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VECTOR F -COMPLEMENTARITY PROBLEMS WITH NONCONVEX
PREFERENCES AND APPLICATIONS TO VECTOR

OPTIMIZATION PROBLEMS

Jun Li and Nan-Jing Huang*

Abstract. In this paper, several classes of vector F -complementarity problems
(in short, VF -CP) and vector F -variational inequalities (in short, VF -VI)
with relations determined by nonconvex preferences are introduced in Banach
spaces. Some characterizations of solution sets for (VF -CP) and (VF -VI)
are also presented. Furthermore, the results obtained are applied to vector
optimization problems.

1. INTRODUCTION

Vector variational inequality (VVI) was first introduced and studied by Gian-
nessi [5]. Recently, (VVIs) and vector complementarity problems (VCP) have been
studied intensively because partly they can be efficient tools for investigating vector
optimization problems (VOP) (see, for example, [1-3, 6, 7, 11-13, 15, 17, 18] and
the references therein). As is well known, (VVIs), (VCP) and (VOP) are usually
studied in ordered spaces with an ordering induced by a convex cone. Recently,
Rubinov and Gasimov [16] considered (VOP) with preferences that are not neces-
sarily a pre-order relation. Very recently, Huang, Rubinov and Yang [11] considered
some (VVIs), (VCP) and (VOP) with relations determined by a nonconvex cone in
Banach spaces. Since the relation, determined by a nonconvex cone, is not transi-
tive, it is not an order relation. It is better to be called “nonconvex preferences” or
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“pseudo-ordering” or something else. Clearly, it is difficult to study (VVIs), (VCP)
and (VOP) with nonconvex preferences by using the classical methods.

In 2001, Yin, Xu and Zhang [19] introduced a class of F -complementarity prob-
lem (F -CP) and proved the existence of solutions for (F -CP) under some assump-
tions with the F -pseudomonotonicity. Recently, the (F -CP) has been generalized to
the vector F -complementarity problem (VF -CP) by Fang and Huang [4], Huang and
Fang [8], the F -implicit complementarity problem (F -ICP) by Huang and Li [9],
the vector F -implicit complementarity problem (VF -ICP) by Li and Huang [14],
and the generalized vector F -complementarity problem (GVF -CP) with point-to-set
mappings by Huang, Li and Thompson [10].

In this paper, we introduce several classes of vector F -complementarity problems
(in short, VF -CP) and vector F -variational inequalities (in short, VF -VI) with
relations determined by nonconvex preferences in Banach spaces. We also derive
some characterizations of solution sets for (VF -CP) and (VF -VI). Furthermore, we
apply these results obtained to vector optimization problems. The results of this
paper generalizes and extends the corresponding results of Huang, Rubinov and
Yang [11].

2. PRELIMINARIES

Let Z be a Banach space. A nonempty subset P of Z is said to be a cone if
λP ⊆ P for all λ > 0. P is called a convex cone if P is a cone and P + P ⊆ P .
P is called a pointed cone if P is a cone and P ∩ {−P} = {0}. Let P be a cone.
Without other specifications, denote by CP the complement of P . Then CP is
also a cone. An ordered Banach space (Z, P ) is a Banach space Z with an partial
ordering defined by a closed, convex and pointed cone P ⊆ Z with apex at the
origin, in the form of

x ≥P y ⇔ x − y ≥P 0 ⇔ x − y ∈ P ∀x, y ∈ Z

and

x ≥CP y ⇔ x − y ≥CP 0 ⇔ x − y ∈ CP ∀x, y ∈ Z.

If the interior of P , say intP , is nonempty, then a weak ordering in Z is also defined
by

x ≥intP y ⇔ x − y ≥intP 0 ⇔ x − y ∈ intP ∀x, y ∈ Z

and

x ≥C(intP ) y ⇔ x − y ≥C(intP ) 0 ⇔ x − y ∈ C(intP ) ∀x, y ∈ Z.
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We also consider the following ordering

x ≥P\{0} y ⇔ x − y ≥P\{0} 0 ⇔ x − y ∈ P\{0} ∀x, y ∈ Z

and

x ≥C(P\{0}) y ⇔ x − y ≥C(P\{0}) 0 ⇔ x − y ∈ C(P\{0}) ∀x, y ∈ Z.

Remark that for any x, y ∈ Z,

x ≥P y ⇔ y ≤P x; x ≥CP y ⇔ y ≤CP x;

x ≥intP y ⇔ y ≤intP x; x ≥C(intP ) y ⇔ y ≤C(intP ) x;

x ≥P\{0} y ⇔ y ≤P\{0} x; x ≥C(P\{0}) y ⇔ y ≤C(P\{0}) x.

If cone P is not convex, then the relation given above is not transitive and so it
is not an order relation. We call it “nonconvex preferences” or “pseudo-ordering”
or something else.

Throughout this paper, without other specifications, let (X, K) be an ordered
Banach space, where K is a closed, convex and pointed cone of X with apex at the
origin. Let Y be a Banach space. Denote by L(X, Y ) the space of all continuous
linear mappings from X to Y , and by (l, x) the value of l ∈ L(X, Y ) at x ∈ X .
Let C : K → Y be a point-to-set mapping such that C(x) is a closed cone in Y

for each x ∈ K, with C = ∩x∈KC(x) and intC 	= ∅. It is easy to see that intC(x),
C(intC(x)), C(x)\{0} and C(C(x)\{0}) are cones for all x ∈ K , and C is also a
closed cone. Remark that C(x) is not necessary convex for each x ∈ K , so is C.

Let T : K → L(X, Y ) and F : K → Y be two mappings. In this paper, we
consider the following vector F -complementarity problems with nonconvex prefer-
ences:

Strong Vector F -Complementarity Problem with Nonconvex Preferences (SVF -
CP): find x∗ ∈ K such that

(Tx∗, x∗) + F (x∗) = 0, (Tx∗, y) + F (y) ≥C(x∗) 0 ∀y ∈ K;

Positive Vector F -Complementarity Problem with Nonconvex Preferences (PVF -
CP): find x∗ ∈ K such that

(Tx∗, x∗) + F (x∗) ≥C(intC(x∗)) 0, (Tx∗, y) + F (y) ≥C(x∗) 0 ∀y ∈ K;

Mild Strong Vector F -Complementarity Problem with Nonconvex Preferences
(MSVF -CP): find x∗ ∈ K such that

(Tx∗, x∗) + F (x∗) = 0, (Tx∗, y) + F (y) ≤C(C(x∗)\{0}) 0 ∀y ∈ K;
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Weak Vector F -Complementarity Problem with Nonconvex Preferences (WVF -
CP): find x∗ ∈ K such that

(Tx∗, x∗) + F (x∗) ≥C(intC(x∗)) 0, (Tx∗, y) + F (y) ≤C(intC(x∗)) 0 ∀y ∈ K.

We also consider the following problems with nonconvex preferences:
Strong Vector F -Variational Inequalities with Nonconvex Preferences (SVF -

VI): find x∗ ∈ K such that

(Tx∗, y − x∗) + F (y) − F (x∗) ≥C(x∗) 0 ∀y ∈ K;

Strong Minty Vector F -Variational Inequality with Nonconvex Preferences (SMVF -
VI): find x∗ ∈ K such that

(Ty, y − x∗) + F (y) − F (x∗) ≥C(x∗) 0 ∀y ∈ K;

Mild Strong Vector F -Variational Inequality with Nonconvex Preferences (MSVF -
VI): find x∗ ∈ K such that

(Tx∗, y − x∗) + F (y) − F (x∗) ≤C(C(x∗)\{0}) 0 ∀y ∈ K;

Weak Vector F -Variational Inequality with Nonconvex Preferences (WVF -VI):
find x∗ ∈ K such that

(Tx∗, y − x∗) + F (y) − F (x∗) ≤C(intC(x∗)) 0 ∀y ∈ K.

We denote by SSV CP , SPV CP , SMSV CP , SWV CP , SSV V I , SSMV V I , SMSV V I

and SWV V I the solutions set of (SVF -CP), (PVF -CP), (MSVF -CP), (WVF -CP),
(SVF -VI), (SMVF -VI), (MSVF -VI) and (WVF -VI), respectively.

3. CHARACTERIZATION OF SOLUTION SETS FOR VECTOR F -COMPLEMENTARITY

PROBLEMS WITH NONCONVEX PREFERENCE

In this section, we establish the characterizations of solution sets for (SVF -CP),
(PVF -CP), (MSVF -CP) and (WVF -CP), respectively. We first recall the following
notions.

Definition 3.1. Let K be a cone of Y . A mapping G : K → L(X, Y ) is said
to be K-monotone if for any x, y ∈ K,

(Gy − Gx, y − x) ≥K 0.



Vector F -Complementarity Problems 789

Example 3.1. Let X = R, K = [0, +∞), Y = R2 and K = {(x, y) : x ≥
0, 0 ≤ y ≤ x

4} ∪ {(x, y) : y ≥ 0, 0 ≤ x ≤ y
4}. It is clear that K is a nonconvex

cone. Define G : K → L(X, Y ) by 〈Gx, z〉 = (xz, xz
4 ) for any x, z ∈ K. Then G

is K-monotone.

Definition 3.2. A mapping G : K → L(X, Y ) is said to be hemicontinuous if
for any given x, y ∈ K, the mapping t �→ (G(x + t(y − x)), y − x) is continuous
at 0+.

Definition 3.3. Let K be a cone of Y . A mapping H : K → Y is said to be

(i) K-convex if for any x, y ∈ K and t ∈ [0, 1],

H(tx + (1 − t)y) ≤K tH(x) + (1 − t)H(y);

(ii) positively homogeneous if for any x ∈ K and λ > 0,

H(λx) = λH(x).

Example 3.2. Let X = R, K = [0, +∞), Y = R2 and K = {(x, y) : x ≥
0, 0 ≤ y ≤ x

3} ∪ {(x, y) : y ≥ 0, 0 ≤ x ≤ y
4}. Then K is a nonconvex cone. Let

H(x) = (x, x
4 ) for all x ∈ K. It is easy to verify that H is both K-convex and

positively homogeneous.
In the main result of our paper, we also need the following lemma.

Example 3.1. Let Y be a Banach space, and K,P be two cones in Y with
K ⊆ P . Then

(i) x − y ≥K 0 implies that x + z ≥K y + z, for all x, y, z ∈ Y .
If K + P ⊆ P , then

(ii) x ≥K y and y ≥P 0 imply that x ≥P 0, for all x, y ∈ Y ;
(iii) x + y ≥P 0 and z ≥K y imply that x + z ≥P 0, for all x, y, z ∈ Y .

If K + intP ⊆ intP , then
(iv) x+y ≤C(intP) 0 and y ≤K z imply that x+ z ≤C(intP) 0, for all x, y, z ∈ Y .

Proof.

(i) Since x − y ≥K 0, we obtain that x − y ∈ K, and so (x + z) − (y + z) =
x − y ∈ K, i.e., x + z ≥K y + z;

(ii) Let x ≥K y and y ≥P 0. Then x − y ∈ K and y ∈ P . If K + P ⊆ P , then
it follows that x = (x− y) + y ∈ K + P ⊆ P and hence x ≥P 0;
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(iii) Assume that x + y ≥P 0 and z ≥K y. Then x + y ∈ P and z − y ∈ K.
If K + P ⊆ P , then x + z = (x + y) + (z − y) ∈ P + K ⊆ P and thus
x + z ≥P 0;

(iv) Let x + y ≤C(intP) 0 and y ≤K z. Then one has x + y 	∈ −intP and
y−z ∈ −K. Suppose to the contrary that x+z ≤intP 0, i.e., x+z ∈ −intP .
Since K+intP ⊆ intP , it follows that x+y = (x+z)+(y−z) ∈ −intP−K ⊆
−intP , which is a contradiction. The proof is complete.

Remark 3.1. It is easy to see that if K ⊆ P , then the convexity of P implies
that the condition K+P ⊆ P holds. Indeed, if P is a convex cone, then K+P ⊆
P + P ⊆ P . But the converse is not true.

Example 3.3. Let Y = R2,

K = {(x, y) : x ≥ 0, 0 ≤ y ≤ x

4
} ∪ {(x, y) : y ≥ 0, 0 ≤ x ≤ y

2
}

and
P = {(x, y) : xy ≤ 0} ∪ {(x, y) : x ≥ 0, y ≥ 0}.

Then it is clear that K ⊆ P and K+P ⊆ P . However, K and P are two nonconvex
cones. Furthermore, we can easily show that the condition K+ intP ⊆ intP holds.

3.1. In The Case of (SVF -CP) and (PVF -CP)

In this subsection, we derive the characterizations of solution sets for (SVF -CP)
and (PVF -CP), respectively.

Theorem 3.1. Let T be hemicontinuous and C-monotone, and F be C-convex.
Assume C + C(x) ⊆ C(x) holds for all x ∈ K . Then

SSV V I = SSMV V I .

Proof. Let x∗ ∈ SSV V I . Then x∗ ∈ K and

(Tx∗, y − x∗) + F (y) − F (x∗) ≥C(x∗) 0 ∀y ∈ K.(3.1)

Since T is C-monotone, we have

(Ty − Tx∗, y − x∗) ≥C 0 ∀y ∈ K.

It follows that Lemma 3.1 (i) that

(3.2) (Ty, y−x∗)+F (y)−F (x∗)geC(Tx∗, y−x∗)+F (y)−F (x∗) ∀y∈K.
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Since C and C(x∗) are two cones with C ⊆ C(x∗) and C + C(x∗) ⊆ C(x∗), from
Lemma 3.1 (ii), (3.1) and (3.2) imply that

(Ty, y − x∗) + F (y) − F (x∗) ≥C(x∗) 0 ∀y ∈ K,

and so x∗ ∈ SSMV V I . Conversely, suppose that x∗ ∈ SSMV V I . Then x∗ ∈ K and

(Ty, y − x∗) + F (y) − F (x∗) ≥C(x∗) 0 ∀y ∈ K.

For any y ∈ K, let z = ty + (1 − t)x∗. Then z ∈ K for t ∈ (0, 1). Substituting
z = ty + (1 − t)x∗ into the above inequality, we have

(3.3) t(T (x∗+t(y−x∗)), y−x∗)+F (x∗+t(y−x∗))−F (x∗) ≥C(x∗) 0 ∀y ∈ K.

Since F is C-convex,

F (x∗ + t(y − x∗)) ≤C tF (y) + (1− t)F (x∗),

it follows that

(3.4) F (x∗ + t(y − x∗)) − F (x∗) ≤C t(F (y) − F (x∗)).

Again since C and C(x∗) are two cones with C ⊆ C(x∗) and C +C(x∗) ⊆ C(x∗),
it follows from (3.3), (3.4) and Lemma 3.1 (iii) that

t{(T (x∗ + t(y − x∗)), y − x∗) + F (y) − F (x∗)} ≥C(x∗) 0 ∀y ∈ K,

which implies that

(T (x∗ + t(y − x∗)), y − x∗) + F (y) − F (x∗) ≥C(x∗) 0 ∀y ∈ K,

since C(x∗) is a cone. Thus, the hemicontinuity of T and the closeness of C(x∗)
imply that

(T (x∗), y − x∗) + F (y)− F (x∗) ≥C(x∗) 0 ∀y ∈ K,

and so x∗ ∈ SSV V I . Thus, SSV V I = SSMV V I . The proof is complete.

Theorem 3.2. Assume that C(x) is a pointed cone for each x ∈ K and F is
positively homogeneous. Then

SSV V I = SSV CP .

Proof. Let x∗ ∈ SSV CP . Then x∗ ∈ K and

(Tx∗, x∗) + F (x∗) = 0, (Tx∗, y) + F (y) ≥C(x∗) 0 ∀y ∈ K.
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Thus, for any y ∈ K,

(Tx∗, y − x∗) + F (y)− F (x∗) = (Tx∗, y) + F (y) − {(Tx∗, x∗) + F (x∗)}
= (Tx∗, y) + F (y) − 0
≥ C(x∗)0

and so x ∈ SSV V I . Conversely, suppose that x∗ ∈ SSV V I . Then x∗ ∈ K and

(Tx∗, y − x∗) + F (y) − F (x∗) ≥C(x∗) 0 ∀y ∈ K.

Since K is a cone and F is positively homogeneous, putting y = 2x∗ and y = 1
2x∗

in the above inequality, we have

(Tx∗, x∗) + F (x∗) ≥C(x∗) 0, −{(Tx∗, x∗) + F (x∗)} ≥C(x∗) 0

and so
(Tx∗, x∗) + F (x∗) ∈ C(x∗) ∩ (−C(x∗)).

Since C(x∗) ∩ (−C(x∗)) = {0}, we know that (Tx∗, x∗) + F (x∗) = 0. It follows
that, for any y ∈ K,

(Tx∗, y) + F (y) = (Tx∗, y − x∗) + F (y) − F (x∗) + {(Tx∗, x∗) + F (x∗)}
= (Tx∗, y − x∗) + F (y) − F (x∗) + 0

≥C(x∗) 0,

which implies that x∗ ∈ SSV CP and so SSV V I = SSV CP . This completes the
proof.

From Theorems 3.1 and 3.2, we obtain the following conclusion.

Corollary 3.1. Let T be hemicontinuous and C-monotone, F be C-convex and
positively homogeneous. Assume that C(x) is a pointed cone with C+C(x) ⊆ C(x)
for each x ∈ K. Then

SSV V I = SSMV V I = SSV CP .

Let C(x) =
⋃n

i=1 Ci(x), where Ci : K → 2Y is a point-to-set mapping such that
Ci(x) is closed cone in Y for each x ∈ K (i = 1, 2, · · · , n). Now, we consider the
following vector F -complementarity problems and vector F -variational inequalities:

the i-th Strong Vector F -Complementarity Problem with Nonconvex Preferences
(i-SVF -CP): find x∗ ∈ K, such that

(Tx∗, x∗) + F (x∗) = 0, (Tx∗, y) + F (y) ≥Ci(x∗) 0 ∀y ∈ K;
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the i-th Positive Vector F -Complementarity Problem with Nonconvex Prefer-
ences (i-PVF -CP): find x∗ ∈ K, such that

(Tx∗, x∗) + F (x∗) ≥C(intCi(x∗)) 0, (Tx∗, y) + F (y) ≥C(x∗) 0 ∀y ∈ K;

the i-th Strong Vector F -Variational Inequality with Nonconvex Preferences
(i-SVF -VI): find x∗ ∈ K such that

(Tx∗, y − x∗) + F (y) − F (x∗) ≥Ci(x∗) 0 y ∈ K;

the i-th Strong Minty Vector F -Variational Inequality with Nonconvex Prefer-
ences (i-SMVF -VI): find x∗ ∈ K such that

(Ty, y − x∗) + F (y) − F (x∗) ≥Ci(x∗) 0 y ∈ K.

We denote by Si
SV CP , Si

PV CP , Si
SV V I and Si

SMV V I the solutions set of (i-
SVF -CP), (i-PVF -CP), (i-SVF -VI) and (i-SMVF -VI), respectively.

Theorem 3.3. The following statements hold:

(1)
⋃n

i=1 Si
SV CP ⊆ SSV CP ;

(2) SPV CP ⊆ ⋂n
i=1 Si

PV CP ;
(3)

⋃n
i=1 Si

SV V I ⊆ SSV V I ;

(4)
⋃n

i=1 Si
SMV V I ⊆ SSMV V I .

Proof.

(1) Let x∗ ∈ ∪n
i=1S

i
SV CP . Then there exists i ∈ {1, 2, · · · , n} such that x∗ ∈

Si
SV CP , that is, x∗ ∈ K and

(Tx∗, x∗) + F (x∗) = 0, (Tx∗, y) + F (y) ≥Ci(x∗) 0 ∀y ∈ K.

This implies that (Tx∗, y) + F (y) ∈ Ci(x∗) for all y ∈ K. Since C(x∗) =
∪n

i=1Ci(x∗), we have (Tx∗, y)+F (y) ∈ C(x∗) for all y ∈ K , which implies
that x∗ ∈ SSV CP .

(2) Let x∗ ∈ SPV CP . Then x∗ ∈ K and

(Tx∗, x∗) + F (x∗) ≥C(intC(x∗)) 0, (Tx∗, y) + F (y) ≥C(x∗) 0 ∀y ∈ K.

This implies that (Tx∗, x∗)+F (x∗) 	∈ intC(x∗). Since C(x∗) = ∪n
i=1Ci(x∗),

we know that ∪n
i=1intCi(x∗) ⊆ intC(x∗). It follows that (Tx∗, x∗)+F (x∗) 	∈

intCi(x∗) for all i = 1, 2, · · · , n, and so x∗ ∈ Si
PV CP for all i = 1, 2, · · · , n.

Thus, x∗ ∈ ∩n
i=1S

i
PV CP .
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(3) Let x∗ ∈ ∪n
i=1S

i
SV V I . Then there exists i ∈ {1, 2, · · · , n} such that x∗ ∈

Si
SV V I , that is, x∗ ∈ K and

(Tx∗, y − x∗) + F (y) − F (x∗) ≥Ci(x∗) 0 ∀y ∈ K.

This implies that (Tx∗, y − x∗) + F (y) − F (x∗) ∈ Ci(x∗) for all y ∈ K .
Since C(x∗) = ∪n

i=1Ci(x∗), one has (Tx∗, y−x∗)+F (y)−F (x∗) ∈ C(x∗)
for all y ∈ K, which implies that x∗ ∈ SSV V I .

(4) Let x∗ ∈ ∪n
i=1S

i
SMV V I . Then there exists i ∈ {1, 2, · · · , n} such that x∗ ∈

Si
SMV V I , that is, x∗ ∈ K and

(Ty, y − x∗) + F (y) − F (x∗) ≥Ci(x∗) 0 ∀y ∈ K.

This implies that (Ty, y−x∗)+F (y)−F (x∗) ∈ Ci(x∗) for all y ∈ K . Since
C(x∗) = ∪n

i=1Ci(x∗), we obtain (Ty, y − x∗) + F (y) − F (x∗) ∈ C(x∗) for
all y ∈ K, which shows that x∗ ∈ SSMV V I . The proof is complete.

The following examples show that the converse inclusions of Theorem 3.3 may
not hold.

Example 3.4. Let X = R, K = [0, +∞) and Y = R2. Let C1(z) = {(x, y) :
x ≥ 0, 0 ≤ y ≤ x

2}, C2(z) = {(x, y) : y ≥ 0, 0 ≤ x ≤ 2y},

F (z) =

{
(z, z), 0 ≤ z ≤ 1,

(3z, 0), z > 1,

and (Tz, u) = (u, u) for all z, u ∈ K . Then C(z) = C1(z)
⋃

C2(z) = R2
+,

0 ∈ SSV CP , 0 ∈ SSV V I and 0 ∈ SSMV V I . However, 0 	∈ S1
SV CP

⋃
S2

SV CP ,
0 	∈ S1

SV V I

⋃
S2

SV V I and 0 	∈ S1
SMV V I

⋃
S2

SMV V I .

Example 3.5. Let X = R, K = [0, +∞) and Y = R2. Let C1(z) =
{(x, y) : x ≥ 0, 0 ≤ y ≤ x}, C2(z) = {(x, y) : y ≥ 0, 0 ≤ x ≤ y}, F (x) =
(1, 1) and (Tx, y) = (y, y) for all x, y ∈ K . Then it is easy to see that C(z) =
C1(z)

⋃
C2(z) = R2

+, and 0 ∈ S1
PV CP

⋂
S2

PV CP . However, 0 	∈ SPV CP .
From Corollary 3.1 and Theorem 3.3, we obtain the following.

Corollary 3.2. Let T be hemicontinuous and C-monotone, F be C-convex and
positively homogeneous. Assume that C(x) is a pointed cone with C+C(x) ⊆ C(x)
for each x ∈ K. Then

n⋃
i=1

{Si
SV CP

⋃
Si

SV V I

⋃
Si

SMV V I} ⊆ SSV V I

⋂
SSMV V I

⋂
SSV CP .
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3.2. In the Case of (MSVF -CP)

In this subsection, we show the characterizations of solution sets for (MSVF -
CP).

Theorem 3.4. The relation holds: SMSV CP ⊆ SMSV V I .

Proof. Let x∗ ∈ SMSV CP . Then x∗ ∈ K and

(Tx∗, x∗) + F (x∗) = 0, (Tx∗, y) + F (y) ≤C(C(x∗)\{0}) 0 ∀y ∈ K.

Thus, for any y ∈ K,

(Tx∗, y − x∗) + F (y) − F (x∗) = (Tx∗, y) + F (y) − {(Tx∗, x∗) + F (x∗)}
= (Tx∗, y) + F (y) − 0

≤C(C(x∗)\{0}) 0

and so x∗ ∈ SMSV V I . This completes the proof.
The following example shows that the converse inclusion of Theorem 3.4 may

not hold.

Example 3.6. Let X = R, K = [0, +∞) and Y = R2. Let

C(z) = {(x, y) : x ≥ 0, 0 ≤ y ≤ x

2
} ∪ {(x, y) : y ≥ 0, 0 ≤ x ≤ y

2
}

and
F (z) = (z, 1), (Tz, u) = (u, u)

for all z, u ∈ K. Then it is easy to check that 0 ∈ SMSV V I . However, 0 	∈
SMSV CP .

Let C(x) =
⋃n

i=1 Ci(x), where Ci : K → 2Y is a point-to-set mapping such that
Ci(x) is closed cone in Y for each x ∈ K (i = 1, 2, · · · , n). Now, we consider the
following vector F -complementarity problems and vector F -variational inequalities:

the i-th Mild Strong Vector F -Complementarity Problem with Nonconvex Pref-
erences (i-MSVF -CP): find x∗ ∈ K such that

(Tx∗, x∗) + F (x∗) = 0, (Tx∗, y) + F (y) ≤C(Ci(x∗)\{0}) 0 ∀y ∈ K;

the i-th Mild Strong Vector F -Variational Inequality with Nonconvex Prefer-
ences (i-MSVF -VI): find x∗ ∈ K such that

(Ty, y − x∗) + F (y) − F (x∗) ≤C(Ci(x∗)\{0}) 0 ∀y ∈ K.

We denote by Si
MSV CP and Si

MSV V I the solutions set of (i-MSVF -CP) and
(i-MSVF -VI), respectively.

Theorem 3.5. The following arguments are true:
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(1) SMSV CP =
⋂n

i=1 Si
MSV CP ;

(2) SMSV V I =
⋂n

i=1 Si
MSV V I .

Proof.

(1) Let x∗ ∈ SMSV CP . Then x∗ ∈ K and

(Tx∗, x∗) + F (x∗) = 0, (Tx∗, y) + F (y) ≤C(C(x∗)\{0}) 0 ∀y ∈ K,

and therefore −{(Tx∗, y) + F (y)} 	∈ C(x∗) \ {0} for all y ∈ K. Since
C(x∗) = ∪n

i=1Ci(x∗), it follows that −{(Tx∗, y)+F (y)} 	∈ Ci(x∗)\{0} for
all y ∈ K and i = 1, 2 · · · , n. Thus, x∗ ∈ Si

MSV CP for all i = 1, 2 · · · , n,
and so x∗ ∈ ∩n

i=1S
i
MSV CP . Conversely, suppose that x∗ ∈ ∩n

i=1S
i
MSV CP .

Then x∗ ∈ K, (Tx∗, x∗) + F (x∗) = 0 and

(Tx∗, y) + F (y) ≤C(Ci(x∗)\{0}) 0 ∀y ∈ K, i = 1, 2, · · · , n.

This implies that −{(Tx∗, y) + F (y)} 	∈ Ci(x∗) \ {0} for all y ∈ K and
i = 1, 2, · · · , n. Again since C(x∗) = ∪n

i=1Ci(x∗), one has −{(Tx∗, y) +
F (y)} 	∈ C(x∗) \ {0} for all y ∈ K, which shows that x∗ ∈ SMSV CP .

(2) Let x∗ ∈ SMSV V I . Then x∗ ∈ K and

(Ty, y − x∗) + F (y) − F (x∗) ≤C(C(x∗)\{0}) 0 ∀y ∈ K,

and hence −{(Ty, y − x∗) + F (y) − F (x∗)} 	∈ C(x∗) \ {0} for all y ∈ K.
Since C(x∗) = ∪n

i=1Ci(x∗), it follows that −{(Ty, y−x∗)+F (y)−F (x∗)} 	∈
Ci(x∗) \ {0} for all y ∈ K and i = 1, 2 · · · , n. Thus, x∗ ∈ Si

MSV V I for
all i = 1, 2 · · · , n, and so x∗ ∈ ∩n

i=1S
i
MSV V I . Conversely, suppose that

x∗ ∈ ∩n
i=1S

i
MSV V I . Then x∗ ∈ K and

(Ty, y − x∗) + F (y)− F (x∗) ≤C(Ci(x∗)\{0}) 0 ∀y ∈ K, i = 1, 2, · · · , n.

This implies that −{(Ty, y − x∗) + F (y) − F (x∗)} 	∈ Ci(x∗) \ {0} for all
y ∈ K and i = 1, 2, · · · , n. Again since C(x∗) = ∪n

i=1Ci(x∗), one has
−{(Ty, y−x∗) + F (y)−F (x∗)} 	∈ C(x∗) \ {0} for all y ∈ K, which yields
that x∗ ∈ SMSV V I . The proof is complete.

From Theorems 3.4 and 3.5, we obtain the following result.

Corollary 3.3. The conclusion holds:
⋂n

i=1 Si
MSV CP ⊆ ⋂n

i=1 Si
MSV V I .

3.3. In the Case of (WVF -CP)

In this subsection, we present the characterizations of solutions set for (WVF -
CP).
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Let C(x) =
⋃n

i=1 Ci(x), where Ci : K → 2Y is a point-to-set mapping such that
Ci(x) is closed cone in Y for each x ∈ K (i = 1, 2, · · · , n). Now, we consider the
following vector F -complementarity problems and vector F -variational inequalities:

the i-th Weak Vector F -Complementarity Problem with Nonconvex Preferences
(i-WVF -CP): find x∗ ∈ K such that

(Tx∗, x∗) + F (x∗) ≥C(intCi(x∗)) 0, (Tx∗, y) + F (y) ≤C(intCi(x∗)) 0 ∀y ∈ K;

the i-th Weak Vector F -Variational Inequality with Nonconvex Preferences (i-
WVF -VI): find x∗ ∈ K such that

(Tx∗, y − x∗) + F (y) − F (x∗) ≤C(intCi(x∗)) 0 ∀y ∈ K.

We denote by Si
WV CP and Si

WV V I the solutions set of (i-WVF -CP) and (i-
WVF -VI), respectively.

Theorem 3.6. The following statements are true:

(1) SWV CP ⊆ ⋂n
i=1 Si

WV CP ;

(2) SWV V I ⊆ ⋂n
i=1 Si

WV V I .

Proof.

(1) Let x∗ ∈ SWV CP . Then x∗ ∈ K and

(Tx∗, x∗)+F (x∗) ≥C(intC(x∗)) 0, (Tx∗, y)+F (y) ≤C(intC(x∗)) 0 ∀y ∈ K.

Since ∪n
i=1intCi(x∗) ⊆ intC(x∗),

(Tx∗, x∗) + F (x∗) 	∈ intCi(x∗), (Tx∗, y) + F (y) 	∈ −intCi(x∗)

∀y ∈ K, i = 1, 2, · · · , n.

It follows that x∗ ∈ Si
WV CP for all i = 1, 2, · · · , n, and so x∗ ∈ ∩n

i=1S
i
WV CP .

(2) Let x∗ ∈ SWV V I . Then x∗ ∈ K and

(Tx∗, y − x∗) + F (y) − F (x∗) ≤C(intC(x∗)) 0 ∀y ∈ K.

Since ∪n
i=1intCi(x∗) ⊆ intC(x∗),

−{(Tx∗, y − x∗) + F (y)− F (x∗)} 	∈ intCi(x∗) ∀y ∈ K, i = 1, 2, · · · , n.

It follows that x∗ ∈ Si
WV V I for all i = 1, 2, · · · , n, and so x∗ ∈ ∩n

i=1S
i
WV V I .

This completes the proof.
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The following examples show that the converse inclusions of Theorem 3.6 may
not hold.

Example 3.7. Let X = R, K = [0, +∞) and Y = R2. Let C1(z) = {(x, y) :
x ≥ 0, 0 ≤ y ≤ x}, C2(z) = {(x, y) : y ≥ 0, 0 ≤ x ≤ y}, F (z) = (1, 1)
and (Tz, u) = (u, u) for all z, u ∈ K . Then it is easy to show that C(z) =
C1(z)

⋃
C2(z) = R2

+ and 0 ∈ S1
WV CP

⋂
S2

WV CP . However, 0 	∈ SWV CP .

Example 3.8. Let X = R, K = [0, +∞) and Y = R2. Let C1(z) = {(x, y) :
x ≥ 0, 0 ≤ y ≤ x}, C2(z) = {(x, y) : y ≥ 0, 0 ≤ x ≤ y}, F (z) = (1, 1)
and (Tz, u) = (−u,−u) for all z, u ∈ K . Then it is easy to see that C(z) =
C1(z)

⋃
C2(z) = R2

+ and 0 ∈ S1
WV V I

⋂
S2

WV V I . However, 0 	∈ SWV V I .

Remark 3.1. If let F (x) ≡ 0 and C(x) ≡ C for each x ∈ K , then Theorems
3.1-3.6 reduce the corresponding results obtained by Huang, Rubinov and Yang
[11].

4. APPLICATIONS TO VECTOR OPTIMIZATION PROBLEMS WITH NONCONVEX PREFERENCES

In this section, we apply the results derived in section 3 to vector optimization
problems in cases of strong vector optimization problem (SVOP), mild strong vector
optimization problem (MSVOP) and weak vector optimization problem (WVOP),
respectively.

4.1. In the Case of (SVOP)

Let A be a nonempty subsets of X and g : A → Y a mapping. We say that
x∗ ∈ A is a strongly (or an ideal) minimal point of the set A with respect to K
if x∗ ≤K y for all y ∈ A. We say that g(x∗) ∈ g(A) is a strongly (or an ideal)
minimal point of the set g(A) with respect to C if g(x∗) ≤C(x∗) g(y) for all y ∈ A.
The set of all strongly minimal points of A and g(A) are denoted by MinsA and
Minsg(A), respectively.

Define the feasible set associated with T as follows:

Fs = {x ∈ K : (Tx, y) + F (y) ≥C(x) 0, ∀y ∈ K}.
Let f(x) = (Tx, x) for all x ∈ K . We now consider the Strong Vector Opti-

mization Problem with Nonconvex Preferences (SVOP):

Mins{f(x) + F (x)} subject to x ∈ Fs.

A point x∗ is called a strongly minimal solution of (SVOP) if f(x∗)+F (x∗) is
a strongly minimal point of (SVOP), i.e., f(x∗)+F (x∗) ∈ Mins{f(Fs)+F (Fs)}.
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We denote by Es the set of all strongly minimal solutions of (SVOP) and by Hs

the set of all strongly minimal points of (SVOP) . Then f(Es) + F (Es) = Hs.

Theorem 4.1. Assume that Hs 	= ∅. Then the following conclusions hold:

(1) If there exists x∗ ∈ Es such that f(x∗) + F (x∗) = 0, then x∗ ∈ SSV CP ;

(2) If there exists x∗ ∈ Es such that f(x∗) + F (x∗) ≥C(intC(x∗)) 0, then x∗ ∈
SPV CP .

Proof. Since x∗ ∈ Es ⊆ Fs and f(x∗) + F (x∗) = 0, it follows that x∗ ∈ K

and

(Tx∗, x∗) + F (x∗) = f(x∗) + F (x∗) = 0, (Tx∗, y) + F (y) ≥C(x∗) 0 ∀y ∈ K,

which implies that x∗ ∈ SSV CP and thus conclusion (1) holds. Now we prove
that (2) is true. Since x∗ ∈ Es ⊆ Fs and f(x∗) + F (x∗) ≥C(intC(x∗)) 0, we have
x∗ ∈ K and

(Tx∗, x∗) + F (x∗) = f(x∗) + F (x∗) ≥C(intC(x∗)) 0,

(Tx∗, y) + F (y) ≥C(x∗) 0 ∀y ∈ K,

which shows that x∗ ∈ SPV CP . The proof is complete.
We now consider the following problems.
Strong Vector Optimization Problem with Nonconvex Preferences (SVOP) l: for

a given l ∈ L(X, Y ), finding x∗ ∈ Fs such that l(x∗) ∈ Minsl(Fs);
Strongly Minimal Element Problem with Nonconvex Preferences (SMEP): find-

ing x∗ ∈ Fs such that x∗ ∈ MinsFs;
Strong Vector Unilateral Optimization Problem with Nonconvex Preferences

(SVUOP): finding x∗ ∈ K such that f(x∗) + F (x∗) ∈ Mins{f(K) + F (K)}.
Let X and Y be two Banach spaces. A map f : X → Y is Frechet differentiable

at x0 ∈ X if there exists a linear bounded operator Df(x0) such that

lim
x→0

‖f(x0 + x)− f(x0) − (Df(x0), x)‖
‖x‖ = 0.

In this case, Df(x0) is said to be the Frechet derivative of f at x0. The map f is
said to be Frechet differentiable on X if f is Frechet differentiable at each point of
X .

Theorem 4.2. Let T = Df be the Frechet derivative of an operator f : X → Y
and F be C-convex. Assume that C + C(x) ⊆ C(x) for each x ∈ K. Then x∗

solves (SVUOP) implies that x∗ ∈ SSV V I .
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Proof. Let x∗ be a solution of (SVUOP). Then x∗ ∈ K and f(x∗) + F (x∗) ∈
Mins{f(K) + F (K)}, i.e., f(x∗) + F (x∗) ≤C(x∗) f(y) + F (y) for all y ∈ K .
Since K is a convex cone,

f(x∗)+F (x∗) ≤C(x∗) f(x∗+t(w−x∗))+F (x∗+t(w−x∗)) ∀w ∈ K, 0 < t < 1.

It follows that

(4.1)
1
t
[f(x∗+t(w−x∗))−f(x∗)]+

1
t
[F (x∗+t(w−x∗))−F (x∗)] ≥C(x∗) 0.

Since F is C-convex,

F (x∗ + t(w − x∗)) ≤C tF (w) + (1− t)F (x∗) ∀w ∈ K,

that is,

(4.2)
1
t
[F (x∗ + t(w − x∗))− F (x∗)] ≤C F (w) − F (x∗) ∀w ∈ K.

Since C and C(x∗) are two cones with C ⊆ C(x∗) and C + C(x∗) ⊆ C(x∗), it
follows from (4.1), (4.2) and Lemma 3.1 (iii) that

1
t
[f(x∗ + t(w − x∗)) − f(x∗)] + F (w) − F (x∗) ≥C(x∗) 0.

Since f is Frechet differentiable on X and C(x∗) is closed, letting t → 0+, we get

(Df(x∗), w − x∗) + F (w) − F (x∗) ≥C(x∗) 0 ∀w ∈ K,

which implies that x∗ ∈ SSV V I . The proof is complete.
A linear operator l : K → Y is called strongly positive if, for any x, y ∈ K ,

x ≥K y =⇒ l(x) ≥C(y) l(y).

Example 4.1. Let X = R, K = [0, +∞), Y = R2 and

C(z) = {(x, y) : x ≥ 0, 0 ≤ y ≤ x
3} ∪ {(x, y) : y ≥ 0, 0 ≤ x ≤ y

3} ∪ {(x, y)

: x > 0, 0 ≤ y
x ≤ min{z, 1

2}}
for all z ∈ K. It is clear that C(z) is a closed nonconvex cone for each z ∈ K and

∩z∈KC(z) = {(x, y) : x ≥ 0, 0 ≤ y ≤ x

3
} ∪ {(x, y) : y ≥ 0, 0 ≤ x ≤ y

3
}.

Let l : K → Y such that l(x) = (4x, x) for any x ∈ K . It is easy to verify l is
strongly positive.
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Theorem 4.3. Let l : K → Y be a linear operator. If l is strongly positive,
then x∗ solves (SMEP) implies that x∗ solves (SVOP)l.

Proof. Let x∗ be a solution of (SMEP). Then x∗ ∈ Fs and x∗ ≤K x for all
x ∈ Fs, where

Fs = {x ∈ K : (Tx, y) + F (y) ≥C(x) 0, ∀y ∈ K}.

For any z ∈ Fs, we know that x∗ ≤K z. Since l is a strongly positive linear
operator, it follows that l(x∗) ≤C(x∗) l(z) and so

l(x∗) ∈ Minsl(Fs),

which implies that x∗ solves (SVOP)l . The proof is complete.

4.2. In the Case of (MSVOP)

Let A be a nonempty subset of X and g : A → Y a mapping. We say that
g(x∗) ∈ g(A) is a mild strongly minimal point of the set g(A) with respect to C if
g(y) ≤C(C(x∗)\{0}) g(x∗) for all y ∈ A. The set of all mild strongly minimal points
of g(A) is denoted by Minmg(A).

Define the feasible set associated with T as follows:

Fm = {x ∈ K : (Tx, y) + F (y) ≤C(C(x)\{0}) 0, ∀y ∈ K}.

Let f(x) = (Tx, x) for all x ∈ K . We now consider the Mild Strong Vector
Optimization Problem with Nonconvex Preferences (MSVOP):

Minm{f(x) + F (x)} subject to x ∈ Fm.

A point x∗ is called a mild strongly minimal solution of (MSVOP) if f(x∗) +
F (x∗) is a mild strongly minimal point of (MSVOP), i.e., f(x∗) + F (x∗) ∈
Minm{f(Fm) + F (Fm)}. We denote by Em the set of all mild strongly mini-
mal solutions of (MSVOP), and by Hm the set of all mild strongly minimal points
of (MSVOP). Then f(Em) + F (Em) = Hm.

Theorem 4.4. Assume that Hm 	= ∅. If there exists x∗ ∈ Em such that f(x∗)+
F (x∗) = 0, then x∗ ∈ SMSV CP .

Proof. Let x∗ ∈ Em ⊆ Fm and f(x∗) + F (x∗) = 0. Then x∗ ∈ K and

(Tx∗, x∗)+F (x∗) = f(x∗)+F (x∗) = 0, (Tx∗, y)+F (y) ≤C(C(x∗)\{0}) 0 ∀y ∈ K.

That is to say, x∗ ∈ SMSV CP . The proof is complete.



802 Jun Li and Nan-Jing Huang

4.3. In the Case of (WVOP)

Let A be a nonempty subset of X and g : A → Y a mapping. We say that
x∗ ∈ A is a weakly minimal point of the set A with respect to K if y ≤C(intK) x∗

for all y ∈ A. We say that g(x∗) ∈ g(A) is a weakly minimal point of the set g(A)
with respect to C if g(y) ≤C(intC(x∗)) g(x∗) for all y ∈ A. The set of all weakly
minimal points of A and g(A) are denoted by MinwA and Minwg(A), respectively.

Define the feasible set associated with T as follows:

Fw = {x ∈ K : (Tx, y) + F (y) ≤C(intC(x)) 0, ∀y ∈ K}.

Let f(x) = (Tx, x) for all x ∈ K. We now consider the Weak Vector Optimization
Problem with Nonconvex Preferences (WVOP):

Minw{f(x) + F (x)} subject to x ∈ Fw.

A point x∗ is called a weakly minimal solution of (WVOP) if f(x∗)+F (x∗) is
a weakly minimal point of (WVOP), i.e., f(x∗)+F (x∗) ∈ Minw{f(Fw)+F (Fw)}.
We denote by Ew the set of all weakly minimal solutions of (WVOP), and by Hw

the set of all weakly minimal points of (WVOP). Then f(Ew) + F (Ew) = Hw.

Theorem 4.5. Assume that Hw 	= ∅. If there exists x∗ ∈ Ew such that f(x∗) +
F (x∗) ≥C(intC(x∗)) 0, then x∗ ∈ SWV CP .

Proof. Let x∗ ∈ Ew ⊆ Fw and f(x∗) + F (x∗) ≥CintC(x∗) 0. Then x∗ ∈ K
and

(Tx∗, x∗) + F (x∗) = f(x∗) + F (x∗) ≥C(intC(x∗)) 0,

(Tx∗, y) + F (y) ≤C(intC(x∗)) 0 ∀y ∈ K.

It follows that x∗ ∈ SWV CP . The proof is complete.

Example 4.2. Let X = R, K = [0, +∞), Y = R2 and

C(z) ≡ {(x, y) : x ≥ 0, 0 ≤ y ≤ 1
2
} ∪ {(x, y) : y ≥ 0, 0 ≤ x ≤ 1

2
}

for all z ∈ K. Let (Tx, y) = (y, y) and F (x) = (−x,−x) for all x, y ∈ K. Then
it is easy to see that Fw = K, (0, 0) ∈ Hw, 0 ∈ Ew and

f(0) + F (0) = (0, 0) ≥C(intC(0)) (0, 0).

This means that all conditions of Theorem 4.5 hold and so 0 ∈ SWV CP .
We now consider the following problems.
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Weak Vector Optimization Problem with Nonconvex Preferences (WVOP) l: for
a given l ∈ L(X, Y ), finding x∗ ∈ Fw such that l(x∗) ∈ Minwl(Fw);

Weak Minimal Element Problem with Nonconvex Preferences (WMEP): finding
x∗ ∈ Fw such that x∗ ∈ MinwFw;

Weak Vector Unilateral Optimization Problem with Nonconvex Preferences (WVUOP):
finding x∗ ∈ K such that f(x∗) + F (x∗) ∈ Minw{f(K) + F (K)}.

Theorem 4.6. Let T = Df be the Frechet derivative of an operator f : X → Y
and F be C-convex. Assume that C + intC(x) ⊆ intC(x) for all x ∈ K . Then x ∗

solves (WVUOP) implies that x∗ ∈ SWV V I .

Proof. Let x∗ be a solution of (WVUOP). Then x∗ ∈ K and f(x∗)+ F (x∗) ∈
Minw{f(K) + F (K)}, i.e., f(y) + F (y) ≤C(intC(x∗)) {f(x∗) + F (x∗)} for all
y ∈ K. Since K is a convex cone,

f(x∗) + F (x∗) ≥C(intC(x∗)) {f(x∗ + t(w − x∗)) + F (x∗ + t(w − x∗))}
∀w ∈ K, 0 < t < 1.

Since C(x∗) is a cone, it follows that

(4.3)
1
t
[f(x∗ + t(w − x∗))− f(x∗)] +

1
t
[F (x∗ + t(w − x∗))− F (x∗)]

≤C(intC(x∗)) 0.

Since F is C-convex, we obtain

F (x∗ + t(w − x∗)) ≤C tF (w) + (1 − t)F (x∗) ∀w ∈ K,

that is,

(4.4)
1
t
[F (x∗ + t(w − x∗))− F (x∗)] ≤C F (w) − F (x∗) ∀w ∈ K.

Note that C and C(x∗) are two cones with C ⊆ C(x∗) and C + intC(x∗) ⊆
intC(x∗). It follows from (4.3), (4.4) and Lemma 3.1 (iv) that

1
t
[f(x∗ + t(w − x∗))− f(x∗)] + F (w) − F (x∗) ≤C(intC(x∗)) 0 ∀w ∈ K.

Since f is Frechet differentiable on X and C(intC(x∗)) is closed, letting t → 0+

in above relation, we get

(Df(x∗), w − x∗) + F (w) − F (x∗) ≤C(intC(x∗)) 0 ∀w ∈ K,



804 Jun Li and Nan-Jing Huang

which implies that x∗ ∈ SWV V I . The proof is complete.

Example 4.3. Let X = R, K = [0, +∞), Y = R2 and

C(z) =




R2
+, 0 ≤ z ≤ π

2 ,

R2
+

⋃{(x, y) : −z + π
2 ≤ arctan y

x ≤ z}, π ≥ z > π
2 ,

R2\(−intR2
+), z > π.

Let f(x) = (−x,−x) and F (x) = (x, x). Then (Tx, y) = (Df(x), y) = (−y,−y)
for all x, y ∈ K. It is easy to check that all assumptions in Theorem 4.6 hold and
so 0 solves (WVUOP) implies that 0 ∈ SWV V I .

A linear operator l : K → Y is called weakly positive if, for any x, y ∈ K,

x ≤C(intK) y =⇒ l(x) ≤C(intC(y)) l(y).

Example 4.4. Let X = R, K = [0, +∞), Y = R2 and C(z) = {(x, y) : x ≥
0, 0 ≤ y ≤ x

4}∪{(x, y) : y ≥ 0, 0 ≤ x ≤ y
3}∪{(x, y) : x > 0, 0 ≤ y

x ≤ min{z, 1
3}}

for all z ∈ K. It is clear that C(z) is a closed nonconvex cone for each z ∈ K

and ∩z∈KC(z) = {(x, y) : x ≥ 0, 0 ≤ y ≤ x
4} ∪ {(x, y) : y ≥ 0, 0 ≤ x ≤ y

3}. Let
l : K → Y such that l(x) = (x, 4x) for any x ∈ K . Then l is weakly positive.

Theorem 4.7. Let l : K → Y be a linear operator. If l is weakly positive,
then x∗ solves (WMEP) implies x∗ solves (WVOP)l.

Proof. Let x∗ be a solution of (WMEP). Then x∗ ∈ Fw and y ≤C(intK) x∗ for
all y ∈ Fw, where

Fw = {x ∈ K, (Tx, y) + F (y) ≤C(intC(x)) 0, ∀y ∈ K}.
For any z ∈ Fw, we know that z ≤C(intK) x∗. Since l is a weakly positive linear
operator, it follows that l(z) ≤C(intC(x∗)) l(x∗) for all z ∈ Fw. Thus x∗ solves
(WVOP)l. The proof is complete.

Remark 4.1. If let F (x)≡0 and C(x)≡C for each x∈K , then Theorems 4.1-
4.7 reduce the corresponding results obtained by Huang, Rubinov and Yang [11].
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