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MEDIANS OF GRAPHS AND KINGS OF TOURNAMENTS*

Hai-Yen Lee and Gerard J. Chang

Abstract. We first prove that for any graph G with a positive vertex
weight function w, there exists a graph H with a positive weight function
w′ such that w(v) = w′(v) for all vertices v in G and whose w′-median is
G. This is a generalization of a previous result for the case in which all
weights are 1. The second result is that for any n-tournament T without
transmitters, there exists an integer m ≤ 2n−1 and an m-tournament T ′

whose kings are exactly the vertices of T . This improves upon a previous
result for m ≤ 2n.

1. Introduction

In a graph (digraph) G, the distance dG(u, v) from a vertex u to another
vertex v is the minimum number of edges in a u-v path (dipath). The eccen-
tricity of a vertex v is

eG(v) = max{dG(v, u) : u ∈ V (G)}.

A central vertex is a vertex with a minimum eccentricity. The center of a
graph (digraph) G is the subgraph (subdigraph) C(G) induced by the set of
all central vertices. Hedetniemi [4] demonstrated that for an arbitrary (not
necessarily connected) graph G there exists a connected graph whose center is
G. Indeed, such a graph can be obtained from G by adding four new vertices
a, b, c, d and new edges ab, dc, bx, cx for all x ∈ V (G). Buckley, Miller, and
Slater [4] characterized trees which are the centers of graphs with two more
vertices than the original trees.
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In a graph G, the distance sum of a vertex v is

DG(v) =
∑

u∈V (G)

dG(v, u).

A median vertex is a vertex with a minimum median sum. The median of
a graph G is the subgraph M(G) induced by the set of all median vertices.
Slater [7] showed that for an arbitrary graph G there exists a connected graph
whose median is G. Miller [5] simplified Slater’s construction by producing
for any graph G with p vertices a connected graph H with at most 2p vertices
whose median is G.

A tournament (n-tournament) is an oriented complete graph (of n ver-
tices). A king in a tournament T is a vertex x whose eccentricity eT (x) ≤ 2.
A tournament in which every vertex is a king is called an all-king tournament.
A transmitter in a tournament T is a vertex x whose eccentricity eT (x) ≤ 1.
Note that a tournament always has at least one king, e.g., the vertex with the
largest outdegree. And a tournament may or may not have a transmitter. If a
tournament has a transmitter, it has exactly one. Figure 1 shows two tourna-
ments T1 in which a, c, d are kings, and T2 in which e is a transmitter. Reid
[6] proved that for any n-tournament T without transmitters, there exists an
integer m ≤ 2n and an m-tournament whose kings are the vertices of T .

In this paper, we first consider the weighted version of Slater’s result. More
precisely, suppose G is a graph in which w is a positive real-valued function
of V (G). The w-distance sum of a vertex v in G is

DG,w(v) =
∑

u∈V (G)

dG(v, u)w(u).

A w-median vertex is a vertex with a minimum w-median sum. The w-median
of a graph G is the subgraph Mw (G) induced by the set of all w-median

FIG. 1. Two tournaments T1 and T2.
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vertices. Note that the median of a graph is the w-median for which w(v) = 1
for all vertices v. Our result along these lines is that for any graph G with
a positive weight function w, there exists a graph H with positive weight
function w′ such that w(v) = w′(v) for all vertices v in G and Mw′(H) = G.

Our second result improves upon Reid’s result for kings of tournaments.
That is, for any n-tournament T without transmitters, there exists an integer
m ≤ 2n − 1 and an m-tournament T ′ whose kings are exactly the vertices of
T .

2. Main Results

We first consider the weighted median problem.

Theorem 1. For any graph G with a positive weight function w, there
exists a graph H with a positive weight function w′ such that w(v) = w′(v) for
all vertices v in G and Mw′(H) = G.

Proof. Suppose V (G) = {v1, v2, · · · , vp}. Let X = {x1, x2, · · · , xp}, Y =

{y1, y2, · · · , yp}, Z = {z1, z2, z3}, and m = 5
p∑

j=1
w(vj). Construct a graph H

with a positive weight function w′ as follows (see Figure 2 for an example of
G and H):

V (H) = V (G) ∪X ∪ Y ∪ Z and

E(H) = {(vi, xj) : 1 ≤ i ≤ p, 1 ≤ j ≤ p, and(vi, vj) 6∈ E(G)}
∪{(vi, yj) or (yi, yj) : 1 ≤ i ≤ p, 1 ≤ j ≤ p, and i 6= j}
∪{(vi, zj) : 1 ≤ i ≤ p and 1 ≤ j ≤ 3} ∪ E(G);

w′(u) =





w(vi), if u = vi or xi,
2w(vi), if u = yi,
2m, if u = zi.

We shall prove that Mw′(H) = G. First, for each (vi, vj) ∈ E(G), since
(vj , xj), (vi, yj) ∈ E(H) and (vi, xj) /∈ E(H), we have dH(vi, vj) = dH(vi, yj) =
1 and dH(vi, xj) = 2. So,

dH(vi, vj)w′(vj) + dH(vi, xj)w′(xj) + dH(vi, yj)w′(yj) = 5w(vj).

For each (vi, vj) /∈ E(G) with i 6= j, since (vi, xj), (xj , vj), (vi, yj) ∈ E(H),
we have dH(vi, vj) = 2 and dH(vi, xj) = dH(vi, yj) = 1. So

dH(vi, vj)w′(vj) + dH(vi, xj)w′(xj) + dH(vi, yj)w′(yj) = 5w(vj).
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FIG. 2. G with w and H with w′.

Also, since (vi, xi), (vi, yi+1), (yi+1, yi) ∈ E(H) but (vi, yi) 6∈ E(H), we have
dH(vi, vi) = 0, dH(vi, xi) = 1, and dH(vi, yi) = 2. So, for each vi ∈ V (G),

dH(vi, vi)w′(vi) + dH(vi, xi)w′(xi) + dH(vi, yi)w′(yi) = 5w(vj).

Finally, for each vi ∈ V (G),

dH(vi, z1)w′(z1) + dH(vi, z2)w′(z2) + dH(vi, z3)w′(z3) = 6m.

Therefore, for each vertex vi ∈ V (G),

Dw′(vi) =
∑

u∈V (H)

dH(vi, u)w′(u) = 6m +
p∑

j=1

5w(vj) = 7m.

On the other hand, for each vertex u 6∈ V (G),

Dw′(u) ≥ dH(u, z1)w′(z1) + dH(u, z2)w′(z2) + dH(u, z3)w′(z3)

≥ 2(2m) + 2(2m) = 8m.

Therefore, Mw′(H) = G. This completes the proof of the theorem.

Now, we give an improvement upon Reid’s result for kings of tournaments.

Theorem 2. If T is an n-tournament without transmitters, then there
exists an integer m ≤ 2n−1 and an m-tournament T ′ whose kings are exactly
the vertices of T .
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Proof. Recursively define tournaments T1, T2, · · · as follows. Let T1 = T .
If Ti is non-empty, let Vi denote the set of kings of Ti and Ti+1 denote the
subtournament Ti−Vi. Let j be the largest index such that Tj 6= 60. Tj is then
an all-king tournament. We may assume that j > 1, otherwise let T ′ = T .
Also, V = V1 ∪ · · · ∪ Vj is a partition. Suppose V = {v1, v2, · · · , vn} and
V1 ∪ · · · ∪ Vj−1 = {v1, v2, · · · , vk}. Let U = {u1, u2, · · · , uk} and construct a
tournament T ′ as follows (see Figure 3):

V (T ′) = V ∪ U and

E(T ′) = E(T ) ∪ {(us, ut) : (vs, vt) ∈ E(T )} ∪ {(us, vs) : 1 ≤ s ≤ k}
∪{(vs, ut) : 1 ≤ s ≤ n, 1 ≤ t ≤ k, and s 6= t}.

Claim 1. For any vertex vs ∈ V1 ∪ · · · ∪ Vj−1, there exists a vertex
vt ∈ V1 ∪ · · · ∪ Vj−1 such that (vt, vs) ∈ E(T ).

Suppose there exists a vertex vs ∈ V1 ∈ ∪ · · · ∪ Vj−1 such that (vt, vs)
6∈ E(T ), i.e (vs, vt) ∈ E(T ) for any vertex vt ∈ V1 ∪ · · · ∪ Vj−1. Since T has
no transmitters, there exists a vertex v ∈ Vj such that (vs, v) 6∈ E(T ), i.e.,
(v, vs) ∈ E(T ). Since (vs, vt) ∈ E(T ) for each vertex vt ∈ V1 ∪ · · · ∪ Vj−1 and
Tj is an all-king tournament, v is a king of T , i.e. v ∈ V1, which contradicts
v ∈ Vj and j > 1. This proves the claim.

FIG. 3. An m-tournament T ′, with m ≤ 2n− 1, whose kings are V (T ).
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Claim 2. For any vertex vs ∈ V, vs is a king of T ′.
For the case in which vs ∈ Vj , since (vs, ut), (ut, vt) ∈ E(T ′) for each

vertex ut ∈ U and Tj is an all-king tournament, vs is a king of T ′. For the
case in which vs ∈ Vi and i < j, since vs is a king of Ti, (vs, vt) ∈ E(T ) for
some vt ∈ V (T ). By definition, we have

dT ′(vs, w) =





1, if w ∈ U and w 6= us,
2, if w = us, ((us, vt), (vt, us) ∈ E(T ′))
1, if w ∈ V and dT (vs, w) = 1,
2, if w ∈ V and dT (vs, w) = 2,
2, if w = vr,∈ V and dT (vs, w) > 2. ((us, ur), (ur, vr) ∈ E(T ′))

Therefore, vs is a king of T ′. This proves the claim.

Claim 3. For any vertex us ∈ U, us is not a king of T ′.
By Claim 1, there exists a vertex vt ∈ V1 ∪ · · · ∪ Vj−1 such that (vt, vs) ∈

E(T ). By the construction of T ′, we have (ut, us) ∈ E(T ′). Since s 6=
t, dT ′(us, vt) 6= 1. Suppose dT ′(us, vt) = 2, then there exists a vertex w
such that (us, w), (w, vt) ∈ E(T ′). By the construction of T ′, w = vs or
w = ut. Then either (vs, vt) ∈ E(T ′) or (us, ut) ∈ E(T ′), which contradicts
(vt, vs), (ut, us) ∈ E(T ′). So dT ′(us, vt) > 2, i.e. us is not a king of T ′. This
proves the claim.

By Claims 2 and 3, the kings of T ′ are exactly the vertices of T and T ′

is an m-tournament with m ≤ 2n − 1. This completes the proof of the
theorem.

For an arbitrary n-tournament without transmitters, it is desirable to de-
termine the minimum m for which there exists an m-tournament T ′ whose
kings are exactly the vertices of T .

We close this paper with a short discussion of a digraph analogous to
Hedetniemi’s result on centers. Suppose G is an arbitrary (not necessarily
strongly connected) digraph. Let H be the digraph obtained from G by adding
three new vertices u1, u2, u3 and edges u2u1, u1u3, xu2, xu3, u3x for all
x ∈ V (G); see Figure 4. H is clearly strongly connected. Also, eH(x) = 2 for
all x ∈ V (G) and eH(u1) = eH(u2) = eH(u3) = 3. So G is the center of a
strongly connected graph H.

For a digraph G, let g(G) be the minimum number of new vertices that
must be added to G to make G the center of the resulting digraph that is
strongly connected. By the above argument, g(G) ≤ 3 for all digraphs G. Note
that g(G) = 0 if and only if G is strongly connected and self-centered. Figure 5
shows a digraph G1 for which g(G1) = 1. Note that eG1(b) = 1 < 2 = eG1(a) =
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FIG. 4. Strongly connected digraph H with C(H) = G and |V (H)| = |V (G)|+ 3.

FIG. 5. g(G1) = 1 and g(G2) = 2.

eG1(c) and eH1(a) = eH1(b) = eH1(c) = 2 < 3 = eH1(x). Figure 5 also shows
a digraph G2 for which g(G2) = 2. Note that eG2(a) = 1 < ∞ = eG2(b) and
eH2(a) = eH2(b) = 2 < 3 = eH2(x) = eH2(y). It is desirable to determine g(G)
for an arbitrary digraph G.
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