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INTEGRAL RICCI CURVATURES, VOLUME COMPARISON
AND FUNDAMENTAL GROUPS OF COMPACT

RIEMANNIAN MANIFOLDS

Seong-Hun Paeng

Abstract. We obtain a relative volume comparison estimate in the universal
covering space under bounds on the integral Ricci curvature and the weak
C1-norm of metric. From this volume comparison, we obtain similar results
on the fundamental group as in [1,7,8].

1. INTRODUCTION

The Bishop-Gromov relative volume comparison theorem is one of the most
important tools to study global structures of Riemannian manifolds with Ricci cur-
vatures bounded below. From the volume comparison in the universal covering space
of an n-dimensional compact manifold M with the Ricci curvature RicM ≥ λ, we
have several results about the fundamental group of M . In [1], Anderson proved
that there are finitely many isomorphism classes of fundamental groups of compact
manifolds with Ricci curvatures and volumes bounded below. Using this theorem,
Wei [7] proved that almost nonnegative Ricci curvature and a lower bound on the
volume implies that π1(M) is of polynomial growth with rank ≤ n. Under the
same conditions as [7], Yun [8] showed that π 1(M) is almost abelian.

There are many attempts to replace pointwise curvature conditions with integral
curvature conditions. In [4], Petersen and Wei obtained a Bishop-Gromov type
volume comparison theorem with an integral Ricci curvature bound. But the volume
comparison estimate in [4] is not applicable to the balls in the universal covering
space M̃ only with the assumption on the integral Ricci curvature bound of M (see
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Section 2). For the proof of the theorems about the fundamental group such as in
[1,7,8], the volume comparison in the universal covering space is essential.

We can consider some additional assumptions for the volume comparison in the
universal covering space. For example, if we assume additionally that the volume
of M satisfies that vol(M) ≥ v > 0 and

∫
M ||R||p ≥ Ω for the curvature tensor

R, then we can obtain the volume comparison in the universal covering space by
C0,α-compactness theorem. (For the precise reason, see Section 2.) But we cannot
obtain explicit values in Theorem 1.1 and Theorem 1.2 if we use C0,α-compactness
theorem. More generally, we can obtain the volume comparison in the universal
covering space under the additional condition that the weak harmonic C0,α (L1,p)-
norm ||(M, g)||W,h

C0,α,r
≤ Q(r) for a function Q satisfying limr→0 Q(r) = 0 in

[6]. (For the precise definition of the norm, see section 2 or [6].) Recall that the
weak (harmonic) norm is suggested as a generalization of the curvature in [6] and
if the weak harmonic norm ||(M, g)||W,h

C0,α,r
≤ Q(r) for a function Q satisfying

limr→0 Q(r) = 0, then the metric g can be smoothed to a metric g̃ satisfying
|Kg̃| ≤ k for some constant k depending on Q, where Kg̃ is the the sectional
curvature of g̃ [6].

In this paper, we assume that vol(M) ≥ v and the weak C1-norm ||(M, g)
||W

C1,r0
≤ k for some constant k to obtain an explicit relative volume comparison in

the universal covering space M̃ , where a lower bound on the volume is essential
condition in [1, 7, 8]. Although we use a weak C 1-norm bound instead of a C0,α-
norm bound, our assumption on the weak norm is much simpler than that of [6]
in the sense that we do not assume that the weak norm is bounded by a function
Q such that limr→0Q(r) = 0 and do not use any harmonicity assumption. Hence
the metrics satisfying our conditions are not smoothed to metrics with a bounded
sectional curvature.

First, we define the following notations about the integral Ricci curvature: Let
g(x) be the smallest eigenvalue of the Ricci tensor at x ∈M and u+ = max(0, u)
is the positive part of u. For 2p > n and λ ≤ 0,

(1.1)

k(λ, p) =
∫

M
((−g(x) + (n− 1)λ)+)pdv,

k̄(λ, p) =
k(λ, p)
vol(M)

,

kx(λ, p, R) =
∫

B(x,R)
((−g(x) + (n− 1)λ)+)pdv for x ∈ M̃.

If RicM ≥ λ, then k(λ, p) = 0. Let vλ(n, r) be the volume of r-ball in the n-
dimensional simply connected manifold with constant curvature λ. We obtain the
following volume comparison in M̃ with an integral Ricci curvature bound:
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Theorem 1.1. Let M be an n-dimensional compact Riemannian manifold and x
be a point in M̃ . For given r0, v, D, λ,R > 0 and p > n/2, we can find constants
Kr0 > 0 and C(n, p, λ, R, v, D, r0) > 0 explicitly such that if diam(M) ≤ D,
vol(M) ≥ v and ||(M, g)||WC1,r0

≤ Kr0 , then

(vol(B(x, R))
vλ(n, R)

) 1
2p −

(vol(B(x, r))
vλ(n, r)

) 1
2p ≤ C(n, p, λ, R, v,D, r0)k(λ, p)

1
2p

for r < R, where B(x, R) is the R-ball centered at x ∈ M̃ . When r = 0, we
obtain that

vol(B(x, R)) ≤ (1 +C(n, p, λ, R, v, D, r0)k(λ, p)
1
2p )2pvλ(n, R).

We will take Kr0 such that Kr0 ≤ 1/100 and Kr0/r0 ≤ 1/100. Note that
limr0→0 ||(M, g)||WC1,r0

= 0 for a fixed manifold M , which implies that we can
find r0 for a fixed M such that ||(M, g)||WC1,r0

≤ Kr0 . The above theorem is about
the class of manifolds with a uniform lower bound on the scale r0 for which the
weak C1-norm is sufficiently small. Then we can prove Anderson [1] and Yun
[8]’s results on the fundamental group:

Theorem 1.2. Let r0, C0, D, v be positive constants and p > n/2. We denote
by M(r0, D, v) the class of compact n-manifolds which satisfy that

||(M, g)||WC1,r0
≤ Kr0,

diam(M) ≤ D,

vol(M) ≥ v,

where Kr0 is the constant in Theorem 1.1.

(a) There exists an ε(n, p, λ, v,D, r0) > 0 such that if k(λ, p) < ε, there are only
finitely many isomorphism classes of π 1(M) for M ∈ M(r0, D, v).

(b) There exists an ε̃(n, p, v, D, r0) > 0 such that if k(0, p) < ε̃, then the funda-
mental group of M ∈ M(r0, D, v) is almost abelian.

We can obtain an upper bound on the number of isomorphism classes of π1(M)
and ε, ε̃ explicitly. As a corollary of Theorem 1.1, we obtain the following corollary
for an arbitrary C1,α-norm bound k0:

Corollary 1.3. Let M be an n-dimensional compact Riemannian manifold
and x be a point in M̃ . For given λ, R, v,D, r0, k0 > 0 and p > n/2, we can
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find constants C1(n, p, λ, R, v,D, r0, k0) > 0 explicitly such that if diam(M) ≤ D,
vol(M) ≥ v and ||(M, g)||WC1,α,r0

≤ k0, then

(vol(B(x, R))
vλ(n, R)

)1/2p −
(vol(B(x, r))

vλ(n, r)

) 1
2p ≤ C1(n, p, λ, R, v,D, r0, k0)k(λ, p)

1
2p

for r < R and x ∈ M̃ . When r = 0, we obtain that

vol(B(x, R)) ≤ (1 + C1(n, p, λ, R, v,D, r0, k0)k(λ, p)
1
2p )2pvλ(n, R).

Instead of ||(M, g)||W
C1,α,r0

≤ k0, we can use the weak L2,p-norm ||(M, g)||W
L2,p,r0

≤
k0. We can obtain Theorem 1.2 under an arbitrary weak C1,α-norm bound k0 > 0.

2. PRELIMINARIES

In this section, we review the definition of the (weak) norm defined in [6]
and observe what is the obstruction for the volume comparison in M̃ . First, the
definition of Ck,α-norm defined in [6] is as follows:

Definition 2.1. The Ck,α-norm of (M, g) on scale r0 > 0, ||(M, g)||Ck,α,r0
is

defined to be the infimum of positive number Q such that there exists embeddings

φτ : B(0, r0) ⊂ R
n → Uτ ⊂M

with the following properties:

1. e−2Qδ ≤ gτ ≤ e2Qδ,

2. Every metric ball B(p, r
10e

−Q) lies in some Uτ ,

3. r|l|+α
0 ||∂lgτ,ij||C0,α ≤ Q for all multi-indices l with 0 ≤ |l| ≤ k, where
gτ = φ∗τg.

The weak norm ||(M, g)||W
Ck,α,r

is defined in a similar way except that φτ is
assumed to be a local diffeomorphism. If we require that φτ ’s are harmonic, then
we call it the harmonic norm. They obtained a generalized almost flat manifold and
a bound on Betti number under the condition on the weak harmonic norm stated in
Section 1 instead of curvature [6]. But in this paper we do not need to consider the
harmonic norm.

Now we observe why we cannot apply the volume comparison theorem in [4] to
the universal covering space directly. We denote the function ((−g(x)+(n−1)λ)+)
by ρ(x). By [4], we have the following volume comparison theorem:
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Theorem 2.2. Let M be a Riemannian manifold and x be a point in M . Then
there exists a constant C(n, p, λ, R) which is nondecreasing in R such that when
r < R, we have

(vol(B(x, R))
vλ(n, R)

)1/2p −
(vol(B(x, r))

vλ(n, r)

)1/2p ≤ C(n, p, λ, R)kx(λ, p, R)1/2p.

When r = 0, we obtain that

vol(B(x, R)) ≤ (1 +C(n, p, λ, R)kx(λ, p, R)1/2p)2pv(n, λ, R).

As a corollary in [4], for any β < 1, there exists an ε(n, p, λ, β, R) > 0 such
that if

(2.1)
kx(λ, p, R)

vol(B(x, R))
< ε,

then for r < R,

(2.2) β
vλ(n, r)
vλ(n, R)

≤ vol(B(x, r))
vol(B(x, R))

.

Hence if we obtain (2.1) in the universal covering space M̃ , we can prove our
theorems by the same arguments as in [1, 7]. But (2.1) is not clear in the universal
covering space even if k̄(λ, p) is very small. Precisely, if

⋃N
i=1 Fi is the minimal

union of fundamental domains to cover B(x, R), then

(2.3)

kx(λ, p, R)
vol(B(x, R))

=
1

vol(B(x, R))

∫
B(x,R)

ρ(x)pdv

≤ vol(
⋃

i Fi)
vol(B(x, R))

1
vol(

⋃
i Fi)

∫
∪iFi

ρ(x)pdv

≤ vol(B(x, R+ 2D))
vol(B(x, R))

k(λ, p).

If we have a bound on vol(B(x,R+2D))
vol(B(x,R)) (e.g. RicM ≥ λ), we can apply the volume

comparison of [4] to the universal covering space. But in our case, it is not clear.
One of the simplest conditions to obtain a bound on vol(B(x,R+2D))

vol(B(x,R))) is RicM ≥ λ

[9]. But it seems to be too strong assumption. Another condition is vol(M) ≥ v > 0
and

∫
M ||R||p ≥ Ω, which implies C0,α-compactness [6]. Then the metric can be

smoothed to g̃ slightly by [6], so that |Kg̃| ≤ k for some constant k. Hence we have
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a bound for vol(B(x,R+2D))
vol(B(x,R)) . But we cannot obtain an explicit volume comparison

in the universal covering space with C0,α-compactness theorem. For example, ε in
(2.1) cannot be obtained. More generally, we can obtain the volume comparison for
the universal covering space as in [4] with ||(M, g)||W,h

C0,α,r
≤ Q(r) for a function

Q satisfying limr→0 Q(r) = 0 as stated in Section 1 since the metric g also can be
smoothed to a metric g̃ satisfying |Kg̃| ≤ k for some constant k which depends on
Q [6].

Our main purpose is to obtain an explicit volume comparison in the universal
covering space with a constant bound on the weak C1-norm without harmonicity.
Then we can follow the arguments in [1,7,8].

3. JACOBI FIELD ESTIMATE

We take Kr0 in Theorem 1.1 such that Kr0/r0 < 1/100 and Kr0 < 1/100.
From now on, ||·|| is the norm on Euclidean space. Let ψ = φ−1 = (u1, u2, · · · , un)
be a coordinate map such that φ satisfies the properties in Definition 2.1. Let
p = φ(O). We may assume that B(p, r0

15 ) ⊂ (B(0, r0)). Let Bφ(O, n
15 ) be the

set B(O, r0
15 ) ⊂ B(0, r0) with the metric φ∗g. Let γ be a unit speed geodesic in

Bφ(O, r0
15 ) with γ(0) = O. Let r(x) be the distance d(O, x) from O to x with

respect to φ∗g. We have

(3.1)
0 = 2〈∇γ′(t)γ

′(t),
∂

∂ui
〉 = 2

d

dt
〈γ ′(t), ∂

∂ui
〉 − ∂

∂ui
〈∇r,∇r〉

= 2
d

dt
〈γ ′(t), ∂

∂ui
〉.

Then we obtain that 〈γ ′(t), ∂
∂ui

〉 = Vi for some constant Vi. We denote by V

the vector (V1, V2, · · · , Vn). Let ψ∗(γ ′(t)) = (v1(t), v2(t), · · · , vn(t)) and gij(=
gτ,ij) = 〈 ∂

∂ui
, ∂

∂uj
〉. Then we have

∑
j

vjgij = Vi,

which implies that
ψ∗(γ ′(t)) = v(t) = ḡ(γ(t))V

for ḡ = (gij)−1. Note that we may assume that gij(O) = δij by changing coordinate
functions slightly. Precisely, let

∑
j aijuj = wi, where aij is a constant. Then

∂

∂ui
=

∑
l

ali
∂

∂wl
.
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If g̃ij = 〈 ∂
∂wi

, ∂
∂wj

〉, then

gij =
∑
l,k

alig̃lkakj .

If we let A = (aij), then

(3.2) g = Atg̃A,

where At is the transpose of A. Hence, if we take A such that g(O) = AtA,
then g̃(O) = δ. Since g is a positive definite symmetric matrix, there exists an
orthogonal matrix P such that P tg(O)P is a diagonal matrix T whose diagonal
entries are λ1, · · · , λn > 0. We have that g(O) = AtA if and only if

A =
√
TP t,

where
√
T is a diagonal matrix whose diagonal entries are

√
λi’s. Since Kr0 <

1/100,
e−

1
100 ≤ min

i

√
λi ≤ ||A|| ≤ max

i

√
λi ≤ e

1
100 .

So if we take {wi} as coordinate functions, from (3.2), we obtain that

(3.3)
e−

1
25 δ ≤g̃ ≤ e

1
25 δ

||∂g̃||C0 ≤ e
1
50 ||∂g||C0 ≤ 1

100
e

1
50 <

1
50
.

From now on, we will abbreviate g̃ to g. Hence we may assume that gij(O) = δij
and

(3.4) ψ∗(γ ′(t)) = v(t) = ḡ(γ(t))v(0).

If x, y ∈ Bφ(O, r0
15) then for the new coordinate map ψ = (w1, w2, · · · , wn),

(3.5) e−
1
25 ||ψ(x)− ψ(y)|| ≤ d(x, y) ≤ e

1
25 ||ψ(x)− ψ(y)||.

Let Q(t, θ) = ψ(exp tθ) and G(t, θ) = ḡ(Q(t, θ)). Then (3.5) implies that

∂Q

∂t
(t, θ) = G(t, θ)

∂Q

∂t
(0, θ).

So
∂2Q

∂θ∂t
(t, θ) =

∂G

∂θ
(t, θ)

∂Q

∂t
(0, θ) +G(t, θ)

∂2Q

∂θ∂t
(0, θ).

Then

(3.6) ∂Q

∂θ
(t, θ0) =

∫ t

0

(∂G
∂θ

(u, θ0)
∂Q

∂t
(0, θ0) +G(u, θ0)

∂2Q

∂θ∂t
(0, θ0)

)
du.
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Since ḡg = I , we have ∂ḡ = −ḡ(∂g)g−1. So if e−
1
25 δ ≤ g ≤ e

1
25 δ and ||∂g||C0 ≤

1
100e

1
50 , then ||∂ḡ||C0 ≤ 1

50 . From (3.5), we have

(3.7)
||G(t1, θ1) −G(t2, θ2)||
||Q(t1, θ1) −Q(t2, θ2)|| ≤

2
3
K1,

so from (3.7), ∣∣∣
∣∣∣∂G
∂θ

∣∣∣
∣∣∣ ≤ 2

3
K1

∣∣∣
∣∣∣∂Q
∂θ

∣∣∣
∣∣∣

for t < r0
15 and some constant K1 > 0. It should be noted that

(3.8)
2
3
K1 < 2

Kr0

r0
<

1
50
.

Also we have e−
1
25 ≤ ||∂Q

∂t (0, θ0)|| ≤ e
1
25 from (3.3) and

∣∣∣
∣∣∣G(t, θ0)

∂2Q

∂θ∂t
(0, θ0)

∣∣∣
∣∣∣ ≤ ||G(t, θ0)||

∣∣∣
∣∣∣ ∂2Q

∂θ∂t
(0, θ0)

∣∣∣
∣∣∣ ≤ e

1
10

since

∣∣∣
∣∣∣ ∂2Q

∂θ∂t
(0, θ0)

∣∣∣
∣∣∣= lim

h→0

∣∣∣
∣∣∣ψ∗

(exp∗( ∂
∂t)(0, θ0 + h)−exp∗( ∂

∂t)(0, θ0)
h

)∣∣∣
∣∣∣ ≤ e

1
25 .

Then (3.6) implies that

(3.9)
∣∣∣
∣∣∣∂Q
∂θ

(t, θ0)
∣∣∣
∣∣∣ ≤ K1

∫ t

0

∣∣∣
∣∣∣∂Q
∂θ

(u, θ0)
∣∣∣
∣∣∣du+ e

1
10 t.

By the same reason as above, we have
∣∣∣
∣∣∣G(t, θ0)

∂2Q

∂θ∂t
(0, θ0)

∣∣∣
∣∣∣ > e−

1
10 .

Then we obtain that

(3.10)
∣∣∣
∣∣∣∂Q
∂θ

(t, θ0)
∣∣∣
∣∣∣ ≥ −K1

∫ t

0

∣∣∣
∣∣∣∂Q
∂θ

(u, θ0)
∣∣∣
∣∣∣du+ e−

1
10 t.

Let K2, K3 be e
1
10 , e−

1
10 , respectively. We define a function f as follows:

f(t) =
∫ t

0

∣∣∣
∣∣∣∂Q
∂θ

(u, θ0)
∣∣∣
∣∣∣du.

Then the above inequalities imply that

(3.11) K3t−K1f ≤ f ′ ≤ K2t+K1f.
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Multiplying e−K1t in the second inequality of (3.11), we obtain

(e−K1tf)′ = e−K1tf ′ −K1e
−K1tf ≤ K2te

−K1t.

Integrating both sides with the initial condition f(0) = 0 and multiplying eK1t, we
have

f(t) ≤ K2

(eK1t − 1 −K1t

K2
1

)
.

We have that limx→0
ex−x−1

x2 = 1/2 and if x ≤ 1/50

ex − x− 1
x2

≤ 1.

For t ≤ r0
15 , we have K1t ≤ K1

r0
15 ≤ K r0

5 ≤ 1
500 by (3.8), we have

eK1t − 1 −K1t

K2
1

=
eK1t − 1 −K1t

K2
1t

2
t2 ≤ t2.

So we have

(3.12)
∫ t

0

∣∣∣
∣∣∣∂Q
∂θ

(u, θ0)
∣∣∣
∣∣∣du ≤ K2t

2.

From (3.9), we obtain that for t < r0
15

(3.13)

∣∣∣
∣∣∣∂Q
∂θ

(t, θ0)
∣∣∣
∣∣∣ ≤ K1

∫ t

0

∣∣∣
∣∣∣∂Q
∂θ

(u, θ0)
∣∣∣
∣∣∣du+K2t

≤ K2(K1t+ 1)t ≤ K2(
K1

4
r0 + 1)t ≤ L1t

for some constant L1 ∈ [ 45 ,
6
5 ]. From the first inequality of (3.11), we obtain that

(3.14)

∣∣∣
∣∣∣∂Q
∂θ

(t, θ0)
∣∣∣
∣∣∣ ≥ K3t−K1

∫ t

0

∣∣∣
∣∣∣∂Q
∂θ

(t, θ0)
∣∣∣
∣∣∣dt

≥ K3(1 −K1t)t ≥ L2t

for some constant L2 ∈ [ 45 ,
6
5 ] by the same reason as (3.13).

From (3.13) and (3.14), we have the following lemma:

Lemma 3.1. Let Kr0 satisfy that Kr0 <
1

100 and Kr0
r0

< 1
100 . Let γ(t) be

a minimal geodesic starting from q and J(t) is a Jacobi field along γ such that
J(0) = 0. Then L2t

s ||J(s)|| ≤ ||J(t)|| ≤ L1t
s ||J(s)|| if t < s < r0

15 .
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Proof. In case that 〈J ′(0), γ ′(0)〉 = 0, we can consider J as c∂Q(t,θ)
∂θ for a

constant c, so it is done by (3.13), (3.14). If 〈J′(0), γ ′(0)〉 
= 0, we can decompose J
into tangential and perpendicular components and obtain the lemma, since tangential
component is linear in t.

4. VOLUME COMPARISON AND PROOF OF THEOREMS

We obtain that volumes of r0
15 -balls in M̃ are bounded above by a constant

v(n, r0) > 0 depending only on n, r0 by (3.13). Let Sx be the maximal r0/100-
separated set in B(x, r0

15). Then
⋃

Sx
B(x, r0/100) covers B(x, r0

15 ).
Around x, use exponential polar coordinates and write the volume element as

dvol = ωdt ∧ dθ inside the cut locus, where dθ is the standard volume element on
the unit sphere. Outside the cut locus, ω = 0. From Lemma 3.1, for t < r0/300,

ω(t, θ) ≥ (
300L2t

r0
)n−1ω(

r0
300

, θ)

and for r0
15 > s > r0/300,

ω(s, θ) ≤ (
300s
L2r0

)n−1ω(
r0
300

, θ).

Then
vol(B(x,

r0
300

)) ≥ D1(n, r0)
∫

Sn−1

ω(
r0
300

, θ)dθ

and
vol(B(x,

r0
15

)) ≤ vol(B(x,
r0
300

)) +D2(n, r0)
∫

Sn−1

ω(
r0
300

, θ)dθ

for some constant D1, D2 depending only on n, r0. So

(4.1)
vol(B(x, r0

15))
vol(B(x, r0

300))
≤ 1 +

D2

D1
.

Remark 4.1. One may consider that the volume comparison (4.1) is obtained
only with a weak C0-norm bound. If φ = exp, then the domain of φ inside the cut
locus for M̃ is star-shaped, so we can obtain (4.1) with a weak C0-norm bound.
But in general, the non overlapping domain of a weak coordinate need not be star-
shaped, so we cannot obtain (4.1) only with a weak C0-norm bound.

Let S be the maximal r0/100-separated set of M̃ . We make a graph G by
adding edges between points x, y if d(x, y) ≤ r0

40 . If we let the length of each edge
be 1, then G is a length space. Then we have a metric dS on S induced from G.
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Lemma 4.2. r0
300dS(x, y) ≤ d(x, y) ≤ r0

40dS(x, y) for x, y ∈ S.

Proof. Let γ : [0, L] → M̃ be a normal length minimizing geodesic from x to y.
Let {ti|t0 = 0, tN = L, ti < ti+1} be a partition of [0, L] such that ti+1 − ti = r0

200
for i + 1 < N . Then N � 200L

r0
+ 1. For each γ(ti), there exists xi ∈ S such

that d(γ(ti), xi) ≤ r0/100. Then d(xi, xi+1) ≤ r0
40 and dS(x, y) ≤ 200L

r0
+ 1 =

200d(x,y)
r0

+ 1. Since d(x, y) ≥ r0
100 for x, y ∈ S, we obtain

dS(x, y) ≤ (
200
r0

+
1

d(x, y)
)d(x, y) ≤ 300

r0
d(x, y).

Conversely, if dS(x, y) = m, then there exists x0 = x, x1, · · · , xm = y ∈ S
such that d(xi, xi+1) ≤ r0

40 . Then

d(x, y) ≤
m∑

i=0

d(xi, xi+1) ≤ r0
40
m ≤ r0

40
dS(x, y).

So we obtain the lemma.

From the above lemma, we obtain that B(x, R) ⊂ BdS
(x, 300R/r0) for x ∈ S.

Since B(y, r0/300)’s for y ∈ S ∩B(x, r0
40) are disjoint in B(x, r0

15), we have

|BdS
(x, 1)| ≤ vol(B(y0, r0

15))
vol(B(y0, r0

300))
≤ H

D2

D1

for x ∈ S and vol(B(y0, r0
300)) = miny∈B(x,

r0
40

) vol(B(y, r0
300)). If we let N be

1 + D2
D1

, then we obtain that

(4.2) |BdS
(x, 300R/r0)| ≤ N 300R/r0.

Then we obtain the following volume growth

vol(B(x, R)) ≤ N300R/r0v(n, r0).

From (4.2), we have

|BdS
(x, 3000D/r0)| ≤ N 3000D/r0.

Then we obtain that

(4.3) vol(B(x, 10D)) ≤ N3000D/r0v(n, r0).
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We may assume that D > r0
15 . Let S ′ be the maximal 4D-separated subset of M̃

and S ′(R) = {x ∈ S ′ | d(q, x) ≤ R}. Then for each xi ∈ S ′(R+2D)\S ′(R−4D),
we have

B(q, R+ 2D) ⊂
⋃

xi∈S′(R−4D)

B(xi, 10D)

since there exists xj ∈ S ′(R− 4D) for each xi ∈ S ′(R+ 2D) \ S ′(R− 4D) such
that d(xi, xj) ≤ 10D. Also we have

B(q, R) ⊃
⋃

xi∈S′(R−4D)

B(xi, 2D).

Then
vol(B(q, R+ 2D)) ≤

∑
xi∈S′(R−4D)

vol(B(xi, 10D))

≤ |S ′(R− 4D)|N 3000D/r0v(n, r0).

Since every 2D-ball contains a fundamental domain, we have vol(B(xi, 2D)) ≥ v.
Since ∪xi∈S′(R−4D)B(xi, 2D) is a disjoint union in B(q, R), we obtain that

vol(B(q, R)) ≥ |S′(R− 4D)|v.

Hence we obtain from (2.3) that

(4.4)

kq(λ, p, R)
vol(B(q, R))

≤ vol(B(q, R+ 2D))
vol(B(q, R))

k̄(λ, p)

≤ N 3000D/r0v(n, r0)
v

k̄(λ, p),

which completes the proof of Theorem 1.1 with Theorem 2.2.

Proof of Theorem 1.2(a). For any β < 1, there exists an ε1(n, p, β, v,D, r0, C0, R) >
0 such that if

(4.5) k̄(λ, p) < ε1,

then for r < R,

(4.6) β
vλ(n, r)
vλ(n, R)

≤ vol(B(x, r))
vol(B(x, R))

from (4.4) and (2.2). To follow Anderson’s arguments [1], we need a (relative)
volume comparison for 3D-balls in M̃ . From (4.6), if we take β and R to be 9/10
and 3D, respectively, we can prove Theorem 1.2(a). Furthermore, with Theorem
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1.2(a) and the arguments in [7], we obtain that π1(M) has a polynomial growth of
rank ≤ n.

Proof of Theorem 1.2(b). In [5], they obtain the following splitting theorem:

Theorem 4.3. Let (Mk, xk) be a sequence of pointed complete Riemannian
manifolds which converge to a limit space (X, x) in the pointed Gromov-Hausdorff
topology. If (Mk, xk) satisfies that for any p > n/2,

vol(B(xk, 1)) ≥ v > 0,

sup
x∈Mk

kx(0, p, R)
vol(B(x, R))

→ 0

as k → ∞, then the spitting theorem holds for X , i.e. if X contains a line, then
X is isometric to R ×X ′.

From the above volume comparison (4.6) for M̃ and the convergence theorem
in [2], we can prove that if a sequence Mk satisfies the conditions in Theorem 1.2
and k(0, p) for Mk converges to 0, then (M̃k, xk) converges to a limit space (X, x).
If X contains a line, then X is isometric to R×X ′ by (4.4) and Theorem 4.3. Then
there are no obstruction to follow the arguments in [8], which completes the proof
of Theorem 1.2(b).

Proof of Theorem 1.3. We may assume that r0 ≤ 1. If ||(M, g)||C1,α,r0
≤ k,

then ||g(x)− g(y)||
||x− y|| ≤ k

r1+α
0

||x− y||α ≤ k

r1+α
0

rα

for x, y ∈ B(p, r0
15). So there exists an r1 > 0 such that ||∂g||C0 ≤ 1/100 on

B(p, r1).
We take new weak coordinates such that g̃(O) = I as we see in Section 3. Since

g̃ = AgAt for a constant matrix A =
√
TP t and P ∈ O(n,R), we also obtain that

||g̃(x) − g̃(O)|| ≤ ||∂g||C0||T ||||x||
since P ∈ O(n,R). Since T is the diagonal matrix whose diagonal entries are
eigenvalues of g. Since ||g|| ≤ e2kδ, g̃(x) → δ = g̃(O) uniformly as ||x|| → 0. So
there exists r2 > 0 such that e−

1
100 δ ≤ g ≤ e

1
100 δ on B(p, r2). Hence if we use

r̃0 = min(r1, r2) instead of r0 in the proof of Theorem 1.1 and Theorem 1.2, we
can prove Corollary 1.3.

REFERENCES

1. M. Anderson, Short geodesics and gravitational instantons, J. Diff. Geom., 31 (1990),
265-275.



1250 Seong-Hun Paeng

2. M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser,
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