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MULTIPLE POSITIVE SOLUTIONS FOR p-LAPLACIAN FUNCTIONAL
DYNAMIC EQUATIONS ON TIME SCALES

Da-Bin Wang* and Wen Guan

Abstract. In this paper we consider the following boundary value problems
for p-Laplacian functional dynamic equations on time scales

[
Φp(u�(t))

]�
+ a(t)f(u(t), u(µ(t))) = 0, t ∈ (0, T )T ,

u0(t) = ϕ(t), t ∈ [−r, 0]T , u(0) − B0(u�(η)) = 0, u�(T ) = 0, or

u0(t) = ϕ(t), t ∈ [−r, 0]T , u�(0) = 0, u(T ) + B1(u�(η)) = 0.

Some existence criteria of at least three positive solutions are established by
using the well-known Leggett-Williams fixed-point theorem. An example is
also given to illustrate the main results.

1. INTRODUCTION

Let T be a time scale, i.e., T is a nonempty closed subset of R. Let 0, T be
points in T, an interval [0, T ]T denoting time scales interval, that is, [0, T ]T :=
[0, T ] ∩T. Other types of intervals are defined similarly.

The theory of dynamic equations on time scales has been a new important
mathematical branch (see, for example, [1, 2, 9, 10, 17] ) since it was initiated
by Hilger [16]. At the same time, boundary value problems (BVPs) for dynamic
equation on time scales have received considerable attention [3-7, 11-15, 18, 20-25].
However, to the best of our knowledge, there is not much concerning for BVPs of
p-Laplacian dynamic equations on time scales [5, 14, 15, 21, 24, 25], especially for
p-Laplacian functional dynamic equations on time scales [21].
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For convenience, throughout this paper we denote Φp(s) as the p-Laplacian
operator, i.e., Φp(s) = |s|p−2 s, p > 1, (Φp)−1 = Φq,

1
p + 1

q = 1.
In [5], Anderson, Avery and Henderson considered the following BVP on time

scales [
Φp(u�(t))

]�
+ c(t)f(u) = 0, t ∈ (a, b)T ,

u(a)− B0(u�(v)) = 0, u�(b) = 0,

where v ∈ (a, b)T , f ∈ Cld ([0, +∞) , [0, +∞)) , c ∈ Cld ([a, b] , [0, +∞)) and
Kmx ≤ B0(x) ≤ KMx for some positive constants Km, KM . They established the
existence result of at least one positive solution by a fixed point theorem of cone
expansion and compression of functional type.

In [21], by using a double fixed-point theorem due to Avery et al.[8], Song and
Xiao considered the existence of at least twin positive solutions to the following
p-Laplacian functional dynamic equations on time scales

(1.1)
[
Φp(u�(t))

]�
+ a(t)f(u(t), u(µ(t))) = 0, t ∈ (0, T )T ,

satisfying the boundary value conditions

(1.2) u0(t) = ϕ(t), t ∈ [−r, 0]T , u(0)− B0(u�(η)) = 0, u�(T ) = 0,

where η ∈ (0, ρ(T ))T .
Very recently, Zhao, Wang and Ge [26] considered the existence of at least three

positive solutions to the following p-Laplacian problem
[
Φp(u′(t))

]′ + a(t)f(u, u′) = 0, t ∈ [0, 1] ,

u′(0) = u(1) = 0.

The main tool used in [26] is Leggett-Williams fixed-point theorem.
Motivated by the results mentioned above, in this paper, let T be a time scale

such that −r, 0, T ∈ T, we shall show that the BVP (1.1) with the boundary value
conditions (1.2) or boundary value conditions

(1.3) u0(t) = ϕ(t), t ∈ [−r, 0]T , u�(0) = 0, u(T ) + B1(u�(η)) = 0,

has at least three positive solutions by using Leggett-Williams fixed-point theorem
[19].

In this article, we always assume that:

(C1) f : [0, +∞)2 → (0, +∞) is continuous ;
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(C2) a : T → (0, +∞) is left dense continuous (i.e., a ∈ Cld(T, (0, +∞))
and dose not vanish identically on any closed subinterval of [0, T ]T , where
Cld(T, (0, +∞)) denotes the set of all left dense continuous functions from
T to (0, +∞) , mint∈[0,T ]T

a(t) = Φp (m) , maxt∈[0,T ]T
a(t) = Φp (M) , and

m < M ;

(C3) ϕ : [−r, 0]T → [0, +∞) is continuous and r > 0;

(C4) µ : [0, T ]T → [−r, T ]T is continuous, µ(t) ≤ t for all t;
(C5) B0(v) and B1(v) are both continuous functions defined on R and satisfy that

there exist B ≥ 0 and A ≥ 1 such that

Bx ≤ Bj(x) ≤ Ax, for all x ≥ 0, j = 0, 1.

In the remainder of this section we list the following well known definitions
which can be found in [2, 7, 9, 10].

Definition 1.1. For t < supT and r > inf T, define the forward jump operator
σ and the backward jump operator ρ, respectively,

σ(t) = inf{τ ∈ T|τ > t} ∈ T, ρ(r) = sup{τ ∈ T|τ < r} ∈ T

for all t, r ∈ T. If σ(t) > t, t is said to be right scattered, and if ρ(r) < r, r is sad
to be left scattered. If σ(t) = t, t is said to be right dense, and if ρ(r) = r, r is said
to be left dense. If T has a right scattered minimum m, define Tk = T − {m};
otherwise setTk = T. If T has a left scattered maximumM , defineTk = T−{M};
otherwise set Tk = T.

Definition 1.2. For x : T →R and t ∈ Tk, we define the delta derivative
of x(t), x�(t), to be the number (when it exists), with the property that, for any
ε > 0, there is a neighborhood U of t such that∣∣∣[x(σ(t))− x(s)] − x�(t) [σ(t)− s]

∣∣∣ < ε |σ(t)− s| ,

for all s ∈ U. For x : T →R and t ∈ Tk, we define the nabla derivative of x(t),
x∇(t), to be the number (when it exists), with the property that, for any ε > 0,
there is a neighborhood V of t such that∣∣[x(ρ(t))− x(s)]− x∇(t) [ρ(t)− s]

∣∣ < ε |ρ(t)− s| ,

for all s ∈ V.
If T = R, then x�(t) = x∇(t) = x′(t). If T = Z, then x�(t) = x(t+1)−x(t)

is the forward difference operator while x∇(t) = x(t) − x(t − 1) is the backward
difference operator.
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Definition 1.3. If F�(t) = f(t), then we define the delta integral by∫ t

a
f(s)�s = F (t) − F (a).

If Φ∇(t) = f(t), then we define the nabla integral by∫ t

a
f(s)∇s = Φ(t) − Φ(a).

Throughout this papers, we assume T is closed subset of R with 0 ∈ Tk and
T ∈ Tk.

Lemma 1.1. ([15]). The following formulas hold:

(i)
(∫ t

a
f(s)�s

)�
= f(t),

(ii)
(∫ t

a

f(s)�s

)�
= f(ρ(t)),

(iii)
(∫ t

a
f(s)�s

)�
= f(σ(t)),

(iv)
(∫ t

a f(s)�s
)�

= f(t).

2. PRELIMINARIES

In this section, we provide some background materials from the theory of cones
in Banach spaces and we then state the Leggett-Williams fixed-point theorem.

Definition 2.1. Let E be a real Banach space. A nonempty, closed, convex set
P ⊂ E is said to be a cone provided the following conditions are satisfied:

(i) if x ∈ P and λ ≥ 0, then λx ∈ P ;
(ii) if x ∈ P and −x ∈ P, then x = 0.

Every cone P ⊂ E induces an ordering in E given by

x ≤ y if and only if y − x ∈ P.

Definition 2.2. Let E be a real Banach space and P⊂ E be a cone. A function
α : P → [0,∞) is called a nonnegative continuous concave functional if α is
continuous and

α(tx + (1− t)y) ≥ tα(x) + (1 − t)α(y)
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for all x, y ∈ P and t ∈ [0, 1] .
Let a, b, c > 0 be constants, Pc = {x ∈ P : ‖x‖ < c} , P (α, a, b) = {x ∈ P : a

≤ α(x), ‖x‖ ≤ b} .

To prove our main results, we need the following theorem [19].

Theorem 2.1. (Leggett-Williams). Let A : P c → P c be a completely continuous
map and α be a nonnegative continuous concave functional on P such that α(x) ≤
‖x‖ , ∀x ∈ P c. Suppose there exist a, b, d with 0 < a < b < d ≤ c, such that:

(i) {x ∈ P (α, b, d) : α(x) > b} �= φ and α(Ax) > b for all x ∈ P (α, b, d);
(ii) ‖Ax‖ < a for all x ∈ P a;
(iii) α(Ax) > b, for all x ∈ P (α, b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x1, x2, x3 satisfying

‖x1‖ < a, b < α(x2), ‖x3‖ > a and α(x3) < b.

3. POSITIVE SOLUTIONS OF THE BVP (1.1), (1.2)

In this section we consider the existence of three positive solutions for the BVP
(1.1), (1.2).

We say u is concave on [0, T ]T if u��(t) ≤ 0 for t ∈ [0, T ]Tk∩Tk
.

We note that u(t) is a solution of the BVP (1.1), (1.2) if and only if

u(t) =




B0

(
Φq

(∫ T

η
a(r)f(u(r), u(µ(r)))∇r

))

+
∫ t

0

Φq

(∫ T

s

a(r)f(u(r), u(µ(r)))∇r

)
�s,

t ∈ [0, T ]T ,

ϕ(t), t ∈ [−r, 0]T .

Let E = C�
ld([0, T ]T , R) with ‖u‖ = max

{
maxt∈[0,T ]T |u(t)| , maxt∈[0,T ]

Tk∣∣u�(t)
∣∣} , P = {u ∈ E : u is nonnegative, increasing and concave on [0, T ]T} .

So E is a Banach space with the norm ‖u‖ and P is a cone in E . For each u ∈ E,
extend u(t) to [−r, T ]T with u(t) = ϕ(t) for t ∈ [−r, 0]T .

Define F : P → E by

(Fu)(t) = B0

(
Φq

(∫ T

η

a(r)f(u(r), u(µ(r)))∇r

))

+
∫ t

0
Φq

(∫ T

s
a(r)f(u(r), u(µ(r)))∇r

)
�s, t ∈ [0, T ]T .
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It is well known that this operator F is completely continuous.
We seek a fixed point, u1, of F in the cone P . Define

u(t) =

{
ϕ(t), t ∈ [−r, 0]T ,

u1(t), t ∈ [0, T ]T .

Then u(t) denotes a positive solution of the BVP (1.1), (1.2).

Lemma 3.1. F : P → P .

Proof. The proof of the lemma is similar to that of [25, Lemma 3.1]. For the
sake of convenience, we list it here.

∀u ∈ P, Fu ∈ E and (Fu) (t) ≥ 0, ∀t ∈ [0, T ]T . It follows from Lemma 1.1
we have

(Fu)� (t) = Φq

(∫ T

t
a(r)f(u(r), u(µ(r)))∇r

)
.

Obviously (Fu)� (t) is a continuous function and (Fu)� (t) ≥ 0, that is
(Fu) (t) is increasing on [0, T ]T . Note that Φq is increasing, we have that (Fu)� (t)
is decreasing.

If t ∈ [0, T ]Tk∩Tk
, then from [7, Theorem 2.3] it follows that (Fu)�� (t) ≤ 0,

i.e., Fu is concave on [0, T ]T. This implies that Fu ∈ P and F : P → P.
Let l ∈ T be fixed such that 0 < η < l < T, and set

Y1 = {t ∈ [0, T ]T : µ(t) ≤ 0} ; Y2 = {t ∈ [0, T ]T : µ(t) > 0} ; Y3 = Y1∩[η, T ]T .

Throughout this section, we assume Y3 �= φ and
∫
Y3

a(r)∇r > 0.
Now we define the nonnegative continuous concave functional α : P → [0,∞)

by
α(u) = min

t∈[η,l]T

u(t), ∀u ∈ P.

It is easy to see that α(u) = u(η) ≤ maxt∈[0,T ]T |u (t)| ≤ ‖u‖ if u ∈ P and
α (Fu) = (Fu) (η).

For convenience, we denote

ρ = (A + T )Φq

(∫ T

0
a(r)∇r

)
, δ = (B + η)Φq

(∫
Y3

a(r)∇r

)
.

We now state growth conditions on f so that the BVP (1.1), (1.2) has at least
three positive solutions.

Theorem 3.1. Let 0 < a < b ≤ m(B+η)
M (A+T )d < d ≤ c, and suppose that f

satisfies the following conditions:
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(H1) f(x, ϕ(s)) < Φp(a
ρ ), for all 0 ≤ x ≤ a, uniformly in s ∈ [−r, 0]T ;

f(x1, x2) < Φp(a
ρ ), for all 0 ≤ xi ≤ a, i = 1, 2,

(H2) f(x, ϕ(s)) ≤ Φp( c
ρ), for all 0 ≤ x ≤ c, uniformly in s ∈ [−r, 0]T ;

f(x1, x2) ≤ Φp( c
ρ), for all 0 ≤ xi ≤ c, i = 1, 2,

(H3) f(x, ϕ(s)) > Φp( b
δ ), for all b ≤ x ≤ d, uniformly in s ∈ [−r, 0]T ,

(H4) minx∈[0,c] f(x, ϕ(s)) · Φp

(
M
m

) ∫
Y3

a(r)∇r ≥ maxx1,x2∈[0,c] f(x1, x2) ·
∫ T
0

a(r)∇r, uniformly in s ∈ [−r, 0]T .

Then the BVP (1.1), (1.2) has at least three positive solutions of the form

u(t) =

{
ϕ(t), t ∈ [−r, 0]T ,

ui(t), t ∈ [0, T ]T , i = 1, 2, 3,

where ‖u1‖ < a, b < α(u2), ‖u3‖ > a and α(u3) < b.

Proof. We first assert that F : P c → P c.
Indeed, if u ∈ P c, then, in view of lemma 3.1, we have FP c ⊂ P. Furthermore,

∀u ∈ P c, we have 0 ≤ u ≤ c, and then from (H2), we have

|Fu(t)| =
∣∣∣∣B0

(
Φq

(∫ T

η
a(r)f(u(r), u(µ(r)))∇r

))

+
∫ t

0
Φq

(∫ T

s
a(r)f(u(r), u(µ(r)))∇r

)
�s

∣∣∣∣
≤ AΦq

(∫ T

η
a(r)f(u(r), u(µ(r)))∇r

)

+TΦq

(∫ T

0

a(r)f(u(r), u(µ(r)))∇r

)

≤ (A + T )Φq

(∫ T

0
a(r)f(u(r), u(µ(r)))∇r

)

= (A + T )Φq

(∫
Y1

a(r)f(u(r), ϕ(µ(r)))∇r

+
∫

Y2

a(r)f(u(r), u(µ(r)))∇r

)

≤ (A + T )Φq

(∫ T

0

a(r)∇r

)
c

ρ
= c,
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∣∣∣(Fu)� (t)
∣∣∣ =

∣∣∣∣Φq

(∫ T

t
a(r)f(u(r), u(µ(r)))∇r

)∣∣∣∣
≤ Φq

(∫ T

0

a(r)f(u(r), u(µ(r)))∇r

)

= Φq

(∫
Y1

a(r)f(u(r), ϕ(µ(r)))∇r

+
∫

Y2

a(r)f(u(r), u(µ(r)))∇r

)

≤ Φq

(∫ T

0
a(r)∇r

)
c

ρ

=
c

A + T
≤ c.

Therefore, ‖Fu‖ ≤ c , i.e., F : Pc → P c.
By (H1) and in a way similar to above, we arrive that F : Pa → Pa.
Next, we assert that {u ∈ P (α, b, d) : α(u) > b} �= φ and α(Au) > b for all

u ∈ P (α, b, d).
Let u = b+d

2 , then u ∈ P, ‖u‖ = b+d
2 ≤ d and α(u) = b+d

2 > b. That is,
{u ∈ P (α, b, d) : α(u) > b} �= φ.

Moreover, ∀u ∈ P (α, b, d), we have b ≤ u(t) ≤ d, t ∈ [η, T ]T , then from (H3),
we see that

α(Fu) = (Fu) (η)

= B0

(
Φq

(∫ T

η
a(r)f(u(r), u(µ(r)))∇r

))

+
∫ η

0
Φq

(∫ T

s
a(r)f(u(r), u(µ(r)))∇r

)
�s

≥ BΦq

(∫ T

η
a(r)f(u(r), u(µ(r)))∇r

)

+ηΦq

(∫ T

η
a(r)f(u(r), u(µ(r)))∇r

)

≥ (B + η)Φq

(∫
Y3

a(r)f(u(r), ϕ(µ(r)))∇r

)

> (B + η)Φq

(∫
Y3

a(r)∇r

)
b

δ

= b,

as required.
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Finally, we assert that α(Fu) > b, for all u ∈ P (α, b, c) and ‖Fu‖ > d.

To see this, ∀u ∈ P (α, b, c) and ‖Fu‖ > d, then 0 ≤ u(t) ≤ c, t ∈ [0, T ]T ,
then from (H4), we have

Φp

(
M

m

)∫
Y3

a(r)f(u(r), ϕ(µ(r)))∇r ≥
∫ T

0
a(r)f(u(r), u(µ(r)))∇r,

i.e.
∫

Y3

a(r)f(u(r), ϕ(µ(r)))∇r ≥

∫ T

0

a(r)f(u(r), u(µ(r)))∇r

Φp

(
M
m

)
holds.

So,

α(Fu) = (Fu) (η)

= B0

(
Φq

(∫ T

η
a(r)f(u(r), u(µ(r)))∇r

))

+
∫ η

0
Φq

(∫ T

s
a(r)f(u(r), u(µ(r)))∇r

)
�s

≥ BΦq

(∫ T

η
a(r)f(u(r), u(µ(r)))∇r

)

+ηΦq

(∫ T

η
a(r)f(u(r), u(µ(r)))∇r

)

≥ (B + η)Φq

(∫
Y3

a(r)f(u(r), ϕ(µ(r)))∇r

)

≥ (B + η)Φq

(∫ T
0 a(r)f(u(r), u(µ(r)))∇r

Φp

(
M
m

)
)

=
m (B + η)

M
Φq

(∫ T

0
a(r)f(u(r), u(µ(r)))∇r

)

=
m (B + η)
M (A + T )

(A + T )Φq

(∫ T

0

a(r)f(u(r), u(µ(r)))∇r

)

≥ m (B + η)
M (A + T )

‖Fu‖

>
m (B + η)
M (A + T )

d

≥ b.

To sum up, all the hypotheses of Theorem 2.1 are satisfied. Hence F has at
least three fixed points, i.e., the BVP (1.1), (1.2) has at least three positive solutions
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of the form

u(t) =

{
ϕ(t), t ∈ [−r, 0]T ,

ui(t), t ∈ [0, T ]T , i = 1, 2, 3,

where ‖u1‖ < a, b < α(u2), ‖u3‖ > a and α(u3) < b.

4. POSITIVE SOLUTIONS OF THE BVP (1.1), (1.3)

In this section we deal with the BVP (1.1), (1.3) .
We note that u(t) is a solution of the BVP (1.1), (1.3) if and only if

u(t) =




B1

(
Φq

(∫ η

0
a(r)f(u(r), u(µ(r)))∇r

))

+
∫ T

t
Φq

(∫ s

0
a(r)f(u(r), u(µ(r)))∇r

)
�s,

t ∈ [0, T ]T ,

ϕ(t), t ∈ [−r, 0]T .

Let E = C�
ld([0, T ]T , R) with ‖u‖ = max

{
maxt∈[0,T ]T |u(t)| , maxt∈[0,T ]

Tk∣∣u�(t)
∣∣} , P1 = {u ∈ E : u is nonnegative, decreasing and concave on [0, T ]T} .

So E is a Banach space with the norm ‖u‖ and P1 is a cone in E . For each u ∈ E,

extend u(t) to [−r, T ]T with u(t) = ϕ(t) for t ∈ [−r, 0]T .
Define completely continuous operator G : P1 → E by

(Gu)(t) = B1

(
Φq

(∫ η

0
a(r)f(u(r), u(µ(r)))∇r

))

+
∫ T

t
Φq

(∫ s

0
a(r)f(u(r), u(µ(r)))∇r

)
�s, t ∈ [0, T ]T .

We seek a fixed point, u1, of G in the cone P1. Define

u(t) =

{
ϕ(t), t ∈ [−r, 0]T ,

u1(t), t ∈ [0, T ]T .

Then u(t) denotes a positive solution of the BVP (1.1), (1.3).

Lemma 4.1. G : P1 → P1.

Proof. The proof is similar to Lemma 3.1, so we omit here.
Let l ∈ T be fixed such that 0 < η < l < T, and set

Y1 = {t ∈ [0, T ]T : µ(t) ≤ 0} ; Y2 = {t ∈ [0, T ]T : µ(t) > 0} ; Y3 = Y1∩ [0, η]T .
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Throughout this section, we assume Y3 �= φ and
∫
Y3

a(r)∇r > 0.

Define the nonnegative continuous concave functional α : P1 → [0,∞) by

α(u) = min
t∈[η,l]T

u(t), ∀u ∈ P1.

It is easy to see that α(u) = u(l) ≤ maxt∈[0,T ]T |u (t)| ≤ ‖u‖ if u ∈ P and
α (Fu) = (Fu) (l).

Let ρ remains unchanged and we denotes

δ∗ = (B + T − l)Φq

(∫
Y3

a(r)∇r

)
.

Similarly to Theorem 3.1, we have

Theorem 4.1. Let 0 < a < b ≤ m(B+T−l)
M (A+T ) d < d ≤ c, and suppose that f

satisfies the following conditions:
(H1) f(x, ϕ(s)) < Φp(a

ρ ), for all 0 ≤ x ≤ a, uniformly in s ∈ [−r, 0]T ;

f(x1, x2) < Φp(a
ρ ), for all 0 ≤ xi ≤ a, i = 1, 2,

(H2) f(x, ϕ(s)) ≤ Φp( c
ρ), for all 0 ≤ x ≤ c, uniformly in s ∈ [−r, 0]T ;

f(x1, x2) ≤ Φp( c
ρ), for all 0 ≤ xi ≤ c, i = 1, 2,

(H3) f(x, ϕ(s)) > Φp( b
δ∗ ), for all b ≤ x ≤ d, uniformly in s ∈ [−r, 0]T ,

(H4) minx∈[0,c] f(x, ϕ(s))·Φp

(
M
m

) ∫
Y3

a(r)∇r ≥ maxx1,x2∈[0,c] f(x1, x2)·
∫ T
0 a(r)∇r,

uniformly in s ∈ [−r, 0]T .

Then the BVP (1.1), (1.3) has at least three positive solutions of the form

u(t) =

{
ϕ(t), t ∈ [−r, 0]T ,

ui(t), t ∈ [0, T ]T , i = 1, 2, 3,

where ‖u1‖ < a, b < α(u2), ‖u3‖ > a and α(u3) < b.

5. EXAMPLE

Let T =
[−3

4 ,−1
4

] ∪ {0, 3
4

} ∪
{(

1
2

)N0
}

, where N0 denotes the set of all
nonnegative integers.

Consider the following p-Laplacian functional dynamic equation on time scale
T

(5.1)



[
Φp(u�(t))

]� + a(t)


 8u3(t)

u3(t)+u3(t−
3
4
) + 1

+ 1
5


 = 0, t ∈ (0, 1)T ,

u0(t)=ϕ(t) ≡ 0, t∈[−3
4 , 0
]
T

, u(0)− B0(u�( 1
4))=0, u�(1)=0,
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where T = 1, p = 3
2 , B = 1

2 , A = 2, µ : [0, 1]T → [−3
4 , 1
]
T
and µ(t) = t − 3

4 ,

r = 3
4 , η = 1

4 , l = 1
2 , f(u, ϕ(s)) = 8u3

u3+1
+ 1

5 , f(u1, u2) = 8u3
1

u3
1+u3

2+1
+ 1

5 and

a(t) =




1, t ∈ [0,
1
2
]T,

−99
50

t +
199
100

, t ∈ [
1
2
, 1]T.

We deduce that Y1 =
[
0, 3

4

]
T

, Y2 =
(

3
4 , 1
]
T

, Y3 =
[

1
4 , 3

4

]
T

. Then by [7, The-

orem 2.8] we have
∫
Y3

a(r)∇r =
∫ 3

4
1
4

a(r)∇r = 301
800 ,

∫ T
0 a(r)∇r =

∫ 1
0 a(r)∇r =

503
800 .

Thus it is easy to see by calculation that ρ = 3
(

503
800

)2
, δ = 3

4

(
301
800

)2
.

Choose a = 1
10 , b = 1, d = 42000, c = 45000 then by M = 1, m = 1

10000 we
have 0 < a < b < m(B+η)

M (A+T )d < d < c, then

f(u, ϕ(s)) ≤ 8
1001 + 1

5 ≈ 0.2080 < Φp(a
ρ ) =

√
1
10

3(503
800 )

2 ≈ 0.2904, 0 ≤ u ≤
1
10 , uniformly in s ∈ [−3

4 , 0
]
T

;

f(u1, u2) ≤ 8
1002 + 1

5 ≈ 0.2080 < Φp(a
ρ ) =

√
1
10

3(503
800 )

2 ≈ 0.2904, 0 ≤ ui ≤
1
10 , i = 1, 2,

f(u, ϕ(s)) < 8.2 < Φp( c
ρ) =

√
45000

3( 503
800)

2 ≈ 195, 0 ≤ u ≤ 45000, uniformly

in s ∈ [−3
4 , 0
]
T

;

f(u1, u2) < 8.2 < Φp( c
ρ) =

√
45000

3( 503
800)

2 ≈ 195, 0 ≤ ui ≤ 45000, i = 1, 2,

f(u, ϕ(s)) ≥ 4.2 > Φp( b
δ ) =

√
1

3
4( 301

800 )
2 ≈ 3.0690, 1 ≤ u ≤ 42000, uni-

formly in s ∈ [−3
4 , 0
]
T

minu∈[0,c] f(u, ϕ(s)) · Φp

(
M
m

) ∫
Y3

a(r)∇r = 7.5250 > 5.1558 ≈ 41
5 · 503

800 >

maxui∈[0,c] f(u1, u2) ·
∫ T
0 a(r)∇r, uniformly in s ∈ [−3

4 , 0
]
T

.

Thus by Theorem 3.1, the BVP (5.1) has at least three positive solutions of the
form

u(t) =

{
ui(t), t ∈ [0, T ] , i = 1, 2, 3,

ϕ(t), t ∈ [−r, 0] ,

where ‖u1‖ < 1
10 , 1 < α(u2), ‖u3‖ > 1

10 and α(u3) < 1.
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