TAIWANESE JOURNAL OF MATHEMATICS
Vol. 1, No. 1, pp. 103-110, March 1997

MEDIANS OF GRAPHS AND KINGS OF TOURNAMENTS*

Hai-Yen Lee and Gerard J. Chang

Abstract

We first prove that for any graph G with a positive vertex weight function w, there exists a graph H with a positive weight function w^{\prime} such that $w(v)=w^{\prime}(v)$ for all vertices v in G and whose w^{\prime}-median is G. This is a generalization of a previous result for the case in which all weights are 1 . The second result is that for any n-tournament T without transmitters, there exists an integer $m \leq 2 n-1$ and an m-tournament T^{\prime} whose kings are exactly the vertices of T. This improves upon a previous result for $m \leq 2 n$.

1. Introduction

In a graph (digraph) G, the distance $d_{G}(u, v)$ from a vertex u to another vertex v is the minimum number of edges in a $u-v$ path (dipath). The eccentricity of a vertex v is

$$
e_{G}(v)=\max \left\{d_{G}(v, u): u \in V(G)\right\} .
$$

A central vertex is a vertex with a minimum eccentricity. The center of a graph (digraph) G is the subgraph (subdigraph) $C(G)$ induced by the set of all central vertices. Hedetniemi [4] demonstrated that for an arbitrary (not necessarily connected) graph G there exists a connected graph whose center is G. Indeed, such a graph can be obtained from G by adding four new vertices a, b, c, d and new edges $a b, d c, b x, c x$ for all $x \in V(G)$. Buckley, Miller, and Slater [4] characterized trees which are the centers of graphs with two more vertices than the original trees.

[^0]In a graph G, the distance sum of a vertex v is

$$
D_{G}(v)=\sum_{u \in V(G)} d_{G}(v, u) .
$$

A median vertex is a vertex with a minimum median sum. The median of a graph G is the subgraph $M(G)$ induced by the set of all median vertices. Slater [7] showed that for an arbitrary graph G there exists a connected graph whose median is G. Miller [5] simplified Slater's construction by producing for any graph G with p vertices a connected graph H with at most $2 p$ vertices whose median is G.

A tournament (n-tournament) is an oriented complete graph (of n vertices). A king in a tournament T is a vertex x whose eccentricity $e_{T}(x) \leq 2$. A tournament in which every vertex is a king is called an all-king tournament. A transmitter in a tournament T is a vertex x whose eccentricity $e_{T}(x) \leq 1$. Note that a tournament always has at least one king, e.g., the vertex with the largest outdegree. And a tournament may or may not have a transmitter. If a tournament has a transmitter, it has exactly one. Figure 1 shows two tournaments T_{1} in which a, c, d are kings, and T_{2} in which e is a transmitter. Reid [6] proved that for any n-tournament T without transmitters, there exists an integer $m \leq 2 n$ and an m-tournament whose kings are the vertices of T.

In this paper, we first consider the weighted version of Slater's result. More precisely, suppose G is a graph in which w is a positive real-valued function of $V(G)$. The w-distance sum of a vertex v in G is

$$
D_{G, w}(v)=\sum_{u \in V(G)} d_{G}(v, u) w(u) .
$$

A w-median vertex is a vertex with a minimum w-median sum. The w-median of a graph G is the subgraph $M_{w}(G)$ induced by the set of all w-median

FIG. 1. Two tournaments T_{1} and T_{2}.
vertices. Note that the median of a graph is the w-median for which $w(v)=1$ for all vertices v. Our result along these lines is that for any graph G with a positive weight function w, there exists a graph H with positive weight function w^{\prime} such that $w(v)=w^{\prime}(v)$ for all vertices v in G and $M_{w^{\prime}}(H)=G$.

Our second result improves upon Reid's result for kings of tournaments. That is, for any n-tournament T without transmitters, there exists an integer $m \leq 2 n-1$ and an m-tournament T^{\prime} whose kings are exactly the vertices of T.

2. Main Results

We first consider the weighted median problem.
Theorem 1. For any graph G with a positive weight function w, there exists a graph H with a positive weight function w^{\prime} such that $w(v)=w^{\prime}(v)$ for all vertices v in G and $M_{w^{\prime}}(H)=G$.

Proof. Suppose $V(G)=\left\{v_{1}, v_{2}, \cdots, v_{p}\right\}$. Let $X=\left\{x_{1}, x_{2}, \cdots, x_{p}\right\}, Y=$ $\left\{y_{1}, y_{2}, \cdots, y_{p}\right\}, Z=\left\{z_{1}, z_{2}, z_{3}\right\}$, and $m=5 \sum_{j=1}^{p} w\left(v_{j}\right)$. Construct a graph H with a positive weight function w^{\prime} as follows (see Figure 2 for an example of G and H):

$$
\begin{aligned}
V(H)= & V(G) \cup X \cup Y \cup Z \text { and } \\
E(H)= & \left\{\left(v_{i}, x_{j}\right): 1 \leq i \leq p, 1 \leq j \leq p, \operatorname{and}\left(v_{i}, v_{j}\right) \notin E(G)\right\} \\
& \cup\left\{\left(v_{i}, y_{j}\right) \text { or }\left(y_{i}, y_{j}\right): 1 \leq i \leq p, 1 \leq j \leq p, \text { and } i \neq j\right\} \\
& \cup\left\{\left(v_{i}, z_{j}\right): 1 \leq i \leq p \text { and } 1 \leq j \leq 3\right\} \cup E(G) ; \\
w^{\prime}(u)= & \begin{cases}w\left(v_{i}\right), & \text { if } u=v_{i} \text { or } x_{i}, \\
2 w\left(v_{i}\right), & \text { if } u=y_{i}, \\
2 m, & \text { if } u=z_{i} .\end{cases}
\end{aligned}
$$

We shall prove that $M_{w^{\prime}}(H)=G$. First, for each $\left(v_{i}, v_{j}\right) \in E(G)$, since $\left(v_{j}, x_{j}\right),\left(v_{i}, y_{j}\right) \in E(H)$ and $\left(v_{i}, x_{j}\right) \notin E(H)$, we have $d_{H}\left(v_{i}, v_{j}\right)=d_{H}\left(v_{i}, y_{j}\right)=$ 1 and $d_{H}\left(v_{i}, x_{j}\right)=2$. So,

$$
d_{H}\left(v_{i}, v_{j}\right) w^{\prime}\left(v_{j}\right)+d_{H}\left(v_{i}, x_{j}\right) w^{\prime}\left(x_{j}\right)+d_{H}\left(v_{i}, y_{j}\right) w^{\prime}\left(y_{j}\right)=5 w\left(v_{j}\right) .
$$

For each $\left(v_{i}, v_{j}\right) \notin E(G)$ with $i \neq j$, since $\left(v_{i}, x_{j}\right),\left(x_{j}, v_{j}\right),\left(v_{i}, y_{j}\right) \in E(H)$, we have $d_{H}\left(v_{i}, v_{j}\right)=2$ and $d_{H}\left(v_{i}, x_{j}\right)=d_{H}\left(v_{i}, y_{j}\right)=1$. So

$$
d_{H}\left(v_{i}, v_{j}\right) w^{\prime}\left(v_{j}\right)+d_{H}\left(v_{i}, x_{j}\right) w^{\prime}\left(x_{j}\right)+d_{H}\left(v_{i}, y_{j}\right) w^{\prime}\left(y_{j}\right)=5 w\left(v_{j}\right) .
$$

FIG. 2. G with w and H with w^{\prime}.
Also, since $\left(v_{i}, x_{i}\right),\left(v_{i}, y_{i+1}\right),\left(y_{i+1}, y_{i}\right) \in E(H)$ but $\left(v_{i}, y_{i}\right) \notin E(H)$, we have $d_{H}\left(v_{i}, v_{i}\right)=0, d_{H}\left(v_{i}, x_{i}\right)=1$, and $d_{H}\left(v_{i}, y_{i}\right)=2$. So, for each $v_{i} \in V(G)$,

$$
d_{H}\left(v_{i}, v_{i}\right) w^{\prime}\left(v_{i}\right)+d_{H}\left(v_{i}, x_{i}\right) w^{\prime}\left(x_{i}\right)+d_{H}\left(v_{i}, y_{i}\right) w^{\prime}\left(y_{i}\right)=5 w\left(v_{j}\right) .
$$

Finally, for each $v_{i} \in V(G)$,

$$
d_{H}\left(v_{i}, z_{1}\right) w^{\prime}\left(z_{1}\right)+d_{H}\left(v_{i}, z_{2}\right) w^{\prime}\left(z_{2}\right)+d_{H}\left(v_{i}, z_{3}\right) w^{\prime}\left(z_{3}\right)=6 m
$$

Therefore, for each vertex $v_{i} \in V(G)$,

$$
D_{w^{\prime}}\left(v_{i}\right)=\sum_{u \in V(H)} d_{H}\left(v_{i}, u\right) w^{\prime}(u)=6 m+\sum_{j=1}^{p} 5 w\left(v_{j}\right)=7 m .
$$

On the other hand, for each vertex $u \notin V(G)$,

$$
\begin{aligned}
D_{w^{\prime}}(u) & \geq d_{H}\left(u, z_{1}\right) w^{\prime}\left(z_{1}\right)+d_{H}\left(u, z_{2}\right) w^{\prime}\left(z_{2}\right)+d_{H}\left(u, z_{3}\right) w^{\prime}\left(z_{3}\right) \\
& \geq 2(2 m)+2(2 m)=8 m
\end{aligned}
$$

Therefore, $M_{w^{\prime}}(H)=G$. This completes the proof of the theorem.
Now, we give an improvement upon Reid's result for kings of tournaments.
Theorem 2. If T is an n-tournament without transmitters, then there exists an integer $m \leq 2 n-1$ and an m-tournament T^{\prime} whose kings are exactly the vertices of T.

Proof. Recursively define tournaments T_{1}, T_{2}, \cdots as follows. Let $T_{1}=T$. If T_{i} is non-empty, let V_{i} denote the set of kings of T_{i} and T_{i+1} denote the subtournament $T_{i}-V_{i}$. Let j be the largest index such that $T_{j} \neq 0 . T_{j}$ is then an all-king tournament. We may assume that $j>1$, otherwise let $T^{\prime}=T$. Also, $V=V_{1} \cup \cdots \cup V_{j}$ is a partition. Suppose $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and $V_{1} \cup \cdots \cup V_{j-1}=\left\{v_{1}, v_{2}, \cdots, v_{k}\right\}$. Let $U=\left\{u_{1}, u_{2}, \cdots, u_{k}\right\}$ and construct a tournament T^{\prime} as follows (see Figure 3):

$$
\begin{aligned}
V\left(T^{\prime}\right)= & V \cup U \text { and } \\
E\left(T^{\prime}\right)= & E(T) \cup\left\{\left(u_{s}, u_{t}\right):\left(v_{s}, v_{t}\right) \in E(T)\right\} \cup\left\{\left(u_{s}, v_{s}\right): 1 \leq s \leq k\right\} \\
& \cup\left\{\left(v_{s}, u_{t}\right): 1 \leq s \leq n, 1 \leq t \leq k, \text { and } s \neq t\right\} .
\end{aligned}
$$

Claim 1. For any vertex $v_{s} \in V_{1} \cup \cdots \cup V_{j-1}$, there exists a vertex $v_{t} \in V_{1} \cup \cdots \cup V_{j-1}$ such that $\left(v_{t}, v_{s}\right) \in E(T)$.

Suppose there exists a vertex $v_{s} \in V_{1} \in \cup \cdots \cup V_{j-1}$ such that $\left(v_{t}, v_{s}\right)$ $\notin E(T)$, i.e $\left(v_{s}, v_{t}\right) \in E(T)$ for any vertex $v_{t} \in V_{1} \cup \cdots \cup V_{j-1}$. Since T has no transmitters, there exists a vertex $v \in V_{j}$ such that $\left(v_{s}, v\right) \notin E(T)$, i.e., $\left(v, v_{s}\right) \in E(T)$. Since $\left(v_{s}, v_{t}\right) \in E(T)$ for each vertex $v_{t} \in V_{1} \cup \cdots \cup V_{j-1}$ and T_{j} is an all-king tournament, v is a king of T, i.e. $v \in V_{1}$, which contradicts $v \in V_{j}$ and $j>1$. This proves the claim.

FIG. 3. An m-tournament T^{\prime}, with $m \leq 2 n-1$, whose kings are $V(T)$.

Claim 2. For any vertex $v_{s} \in V, v_{s}$ is a king of T^{\prime}.
For the case in which $v_{s} \in V_{j}$, since $\left(v_{s}, u_{t}\right),\left(u_{t}, v_{t}\right) \in E\left(T^{\prime}\right)$ for each vertex $u_{t} \in U$ and T_{j} is an all-king tournament, v_{s} is a king of T^{\prime}. For the case in which $v_{s} \in V_{i}$ and $i<j$, since v_{s} is a king of $T_{i},\left(v_{s}, v_{t}\right) \in E(T)$ for some $v_{t} \in V(T)$. By definition, we have
$d_{T^{\prime}}\left(v_{s}, w\right)=\left\{\begin{array}{l}1, \text { if } w \in U \text { and } w \neq u_{s}, \\ 2, \text { if } w=u_{s}, \\ 1, \text { if } w \in V \text { and } d_{T}\left(v_{s}, w\right)=1, \\ 2, \text { if } w \in V \text { and } d_{T}\left(v_{s}, w\right)=2, \\ \left.2, \text { if } w=v_{r}, \in V \text { and } d_{T}\left(v_{s}, w\right)>2 .\left(\left(u_{s}, u_{r}\right),\left(u_{r}, v_{r}\right) \in E\left(T^{\prime}\right)\right) \text { }\right) ~\left(\left(u_{s}, v_{t}\right),\left(v_{t}, u_{s}\right) \in E\left(T^{\prime}\right)\right) \\ 2,\end{array}\right.$
Therefore, v_{s} is a king of T^{\prime}. This proves the claim.
Claim 3. For any vertex $u_{s} \in U, u_{s}$ is not a king of T^{\prime}.
By Claim 1, there exists a vertex $v_{t} \in V_{1} \cup \cdots \cup V_{j-1}$ such that $\left(v_{t}, v_{s}\right) \in$ $E(T)$. By the construction of T^{\prime}, we have $\left(u_{t}, u_{s}\right) \in E\left(T^{\prime}\right)$. Since $s \neq$ t, $d_{T^{\prime}}\left(u_{s}, v_{t}\right) \neq 1$. Suppose $d_{T^{\prime}}\left(u_{s}, v_{t}\right)=2$, then there exists a vertex w such that $\left(u_{s}, w\right),\left(w, v_{t}\right) \in E\left(T^{\prime}\right)$. By the construction of $T^{\prime}, w=v_{s}$ or $w=u_{t}$. Then either $\left(v_{s}, v_{t}\right) \in E\left(T^{\prime}\right)$ or $\left(u_{s}, u_{t}\right) \in E\left(T^{\prime}\right)$, which contradicts $\left(v_{t}, v_{s}\right),\left(u_{t}, u_{s}\right) \in E\left(T^{\prime}\right)$. So $d_{T^{\prime}}\left(u_{s}, v_{t}\right)>2$, i.e. u_{s} is not a king of T^{\prime}. This proves the claim.

By Claims 2 and 3, the kings of T^{\prime} are exactly the vertices of T and T^{\prime} is an m-tournament with $m \leq 2 n-1$. This completes the proof of the theorem.

For an arbitrary n-tournament without transmitters, it is desirable to determine the minimum m for which there exists an m-tournament T^{\prime} whose kings are exactly the vertices of T.

We close this paper with a short discussion of a digraph analogous to Hedetniemi's result on centers. Suppose G is an arbitrary (not necessarily strongly connected) digraph. Let H be the digraph obtained from G by adding three new vertices u_{1}, u_{2}, u_{3} and edges $u_{2} u_{1}, u_{1} u_{3}, x u_{2}, x u_{3}, u_{3} x$ for all $x \in V(G)$; see Figure 4. H is clearly strongly connected. Also, $e_{H}(x)=2$ for all $x \in V(G)$ and $e_{H}\left(u_{1}\right)=e_{H}\left(u_{2}\right)=e_{H}\left(u_{3}\right)=3$. So G is the center of a strongly connected graph H.

For a digraph G, let $g(G)$ be the minimum number of new vertices that must be added to G to make G the center of the resulting digraph that is strongly connected. By the above argument, $g(G) \leq 3$ for all digraphs G. Note that $g(G)=0$ if and only if G is strongly connected and self-centered. Figure 5 shows a digraph G_{1} for which $g\left(G_{1}\right)=1$. Note that $e_{G_{1}}(b)=1<2=e_{G_{1}}(a)=$

FIG. 4. Strongly connected digraph H with $C(H)=G$ and $|V(H)|=|V(G)|+3$.

FIG. 5. $g\left(G_{1}\right)=1$ and $g\left(G_{2}\right)=2$.
$e_{G_{1}}(c)$ and $e_{H_{1}}(a)=e_{H_{1}}(b)=e_{H_{1}}(c)=2<3=e_{H_{1}}(x)$. Figure 5 also shows a digraph G_{2} for which $g\left(G_{2}\right)=2$. Note that $e_{G_{2}}(a)=1<\infty=e_{G_{2}}(b)$ and $e_{H_{2}}(a)=e_{H_{2}}(b)=2<3=e_{H_{2}}(x)=e_{H_{2}}(y)$. It is desirable to determine $g(G)$ for an arbitrary digraph G.

References

1. H.-J. Bandelt and J. P. Barthélemy, Medians in median graphs, Disc. Appl. Math. 8 (1984), 131-142.
2. H.-J. Bandelt and H. M. Mulder, Regular pseudo-median graphs, J. Graph Theory 12 (1988), 533-549.
3. H.-J. Bandelt and M. van de Vel, A fixed cube theorem for median graphs, Disc. Math. 67 (1987), 129-137.
4. F. Buckley, Z. Miller, and P. J. Slater, On graphs containing a given graph as center, J. Graph Theory 5 (1981), 427-434.
5. Z. Miller, Medians and distance sequences in graphs, Ars Combin. 15 (1983), 169-177.
6. K. B. Reid, Every vertex a king, Disc. Math. 38 (1982), 93-98.
7. P. J. Slater, Medians of arbitrary graphs, J. Graph Theory 4 (1980), 389-392.
8. M. Truszczyński, Centers and centroids of unicyclic graphs, Math. Slolvaca 35 (1985), 223-228.
9. H. Wittenberg, Local medians in chordal graphs, Disc. Appl. Math. 28 (1990), 287-296.
10. S. V. Yushmanov, The median of the Ptolemy graph, Issled.-Operatsii-i-ASU [Kievskii-Gosudarstvennyi-Universitet.-Issledovanie-Operatsii-i-ASU] (1988), No. 32 67-70, 118.
11. B. Zelinka, Medians and peripherians of trees, Arch. Math. (Brno) 4 (1968), 87-95.

Department of Applied Mathematics, National Chiao Tung University Hsinchu 30050, Taiwan

[^0]: Recéeived September 19, 1996.
 Communicated by the Editors.
 1991 Mathematics Subject Classification: 05C12, 05C20.
 Key words and phrases: eccentricity, center, median, tournament, king, transmitter.
 *Supported in part by the National Science Council under grant NSC84-2121-M009-023.

