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MEDIANS OF GRAPHS AND KINGS OF TOURNAMENTS*

Hai-Yen Lee and Gerard J. Chang

Abstract. We first prove that for any graph G with a positive vertex
weight function w, there exists a graph H with a positive weight function
w’ such that w(v) = w’(v) for all vertices v in G and whose w’-median is
G. This is a generalization of a previous result for the case in which all
weights are 1. The second result is that for any n-tournament 7' without
transmitters, there exists an integer m < 2n—1 and an m-tournament 7"’
whose kings are exactly the vertices of T'. This improves upon a previous
result for m < 2n.

1. INTRODUCTION

In a graph (digraph) G, the distance dg(u,v) from a vertex u to another
vertex v is the minimum number of edges in a u-v path (dipath). The eccen-
tricity of a vertex v is

ec(v) = max{dg(v,u) : u € V(G)}.

A central vertex is a vertex with a minimum eccentricity. The center of a
graph (digraph) G is the subgraph (subdigraph) C(G) induced by the set of
all central vertices. Hedetniemi [4] demonstrated that for an arbitrary (not
necessarily connected) graph G there exists a connected graph whose center is
G. Indeed, such a graph can be obtained from G by adding four new vertices
a, b, ¢, d and new edges ab, dc, bx, cx for all x € V(G). Buckley, Miller, and
Slater [4] characterized trees which are the centers of graphs with two more
vertices than the original trees.
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In a graph G, the distance sum of a vertex v is

D¢ (v) = Z da(v,u).

ueV(G)

A median vertex is a vertex with a minimum median sum. The median of
a graph G is the subgraph M(G) induced by the set of all median vertices.
Slater [7] showed that for an arbitrary graph G there exists a connected graph
whose median is G. Miller [5] simplified Slater’s construction by producing
for any graph G with p vertices a connected graph H with at most 2p vertices
whose median is G.

A tournament (n-tournament) is an oriented complete graph (of n ver-
tices). A king in a tournament 7" is a vertex x whose eccentricity er(z) < 2.
A tournament in which every vertex is a king is called an all-king tournament.
A transmitter in a tournament 7" is a vertex xz whose eccentricity er(z) < 1.
Note that a tournament always has at least one king, e.g., the vertex with the
largest outdegree. And a tournament may or may not have a transmitter. If a
tournament has a transmitter, it has exactly one. Figure 1 shows two tourna-
ments 17 in which a, ¢, d are kings, and 75 in which e is a transmitter. Reid
[6] proved that for any n-tournament 7" without transmitters, there exists an
integer m < 2n and an m-tournament whose kings are the vertices of T.

In this paper, we first consider the weighted version of Slater’s result. More
precisely, suppose G is a graph in which w is a positive real-valued function
of V(G). The w-distance sum of a vertex v in G is

D¢ (v) = Z de (v, u)w(u).

ueV(G)

A w-median vertez is a vertex with a minimum w-median sum. The w-median
of a graph G is the subgraph M, (G) induced by the set of all w-median

FIG. 1. Two tournaments 7, and T5.
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vertices. Note that the median of a graph is the w-median for which w(v) =1
for all vertices v. Our result along these lines is that for any graph G with
a positive weight function w, there exists a graph H with positive weight
function w’ such that w(v) = w'(v) for all vertices v in G and M,y (H) = G.
Our second result improves upon Reid’s result for kings of tournaments.
That is, for any n-tournament 7" without transmitters, there exists an integer

m < 2n — 1 and an m-tournament 7’ whose kings are exactly the vertices of
T.

2. MAIN RESULTS

We first consider the weighted median problem.

Theorem 1. For any graph G with a positive weight function w, there
exists a graph H with a positive weight function w' such that w(v) = w'(v) for
all vertices v in G and My (H) = G.

Proof. Suppose V(G) = {v1,v2, -, vp}. Let X = {x1, 29, -, 2p}, ¥V =
P

{yi,92,- -, yp}, Z = {21, 22,23}, and m = 5 > w(v;). Construct a graph H
j=1

with a positive weight function w’ as follows (see Figure 2 for an example of
G and H):

V(H)=V(G)UXUY UZ and

B(H) = {(vnay) 1 <i<p. 1< <pand(vs,v5) ¢ E(C))
U{(Ul7yj) or (ylay]) 11<i<p, 1<j<p, andi 7&]}
U{(vi,zj) : 1 <i<pand 1<j<3}UE(G);

w(v;), if u=wv; or mz,
w'(u) =< 2w(v), if u=uy;,
2m, if u=z.

We shall prove that M,,(H) = G. First, for each (v;,v;) € E(G), since
(vj; ), (vi,y;) € E(H) and (vi, z;) ¢ E(H), we have dp (vi, v;) = dm (vi, y;) =
1 and dg(vi, z;) = 2. So,

dp (vi, vj)w'(v5) + d (vi, 25)w'(25) + da (vi, y;)w'(y;) = 5w (v;).

For each (v;,v;) ¢ E(G) with i # j, since (v, x;), (xj,v;), (vi,y;) € E(H),
we have dy(v;,vj) = 2 and dg(vi, z;) = du(vi,y;) = 1. So

dpr (vi, vj)w' (vg) 4+ dpr (vi, x5)w' () 4+ dpr(vi, y)w' (y;) = 5w(vy).
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FIG. 2. G with w and H with w'.

Also, since (vi, x;), (vi,Yi+1), Wit1,y:) € E(H) but (v;,y;) € E(H), we have
dp(vi,v;) = 0,dg(vi, ;) = 1, and dg (v, y;) = 2. So, for each v; € V(G),

dp (vi,v)w' (v;) + dp (vi, ) w' (z) + di (vi, yi)w' (i) = 5w (vj).
Finally, for each v; € V(G),
d (vi, 21)w' (21) + dp (viy 22)w' (22) + dp(vi, 23)w' (23) = 6m.

Therefore, for each vertex v; € V(G),

p
Dy (v;) = Z dg (vi, u)w' (u) = 6m + Z Sw(v;) = Tm.
ueV (H) Jj=1

On the other hand, for each vertex u ¢ V(G),
Dy (u) > dg(u,z1)w'(z1) + di(u, z9)w'(22) + di (u, z3)w'(23)
> 2(2m) + 2(2m) = 8m.
Therefore, M,y(H) = G. This completes the proof of the theorem. [

Now, we give an improvement upon Reid’s result for kings of tournaments.

Theorem 2. If T is an n-tournament without transmitters, then there
exists an integer m < 2n—1 and an m-tournament T' whose kings are ezactly
the vertices of T'.



Medians of Graphs and Kings of Tournaments 107

Proof. Recursively define tournaments T, T, --- as follows. Let T} =T.
If T; is non-empty, let V; denote the set of kings of T; and 7;1; denote the
subtournament T; — V;. Let j be the largest index such that T} # (V. T} is then
an all-king tournament. We may assume that j > 1, otherwise let 77 = T.
Also, V. = Vi U---UVj is a partition. Suppose V' = {vi,v2,---,v,} and
Viu---UVj_1 = {v,v2, -, v5}. Let U = {uq,u,---,u;} and construct a
tournament 7" as follows (see Figure 3):

V(T") = VUU and
E(T) = E(T)U{(us,ut) : (vs,v) € BE(T)} U{(us,vs) : 1 <s <k}
U{(vs,ut) : 1 <s<n, 1 <t<k, and s # t}.

Claim 1. For any vertex vy € V3 U---U Vj_1, there exists a vertex
v € Vi U---UV,_1 such that (v, vs) € E(T).

Suppose there exists a vertex vy € Vi € U --- UV,_; such that (v, vs)
¢ E(T), i.e (vs,v) € E(T) for any vertex vy € V3 U--- U Vj_1. Since T has
no transmitters, there exists a vertex v € V; such that (vs,v) ¢ E(T), ie.,
(v,v5) € E(T). Since (vs,v) € E(T) for each vertex v, € V1 U---UV,_; and
T; is an all-king tournament, v is a king of T', i.e. v € V4, which contradicts
v € V; and j > 1. This proves the claim.

FIG. 3. An m-tournament 7", with m < 2n — 1, whose kings are V(7).
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Claim 2. For any vertex vs € V, v, is a king of T".

For the case in which vy € Vj, since (vs,uz), (ug,v¢) € E(T") for each
vertex uy € U and Tj is an all-king tournament, v, is a king of 7". For the
case in which vy € V; and i < j, since vs is a king of T, (vs,v) € E(T) for
some v; € V(T'). By definition, we have

if we U and w # us,

if w=us, ((us,vt), (ve,us) € E(T"))
if we V and dp(vs,w) =1,

, if w eV and dp(vs, w) = 2,

, if w=uv,,€V and dp(vs,w) > 2. ((us, ur), (ur,v,) € E(T))

dpr (vs, w) =

NN =N

Therefore, v is a king of T”. This proves the claim.

Claim 3. For any vertex us € U, ug is not a king of T".

By Claim 1, there exists a vertex v; € Vi U--- U V;_; such that (v, vs) €
E(T). By the construction of 7', we have (u,us) € E(T'). Since s #
t, dp(us,ve) # 1. Suppose dpr(us,v:) = 2, then there exists a vertex w
such that (us,w), (w,v) € E(T'). By the construction of 77, w = vs or
w = ug. Then either (vs,v¢) € E(T') or (us,ut) € E(T"), which contradicts
(vt,05), (u,us) € E(T"). So dpr(us,v) > 2, i.e. us is not a king of 7”. This
proves the claim.

By Claims 2 and 3, the kings of 7" are exactly the vertices of 7" and T”
is an m-tournament with m < 2n — 1. This completes the proof of the
theorem. ]

For an arbitrary n-tournament without transmitters, it is desirable to de-
termine the minimum m for which there exists an m-tournament 7" whose
kings are exactly the vertices of T

We close this paper with a short discussion of a digraph analogous to
Hedetniemi’s result on centers. Suppose G is an arbitrary (not necessarily
strongly connected) digraph. Let H be the digraph obtained from G by adding
three new vertices uq, wo, us and edges wouq, uqug, xTus, ruz, ugr for all
z € V(G); see Figure 4. H is clearly strongly connected. Also, eg(x) = 2 for
all z € V(G) and eg(u1) = em(uz) = eg(uz) = 3. So G is the center of a
strongly connected graph H.

For a digraph G, let g(G) be the minimum number of new vertices that
must be added to G to make G the center of the resulting digraph that is
strongly connected. By the above argument, g(G) < 3 for all digraphs G. Note
that g(G) = 0 if and only if G is strongly connected and self-centered. Figure 5
shows a digraph G for which g(G1) = 1. Note that e, (b)) =1 <2 =eg,(a) =
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FIG. 4. Strongly connected digraph H with C(H) = G and |V (H)| = |[V(G)| + 3.

FIG. 5. ¢g(G1) =1 and g(G2) = 2.

eq, () and eq, (a) = em, (b) = em, (¢) = 2 < 3 = eq, (x). Figure 5 also shows
a digraph Gy for which g(G2) = 2. Note that eg,(a) =1 < oo = eq,(b) and
em,(a) =em,(b) =2 <3 =ep,(r) =emn,(y). It is desirable to determine g(QG)
for an arbitrary digraph G.
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