, c]} f(x, \varphi(s)) \cdot \Phi_{p}\left(\frac{M}{m}\right) \int_{Y_{3}} a(r) \nabla r \geq \max _{x_{1}, x_{2} \in[0, c]} f\left(x_{1}, x_{2}\right) \cdot \int_{0}^{T}$ $a(r) \nabla r$, uniformly in $s \in[-r, 0]_{\mathbf{T}}$.
Then the BVP (1.1), (1.2) has at least three positive solutions of the form

$$
u(t)= \begin{cases}\varphi(t), & t \in[-r, 0]_{\mathbf{T}}, \\ u_{i}(t), & t \in[0, T]_{\mathbf{T}}, \quad i=1,2,3\end{cases}
$$

where $\left\|u_{1}\right\|<a, b<\alpha\left(u_{2}\right),\left\|u_{3}\right\|>a$ and $\alpha\left(u_{3}\right)<b$.
Proof. We first assert that $F: \bar{P}_{c} \rightarrow \bar{P}_{c}$.
Indeed, if $u \in \bar{P}_{c}$, then, in view of lemma 3.1, we have $F \bar{P}_{c} \subset P$. Furthermore, $\forall u \in \bar{P}_{c}$, we have $0 \leq u \leq c$, and then from $\left(\mathrm{H}_{2}\right)$, we have

$$
\begin{aligned}
|F u(t)|= & \mid B_{0}\left(\Phi_{q}\left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right)\right) \\
& +\int_{0}^{t} \Phi_{q}\left(\int_{s}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \triangle s \mid \\
\leq & A \Phi_{q}\left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \\
& +T \Phi_{q}\left(\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \\
\leq & (A+T) \Phi_{q}\left(\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \\
= & (A+T) \Phi_{q}\left(\int_{Y_{1}} a(r) f(u(r), \varphi(\mu(r))) \nabla r\right. \\
& \left.+\int_{Y_{2}} a(r) f(u(r), u(\mu(r))) \nabla r\right) \\
\leq & (A+T) \Phi_{q}\left(\int_{0}^{T} a(r) \nabla r\right) \frac{c}{\rho} \\
= & c
\end{aligned}
$$

$$
\begin{aligned}
\left|(F u)^{\triangle}(t)\right|= & \left|\Phi_{q}\left(\int_{t}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right)\right| \\
\leq & \Phi_{q}\left(\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \\
= & \Phi_{q}\left(\int_{Y_{1}} a(r) f(u(r), \varphi(\mu(r))) \nabla r\right. \\
& \left.+\int_{Y_{2}} a(r) f(u(r), u(\mu(r))) \nabla r\right) \\
\leq & \Phi_{q}\left(\int_{0}^{T} a(r) \nabla r\right) \frac{c}{\rho} \\
= & \frac{c}{A+T} \\
\leq & c .
\end{aligned}
$$

Therefore, $\|F u\| \leq c$, i.e., $F: \bar{P}_{c} \rightarrow \bar{P}_{c}$.
By $\left(\mathrm{H}_{1}\right)$ and in a way similar to above, we arrive that $F: \bar{P}_{a} \rightarrow P_{a}$.
Next, we assert that $\{u \in P(\alpha, b, d): \alpha(u)>b\} \neq \phi$ and $\alpha(A u)>b$ for all $u \in P(\alpha, b, d)$.

Let $u=\frac{b+d}{2}$, then $u \in P,\|u\|=\frac{b+d}{2} \leq d$ and $\alpha(u)=\frac{b+d}{2}>b$. That is, $\{u \in P(\alpha, b, d): \alpha(u)>b\} \neq \phi$.

Moreover, $\forall u \in P(\alpha, b, d)$, we have $b \leq u(t) \leq d, t \in[\eta, T]_{\mathbf{T}}$, then from $\left(\mathrm{H}_{3}\right)$, we see that

$$
\begin{aligned}
\alpha(F u)= & (F u)(\eta) \\
= & B_{0}\left(\Phi_{q}\left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right)\right) \\
& +\int_{0}^{\eta} \Phi_{q}\left(\int_{s}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \triangle s \\
\geq & B \Phi_{q}\left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \\
& +\eta \Phi_{q}\left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \\
\geq & (B+\eta) \Phi_{q}\left(\int_{Y_{3}} a(r) f(u(r), \varphi(\mu(r))) \nabla r\right) \\
> & (B+\eta) \Phi_{q}\left(\int_{Y_{3}} a(r) \nabla r\right) \frac{b}{\delta} \\
= & b,
\end{aligned}
$$

as required.

Finally, we assert that $\alpha(F u)>b$, for all $u \in P(\alpha, b, c)$ and $\|F u\|>d$.
To see this, $\forall u \in P(\alpha, b, c)$ and $\|F u\|>d$, then $0 \leq u(t) \leq c, t \in[0, T]_{\mathbf{T}}$, then from $\left(\mathrm{H}_{4}\right)$, we have

$$
\Phi_{p}\left(\frac{M}{m}\right) \int_{Y_{3}} a(r) f(u(r), \varphi(\mu(r))) \nabla r \geq \int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r
$$

i.e.

$$
\int_{Y_{3}} a(r) f(u(r), \varphi(\mu(r))) \nabla r \geq \frac{\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r}{\Phi_{p}\left(\frac{M}{m}\right)}
$$

holds.
So,

$$
\begin{aligned}
\alpha(F u)= & (F u)(\eta) \\
= & B_{0}\left(\Phi_{q}\left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right)\right) \\
& +\int_{0}^{\eta} \Phi_{q}\left(\int_{s}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \Delta s \\
\geq & B \Phi_{q}\left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \\
& +\eta \Phi_{q}\left(\int_{\eta}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \\
\geq & (B+\eta) \Phi_{q}\left(\int_{Y_{3}} a(r) f(u(r), \varphi(\mu(r))) \nabla r\right) \\
\geq & (B+\eta) \Phi_{q}\left(\frac{\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r}{\Phi_{p}\left(\frac{M}{m}\right)}\right) \\
= & \frac{m(B+\eta)}{M} \Phi_{q}\left(\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \\
= & \frac{m(B+\eta)}{M(A+T)}(A+T) \Phi_{q}\left(\int_{0}^{T} a(r) f(u(r), u(\mu(r))) \nabla r\right) \\
\geq & \frac{m(B+\eta)}{M(A+T)}\|F u\| \\
> & \frac{m(B+\eta)}{M(A+T)} d \\
\geq & b
\end{aligned}
$$

To sum up, all the hypotheses of Theorem 2.1 are satisfied. Hence F has at least three fixed points, i.e., the BVP (1.1), (1.2) has at least three positive solutions
of the form

$$
u(t)=\left\{\begin{array}{ll}
\varphi(t), & t \in[-r, 0]_{\mathbf{T}}, \\
u_{i}(t), & t \in[0, T]_{\mathbf{T}},
\end{array} \quad i=1,2,3, ~ l\right.
$$

where $\left\|u_{1}\right\|<a, b<\alpha\left(u_{2}\right),\left\|u_{3}\right\|>a$ and $\alpha\left(u_{3}\right)<b$.

4. Positive Solutions of the BVP (1.1), (1.3)

In this section we deal with the BVP (1.1), (1.3) .
We note that $u(t)$ is a solution of the $\operatorname{BVP}(1.1)$, (1.3) if and only if

$$
u(t)= \begin{cases}B_{1}\left(\Phi_{q}\left(\int_{0}^{\eta} a(r) f(u(r), u(\mu(r))) \nabla r\right)\right) & t \in[0, T]_{\mathbf{T}} \\ +\int_{t}^{T} \Phi_{q}\left(\int_{0}^{s} a(r) f(u(r), u(\mu(r))) \nabla r\right) \triangle s, & \\ \varphi(t), & t \in[-r, 0]_{\mathbf{T}}\end{cases}
$$

Let $E=C_{\mathbf{l d}^{\Delta}}^{\Delta}\left([0, T]_{\mathbf{T}}, R\right)$ with $\|u\|=\max \left\{\max _{t \in[0, T]_{\mathbf{T}}}|u(t)|, \max _{t \in[0, T]_{\mathbf{T}^{k}}}\right.$ $\left.\left|u^{\Delta}(t)\right|\right\}, P_{1}=\left\{u \in E: u\right.$ is nonnegative, decreasing and concave on $\left.[0, T]_{\mathbf{T}}\right\}$. So E is a Banach space with the norm $\|u\|$ and P_{1} is a cone in E. For each $u \in E$, extend $u(t)$ to $[-r, T]_{\mathbf{T}}$ with $u(t)=\varphi(t)$ for $t \in[-r, 0]_{\mathbf{T}}$.

Define completely continuous operator $G: P_{1} \rightarrow E$ by

$$
\begin{aligned}
(G u)(t)= & B_{1}\left(\Phi_{q}\left(\int_{0}^{\eta} a(r) f(u(r), u(\mu(r))) \nabla r\right)\right) \\
& +\int_{t}^{T} \Phi_{q}\left(\int_{0}^{s} a(r) f(u(r), u(\mu(r))) \nabla r\right) \triangle s, t \in[0, T]_{\mathbf{T}}
\end{aligned}
$$

We seek a fixed point, u_{1}, of G in the cone P_{1}. Define

$$
u(t)= \begin{cases}\varphi(t), & t \in[-r, 0]_{\mathbf{T}}, \\ u_{1}(t), & t \in[0, T]_{\mathbf{T}} .\end{cases}
$$

Then $u(t)$ denotes a positive solution of the BVP (1.1), (1.3).
Lemma 4.1. $G: P_{1} \rightarrow P_{1}$.
Proof. The proof is similar to Lemma 3.1, so we omit here.
Let $l \in \mathbf{T}$ be fixed such that $0<\eta<l<T$, and set

$$
Y_{1}=\left\{t \in[0, T]_{\mathbf{T}}: \mu(t) \leq 0\right\} ; Y_{2}=\left\{t \in[0, T]_{\mathbf{T}}: \mu(t)>0\right\} ; Y_{3}=Y_{1} \cap[0, \eta]_{\mathbf{T}} .
$$

Throughout this section, we assume $Y_{3} \neq \phi$ and $\int_{Y_{3}} a(r) \nabla r>0$.
Define the nonnegative continuous concave functional $\alpha: P_{1} \rightarrow[0, \infty)$ by

$$
\alpha(u)=\min _{t \in\left[\eta, l_{\mathbf{T}}\right.} u(t), \forall u \in P_{1} .
$$

It is easy to see that $\alpha(u)=u(l) \leq \max _{t \in[0, T]_{\mathbf{T}}}|u(t)| \leq\|u\|$ if $u \in P$ and $\alpha(F u)=(F u)(l)$.

Let ρ remains unchanged and we denotes

$$
\delta_{*}=(B+T-l) \Phi_{q}\left(\int_{Y_{3}} a(r) \nabla r\right) .
$$

Similarly to Theorem 3.1, we have
Theorem 4.1. Let $0<a<b \leq \frac{m(B+T-l)}{M(A+T)} d<d \leq c$, and suppose that f satisfies the following conditions:
$\left(H_{1}\right) f(x, \varphi(s))<\Phi_{p}\left(\frac{a}{\rho}\right)$, for all $0 \leq x \leq a$, uniformly in $s \in[-r, 0]_{\mathbf{T}}$;
$f\left(x_{1}, x_{2}\right)<\Phi_{p}\left(\frac{a}{\rho}\right)$, for all $0 \leq x_{i} \leq a, i=1,2$,
($\left.H_{2}\right) f(x, \varphi(s)) \leq \Phi_{p}\left(\frac{c}{\rho}\right)$, for all $0 \leq x \leq c$, uniformly in $s \in[-r, 0]_{\mathbf{T}}$;
$f\left(x_{1}, x_{2}\right) \leq \Phi_{p}\left(\frac{c}{\rho}\right)$, for all $0 \leq x_{i} \leq c, i=1,2$,
$\left(H_{3}\right) f(x, \varphi(s))>\Phi_{p}\left(\frac{b}{\delta_{*}}\right)$, for all $b \leq x \leq d$, uniformly in $s \in[-r, 0]_{\mathbf{T}}$,
$\left(H_{4}\right) \min _{x \in[0, c]} f(x, \varphi(s)) \cdot \Phi_{p}\left(\frac{M}{m}\right) \int_{Y_{3}} a(r) \nabla r \geq \max _{x_{1}, x_{2} \in[0, c]} f\left(x_{1}, x_{2}\right) \cdot \int_{0}^{T} a(r) \nabla r$, uniformly in $s \in[-r, 0]_{\mathbf{T}}$.
Then the $B V P(1.1),(1.3)$ has at least three positive solutions of the form

$$
u(t)=\left\{\begin{array}{ll}
\varphi(t), & t \in[-r, 0]_{\mathbf{T}}, \\
u_{i}(t), & t \in[0, T]_{\mathbf{T}},
\end{array} \quad i=1,2,3,\right.
$$

where $\left\|u_{1}\right\|<a, b<\alpha\left(u_{2}\right),\left\|u_{3}\right\|>a$ and $\alpha\left(u_{3}\right)<b$.

5. Example

Let $\mathbf{T}=\left[-\frac{3}{4},-\frac{1}{4}\right] \cup\left\{0, \frac{3}{4}\right\} \cup\left\{\left(\frac{1}{2}\right)^{\mathbb{N}_{0}}\right\}$, where \mathbb{N}_{0} denotes the set of all nonnegative integers.

Consider the following p-Laplacian functional dynamic equation on time scale T

$$
\left\{\begin{array}{l}
{\left[\Phi_{p}\left(u^{\triangle}(t)\right)\right]^{\nabla}+a(t)\left[\frac{8 u^{3}(t)}{u^{3}(t)+u^{3}\left(t-\frac{3}{4}\right)+1}+\frac{1}{5}\right]=0, t \in(0,1)_{\mathbf{T}}} \tag{5.1}\\
u_{0}(t)=\varphi(t) \equiv 0, t \in\left[-\frac{3}{4}, 0\right]_{\mathbf{T}}, u(0)-B_{0}\left(u^{\triangle}\left(\frac{1}{4}\right)\right)=0, u^{\triangle}(1)=0
\end{array}\right.
$$

where $T=1, p=\frac{3}{2}, B=\frac{1}{2}, A=2, \mu:[0,1]_{\mathbf{T}} \rightarrow\left[-\frac{3}{4}, 1\right]_{\mathbf{T}}$ and $\mu(t)=t-\frac{3}{4}$, $r=\frac{3}{4}, \eta=\frac{1}{4}, l=\frac{1}{2}, f(u, \varphi(s))=\frac{8 u^{3}}{u^{3}+1}+\frac{1}{5}, f\left(u_{1}, u_{2}\right)=\frac{8 u_{1}^{3}}{u_{1}^{3}+u_{2}^{3}+1}+\frac{1}{5}$ and

$$
a(t)= \begin{cases}1, & t \in\left[0, \frac{1}{2}\right]_{\mathbf{T}} \\ -\frac{99}{50} t+\frac{199}{100}, & t \in\left[\frac{1}{2}, 1\right]_{\mathbf{T}}\end{cases}
$$

We deduce that $Y_{1}=\left[0, \frac{3}{4}\right]_{\mathbf{T}}, Y_{2}=\left(\frac{3}{4}, 1\right]_{\mathbf{T}}, Y_{3}=\left[\frac{1}{4}, \frac{3}{4}\right]_{\mathbf{T}}$. Then by [7, Theorem 2.8] we have $\int_{Y_{3}} a(r) \nabla r=\int_{\frac{1}{4}}^{\frac{3}{4}} a(r) \nabla r=\frac{301}{800}, \int_{0}^{T} a(r) \nabla r=\int_{0}^{1} a(r) \nabla r=$ $\frac{503}{800}$.

Thus it is easy to see by calculation that $\rho=3\left(\frac{503}{800}\right)^{2}, \delta=\frac{3}{4}\left(\frac{301}{800}\right)^{2}$.
Choose $a=\frac{1}{10}, b=1, d=42000, c=45000$ then by $M=1, m=\frac{1}{10000}$ we have $0<a<b<\frac{m(B+\eta)}{M(A+T)} d<d<c$, then

$$
f(u, \varphi(s)) \leq \frac{8}{1001}+\frac{1}{5} \approx 0.2080<\Phi_{p}\left(\frac{a}{\rho}\right)=\sqrt{\frac{\frac{1}{10}}{3\left(\frac{503}{800}\right)^{2}}} \approx 0.2904,0 \leq u \leq
$$ $\frac{1}{10}$, uniformly in $s \in\left[-\frac{3}{4}, 0\right]_{\mathbf{T}} ;$

$f\left(u_{1}, u_{2}\right) \leq \frac{8}{1002}+\frac{1}{5} \approx 0.2080<\Phi_{p}\left(\frac{a}{\rho}\right)=\sqrt{\frac{\frac{1}{10}}{3\left(\frac{503}{800}\right)^{2}}} \approx 0.2904,0 \leq u_{i} \leq$ $\frac{1}{10}, i=1,2$,
$f(u, \varphi(s))<8.2<\Phi_{p}\left(\frac{c}{\rho}\right)=\sqrt{\frac{45000}{3\left(\frac{503}{800}\right)^{2}}} \approx 195,0 \leq u \leq 45000$, uniformly in $s \in\left[-\frac{3}{4}, 0\right]_{\mathbf{T}}$;

$$
\begin{aligned}
& f\left(u_{1}, u_{2}\right)<8.2<\Phi_{p}\left(\frac{c}{\rho}\right)=\sqrt{\frac{45000}{3\left(\frac{503}{800}\right)^{2}}} \approx 195,0 \leq u_{i} \leq 45000, i=1,2 \\
& f(u, \varphi(s)) \geq 4.2>\Phi_{p}\left(\frac{b}{\delta}\right)=\sqrt{\frac{1}{\frac{3}{4}\left(\frac{301}{800}\right)^{2}}} \approx 3.0690,1 \leq u \leq 42000, \text { uni- }
\end{aligned}
$$ formly in $s \in\left[-\frac{3}{4}, 0\right]_{\mathbf{T}}$

$\min _{u \in[0, c]} f(u, \varphi(s)) \cdot \Phi_{p}\left(\frac{M}{m}\right) \int_{Y_{3}} a(r) \nabla r=7.5250>5.1558 \approx \frac{41}{5} \cdot \frac{503}{800}>$ $\max _{u_{i} \in[0, c]} f\left(u_{1}, u_{2}\right) \cdot \int_{0}^{T} a(r) \nabla r$, uniformly in $s \in\left[-\frac{3}{4}, 0\right]_{\mathbf{T}}$.
Thus by Theorem 3.1, the BVP (5.1) has at least three positive solutions of the form

$$
u(t)= \begin{cases}u_{i}(t), & t \in[0, T], i=1,2,3 \\ \varphi(t), & t \in[-r, 0]\end{cases}
$$

where $\left\|u_{1}\right\|<\frac{1}{10}, 1<\alpha\left(u_{2}\right),\left\|u_{3}\right\|>\frac{1}{10}$ and $\alpha\left(u_{3}\right)<1$.

References

1. R. P. Agarwal and M. Bohner, Quadratic functionals for second order matrix equations on time scales, Nonlinear Anal., 33 (1998), 675-692.
2. R. P. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 35 (1999), 3-22.
3. R. P. Agarwal, M. Bohner and P. J. Y. Wong, Sturm-Liouville eigenvalue problems on time scales, Appl. Math. Comput., 99 (1999), 153-166.
4. D. R. Anderson, Solutions to second-order three-point problems on time scales, J. Difference. Equations Appl., 8(2002), 673-688.
5. D. R. Anderson, R. Avery and J. Henderson, Existence of solutions for a one dimensional p-Laplacian on time-scales, J. Difference. Equations Appl., 10 (2004), 889-896.
6. E. Akin, Boundary value problems for a differential equation on a measure chain, Panamer. Math. J., 10, (2000), 17-30.
7. F. M. Atici and G. SH. Guseinov, On Green's functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math., 141 (2002), 75-99.
8. R. I. Avery, C. J. Chyan and J. Henderson, Twin solutions of boundary value problems for ordinary differential equations and finite difference equations, Comput. Math. Appl., 42 (2001), 695-704.
9. M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
10. M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.
11. C. J. Chyan and J. Henderson, Eigenvalue problems for nonlinear differential equations on a measure chain, J. Math. Anal. Appl, 245 (2000), 547-559.
12. L. Erbe and A. Peterson, Positive solutions for a nonlinear differential equation on a measure chain, Math. Comput. Modelling., 325-6) ((2000), 571-585.
13. J. Henderson, Multiple solutions for $2 \mathrm{~m}^{\text {th }}$-order Sturm-Liouville boundary value problems on a measure chain, J. Difference Equations. Appl., 6 (2000), 417-429.
14. Z. M. He, Double positive solutions of three-point boundary value problems for p Laplacian dynamic equations on time scales, J. Comput. Appl. Math., 182 (2005), 304-315.
15. S. H. Hong, Triple positive solutions of three-point boundary value problems for p-Laplacian dynamic equations on time scales, J. Comput. Appl. Math., 206 (2007), 967-976.
16. S. Hilger, Analysis on measure chains-a unified approach to continuous and discrete calculus, Results Math., 18 (1990), 18-56.
17. B. Kaymakcalan, V. Lakshmikantham and S. Sivasundaram, Dynamical Systems on Measure Chains, Kluwer Academic Publishers, Boston, 1996.
18. E. R. Kaufmann, Y. N. Raffoul, Positive solutions for a nonlinear functional dynamic equation on a time scale, Nonlinear Anal., 62 (2005), 1267-1276.
19. R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-688.
20. A. C. Peterson, Y. N. Raffoul and C. C. Tisdell, Three point boundary value problems on time scales, J. Difference. Equations Appl., 10 (2004), 843-849.
21. C. X. Song and C. T. Xiao, Positive solutions for p-Laplacian functional dynamic equations on time scales, Nonlinear Anal., 66 (2007), 1989-1998.
22. H. R. Sun and W. T. Li, Positive solutions for nonlinear m-point boundary value problems on time scales, Acta. Math. Sinica., 49 (2006), 369-380, (in Chinese).
23. J. P. Sun, A new existence theorem for right focal boundary value problems on a measure chain, Appl. Math. Letters., 18 (2005), 41-47.
24. D. B. Wang, Existence, multiplicity and infinite solvability of positive solutions for p-Laplacian dynamic equations on time scales, Electronic J. Differential equations., 96 (2006), 1-10.
25. D. B. Wang, Three positive solutions of three-point boundary value problems for p Laplacian dynamic equations on time scales, Nonlinear Anal., 68 (2008), 2172-2180.
26. D. X. Zhao, H. Z. Wang and W. G. Ge, Existence of triple positive solutions to a class of p-Laplacian boundary value problems, J. Math. Anal. Appl., 328 (2007), 972-983.

Da-Bin Wang ${ }^{1,2}$ and Wen Guan ${ }^{2}$
${ }^{1}$ College of Mathematics, Sichuan University, Chengdu, Sichuan 610064, P. R. China
${ }^{2}$ Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou, Gansu 730050, P. R. China

E-mail: wangdb@lut.cn mathgw@cohu.com

[^0]: Received March 26, 2007, accepted May 19, 2007.
 Communicated by Yingfei Yi.
 2000 Mathematics Subject Classification: 39K10, 34B15.
 Key words and phrases: Time scale, p-Laplacian functional dynamic equations, Boundary value problem, Positive solution, Fixed point.
 *Corresponding author.

