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BANACH ALGEBRAS RELATED TO THE ELEMENTS
OF THE UNIT BALL OF A BANACH ALGEBRA

R. A. Kamyabi-Gol and M. Janfada

Abstract. Suppose A is a Banach algebra and ¢ is in A with |¢|| < 1. In
this note we aim to study the algebraic properties of the Banach algebra A,
where the product on A, is given by a ® b = aeb, for a,b € A. In particular
we study the Arens regularity, amenability and derivations on A.. Also we
prove that if A has an involution then A, has the same involution just when
e=1or —1.

1. INTRODUCTION

Let A be a Banach algebra and € be an element in the closed unit ball of A. A
new product © is defined on A by

a®b=a€b forallab e A

A with this product is a Banach algebra which we denote it by A.. We aim to study

the algebraic properties of A, such as when A, has a unit, when an element of A,
is invertible and so on. The necessary and sufficient conditions for the existence of
involution on A, is investigated. In particular, when is A, a C*-algebra. Derivations
on A, , the Arens regularity of A, and amenability of A, are also examined.

2. THE ELEMENTARY PROPERTIES OF A

Definition 2.1. Let A be a Banach algebra and € an element of it‘s closed unit
ball i.e. ||e]| < 1. We define the new product ® on a A by

a®b=aceb for all a,b € A.
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One can easily check that A with this product is an algebra which we denote it by
Ae.

Proposition 2.2. With the above assumptions A. is a Banach algebra.
Proof. is immediate. u
In the next proposition the algebraic properties of A are investigated.

Proposition 2.3. If A is a Banach algebra. Then

(i) A is unital if and only if A is unital and € is invertible.

(ii) If A is unital, then for any a € A, Spa_(a) = Spa(ac). Where Spa, and
Spa stand for the spectrum relative to A and A respectively.

(iii) If A is unital then Inv(A.) = Inv(A). Where Inv denotes the set of all
invertible elements.

(iv) If €1 and ez are in the closed unit ball of A, then (A¢,)e, = Aeciene,- In
particular, if € is invertible then (A).—2 = A.

Proof.
(i) Let A¢ be unital and 1. be the identity of A.. Then for any a € A,

a®15:15®a:a.
Consequently a(el.) = (1c€)a = a. But 1. = (1c€)(ele) = el.. So €l is the

unit of A and ! = 1..

For the converse, one can easily check that if e is invertible, then €' is the
unit of A..

(ii) Let A be unital and A € P4(a). Then there exists b € A such that
le=el=0Oc'—a)ob= A" —a)eb = (A — ae)b.

So that 1 = (A — ae)be. This means that X\ — ae is left invertible in A.
Similarly (A — ae) has a right inverse in A. Therefore A € Spa(ae). In other
words, we have Spy_(a) C Spa(ae).

In a similar way, we can see Spa(ae) C Spa, (a).

(iii) Let a € Inv(A). Then there is b € A such that

ab =ba = 1.
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Therefore ae(e be™) = (e tbe 1)ea = e 1.
This means that

a® (e tbe™) = (e ) @a =€t

Consequently, a € Inv(A,) i.e. Inv(A) C Inv(A.). The reverse inclusion
holds similarly.
(iv) Proof is immediate. u

In the next proposition we study the relation between the multiplicative linear
functionals on A and A..

Proposition 2.4.

(i) If ¢ is a multiplicative linear functional on A, then 1 = ¢(€)¢ is a multi-
plicative linear functional on A..

(i) If A¢ is unital, and 1) is a multiplicative linear functional on A , then ¢(a) =
V(e La) is a multiplicative linear functional on A .

Proof. (i) Let a,b € A. Then

P(a©b) = P(aeb) = d(e)¢(a)p(e)d(b) = ¢ (a)y(b).

The proof of (i7) is clear by the identity (Ac).-2 = A and (i), also one can verify
it directly. n

Corollary 2.5.

(i) If Ac is unital, then the mapping ¢ — 1) between the set of all multiplicative
linear functionals on A and A is a one-to-one correspondence.

(ii) Ker¢ = Kervy and in particular (\M = (| M. Where M and M, run over
the maximal ideal spaces of A and A respectively.

3. INVOLUTION ON A,

In this section the involutive Banach algebras are considered. Especially the
necessary conditions for € that A, is an involutive Banach algebra or a C*-algebra,
is investigated.

Proposition 3.1. Let A be an involutive Banach algebra with involution .
Then

(i) If € is self-adjoint, then A is a x-involutive Banach algebra.
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(ii) If A is unital or has a bounded approximate identity and * is an involution
on A, then € is self-adjoint.

In particular, any C*-algebra has a bounded approximate identity and so (i)
and (ii) is valid.

Proof.
(i) is immediate.
(ii) Let {eq}aecr be a bounded approximate identity for A. Then by the continuity

of %, {e}} is also a bounded approximate identity for A. On the other hand,
since * is an involution for A, we have:

(ef ®eq) =€ Oeq

and it is easy to see that lim, e} ee, = €. Now,

et =lim(ele'e,) = lim (elee,)” =lim (e @ ey)"
[e% [e% [e%

= lim(e}, ® eq) = limejee, = €. |
e} e}

The following proposition shows that when both A and A, are C*-algebras,
€ can not be an interior point of the unit ball of A.

Proposition 3.2. Let A and A, be C*-algebras with the same involution. Then
llell = 1. Proof: Tt is known that any C*-algebra admits an increasing bounded

approximate unit. Let {e,} be such an approximate unit with ||e,|| = 1 for all a‘s.
Since A, is also a C*-algebra, we have:

L= leall” = llea @ il = leacesll and feaced]| — |ell.
Consequently, 1 = ||| . |

Theorem 3.3. Let A and A. be C*-algebras where € is invertible, then
Sp(e) C {—-1,1}.

Proof. First we show that when ¢ is invertible, there is a one-to-one corre-
spondence between the irreducible representations of A and A.. Let {w, H} be an
irreducible representation of A. Then it is easy to see that {my, H} is an irre-
ducible representation on A, where 71 (a) = m(ea) for all a € A. Also if {m, H}
is an irreducible representation of A, then {m, H} is an irreducible representation
of A in which 7(a) = m1(e"a) for all @ € A. Now if moreover A and A, are
C*-algebras then by 2.7.1 and 2.7.3 of [2], for any a € A, we have

|la|| = SUP{||7(a)| : {m, H} is an irreducible representation of A}
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and
|la|]| = SUP{||m1(a)|| : {m1, H} is an irreducible representation of A}
so that by what we have shown above,

|la|]| = SUP{||m(a)| : {m, H} is an irreducible representation of A}

= SUP{||n1(e'a)|| : {m1, H} is an irreducible representation of A } = || al|

similarly,

|la|]| = SUP{||m1(a)|| : {m1, H} is an irreducible representation of A}

= SUP{||w(a)|| : {w, H} is an irreducible representation of A} = ||eal|

Hence, |la| = |leal| = |l ta| for all @ € A. Therefore 1 = ||1|| = |l¢|| =
le™]l

This means that 0 ¢ Sp{e}, Sp(¢) C [~1,1] and Sp(e~!) C [~1,1]. But
Sp(e7t) = {3 : XA € Sp(e)}. Consequently Sp(e) € {—1,1}. |

The next example shows that, Sp(e) = {—1,1} is possible. So, one can not
find some more restriction conditions of Theorem 3.3 on e.

Example 3.4. Let A = {( 8 2 ) ta,be (C.}. Then A is a C*-algebra.
Assume € (1) _01 ) Then Sp(e) = {—1,1}. For this € ,A. is a C*-algebra.

Indeed,

(5 0] =r (5 ) = et

andforA:<0 b)’

o= (5 5) (o %) (6 0)
_ H( “ )H = Maz{|a?), b} = | AJ%

The following example shows that the condition Sp(e) = {—1,1} by itself is not a
sufficient condition for A, to be a C*-algebra. In fact it shows that the converse of
Theorem 3.3 does not hold if € is not invertible.
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Example 3.5. Suppose A be the C*-algebra of all complex 3 x 3 matrixes

1 0 O
entries and let € = 0 -1 0
0O 0 1

Then it is clear that Sp(e) = {—1,1}. But for A = we have:

S O =
w = O

0

2

0
9<r<A>>2A2¢A*@AA*eAr< S
-2 11

:max{l,\%(—7—\/@)\,\— 7—1—\/@}

And this means that A, cannot be a C*-algebra.

4. DERIVATIONS, AMENABILITY, ARENS REGULARITY OF A,

In this section we investigate the derivations on A, and their relations with
the derivations on A. Also we consider X -derivations where X is a A.-module,
amenability of A, and it’s relation with the amenability of A and finally we consider
the Arens regularity of A..

Definition 4.1. The linear operator D : A — A is called a derivation if

D(ab) = aD(b) + D(a)b.

The following proposition characterizes the derivations on A, with respect to
the derivations on A.

Proposition 4.2.

(i) Let D be a derivation on A such that D(e) = 0. Then D is a derivation on
Ae.

(ii) If A has a bounded approximate identity and D is a derivation on both A
and A, then D(e) = 0.

Proof.
(i) Let D be a derivation on A such that D(e) = 0. Then for a,b € A, we have

D(a®b) = D(aeb) = D(ae)b+ aeD(b)
= D(a)eb+ aD(e)b+ aeD(b) = D(a) ® b+ a ® D(b).

Hence D is a derivation on A..
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(ii) Let {eq},; be a bounded approximate identity on A and D be a derivation
on A and A.. Let a,b € A, then since D is a derivation on A, we have
D(a®b) =D(a) ©b+a® D(b) = D(a)eb+ aeD(b).
Also since D is a derivation on A,
D(a ®b) = D(aeb) = D(a)eb+ aD(e)b+ aeD(b).
Therefore for all @ and b in A, aD(e)b = 0. So that

0=eqD(e)eq — D(e).
Hence D(¢) = 0. n

The next proposition shows that in a special case any inner derivation on A, is
an inner derivation on A.

Proposition 4.3. If ¢ is in the algebraic center of A, then any inner derivation
on Ac is an inner derivation on A.

Proof. Let d¢ be the inner derivation corresponding to ¢ on A.. Then:

d(a) =a®c—cOa=aec— cea = a(ec) — (ec)a = dec(a)

In which d. is the inner derivation corresponding to ec on A. [ |

Remark 4.4. If € is an element in the algebraic center of A, then the identity
dc(€) = ce —ec =0 and the proposition 4.2 implies that when ¢ is invertible, we
have d. = d_; .. So that in this case the converse of the proposition 4.3 holds.

Now we consider the relation between A-modules and A.-modules.

Let X be a Banach A-module. We define

©®: A X — X by (a,2) — a®z = acex.

Then X is a A.-module. Indeed,

(a1 ©® az) © x = (ajeaz)ex = aje(agex) = a1 © (az O x).

Also,

la © || = [[(ae)z|| < Kllac]| [[z]| < Eflelllla]l]lz]
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Definition 4.5. The bounded linear operator D : A — X is called a X-
derivation of A if D(ab) = D(a)b+ aD(b), for all a,b € A.

The next proposition shows the relation between X -derivations of A and X-
derivations of A..

Proposition 4.6.

(i) If D is a X-derivation of A such that D(e) = 0, then D is a X-derivation
of Ae.

(ii) If A has a bounded approximate identity for X, and D is a X -derivation of
A and of A, then D(e) = 0.

Proof. Proof is similar to proposition 4.2. ]
Now we consider the amenability of A.. The following proposition shows that
if A is commutative and ¢ is idempotent then the amenability of A implies the

amenability of A..

Proposition 4.7. Let A be a Banach algebra and € be an idempotent element
of the algebraic center of A. If A is amenable, then A . is amenable.

A
Proof. Let A be an amenable Banach algebra. Then A ® A (for its definition
see [1]), is also amenable (see Theorem 4.3 of [6]). Now let:

F:A® A— A, be defined by f(a®b) = acb

Then f is a continuous homomorphism of Banach algebras.
Indeed we have:

f((a1 & bl)(ag & bg)) = f(a1a2 & blbg) = alageblbg = a1a2636162
= (alebl)e(agebg) = f(a1 ® b1) ©O) f(az & bg)

Also, f is continuous, since for u € A ® A, if

n
Z a; ®b;
i=1

is one of the representations of u, then from the fact that |le|| <1 we have

LF)l =11 aseball <D Naillllelllball <D llaillvil
i=1 i=1 i=1
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Consequently,
n n
IF @)l < inf LY lalllbdll = u=73" ai®bi} = |lul.
i=1 i=1

Therefore || f|| < 1. Also the range of f is A, since for any a € A

a=al =aée = ace,

and aee is an element in the range of f. Thus f is a continuous homomorphism of

AN
the amenable Banach algebra of A ® A onto A.. Now the amenability of Banach
algebra A, is a consequence of Theorem 43.11 in [5]. ]

Remark 4.8. If in the above proposition, we also assume that € is invertible,
then the amenability of A, implies the amenability of A. This is because of the
identity

A= (A)—2.

We conclude this section with studding the Arens regularity of A.. In particular
we show that if A is a left or right ideal of the Banach (A**,.), then A, is Arens
regular for all € in the unite ball of A.

We denote ”.” the first Arens product on A**, which is defined as follows

< f.a,b>=< f,ab>
<n.f,a>=<n, fa>

<mmn, f>=<m,n.f >

for a,be A, f € A* and m,n € A*, and use ” A” for the second Arens product
on A** which is defined as follows

< b,aAf >=<ba, f >

<a, fAmMm >=<aAf,m>
< f,mAn >=< fAm,n > .

Also the topological center Z; and Zo corresponding to the first and the second
Arens product respectively, is defined by

Zy={me A™ : m.n=mAn, Vn € A*}

Zy={n €A™ :mmn=mAn, Ym e A™}.
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We refer to [3] and [4] for elementary definitions and more information about
Arens products, topological center and Arens regularity of Banach algebras. The
Banach algebra A is called Arens regular if and only if Z; = A** or Z, = A**.
We recall that if A is a Banach algebra a € A and n € A*, then A C Z1 N
Zo, so a.n=alAn and n.a =nlAa.

Theorem 4.9. Let A be a Banach algebra and A is a left or right ideal of
A, with the products a.n and n.a, (a € A, n € A**). Then for each € in the
unit ball of A, A, is Arens regular.

Proof. Let @ denotes the first Arens product on A" and Ag be the second
Arens product on A}*. Let m,n € A, fe A =A* and a,b € A, we have

< fda,b>=< f,a®b>=< f,aeb >=< f.ae, b >
so f ®a= f.ae, forall a € A. Also
<n® f,a>=<n, f®a>=<n, f.ae >

=< (eAn).f,a>=<en.f,a > .

The last equality holds, since A C Z1NZ5 and so eAn = e.n. Hence n® f = e.n. f.
Furthermore

<me@n, f>=<m,ndf>=<m,en.f >=<m.en, f>.

Thus m & n = m.e.n. Similarly one can show that mAgn = mAeAn. Now
suppose A is a leftideal in A**. This implies that for each m, n € A**, e.n(= eAn)
belongs to Z; and

m@®n =m.(en) = mA(en)

= mA(eAn) = mAgn.

Hence A}* is Arens regular. Similar arguments prove that A, is Arens regular when
A is a right ideal of A**. ]

Remark 4.10. If A is Arens regular then the equalities m@&n = m.e.n and m
Agn = mAnAn implies that A, is Arens regular. But the converse is not true in
general, for example let G be an infinite compact topological group. By Theorem
[7] 4.1 we know that A = L'(G) is a right ideal in its second dual so by the
previous Theorem for each € in the unit ball of A, A, is Arens regular, but from
[8] we know L!(G) is Arens regular if and only if G is finite, which shows that A
is not Arens regular.
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