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ON I-CAUCHY SEQUENCES

Anar Nabiev, Serpil Pehlivan and Mehmet Gürdal

Abstract. The concept of I-convergence is a generalization of statistical
convergence and it is dependent on the notion of the ideal I of subsets of the
set N of positive integers. In this paper we prove a decomposition theorem for
I-convergent sequences and we introduce the notions of I Cauchy sequence
and I∗-Cauchy sequence, and then study their certain properties.

1. INTRODUCTION AND BACKGROUND

P. Kostyrko et al. [12] introduced the concept of I-convergence of sequences
in a metric space and studied some properties of this convergence. Note that I-
convergence is an interesting generalization of statistical convergence.

The concept of statistical convergence was introduced by Steinhaus [21] in 1951
(see also Fast [5]) and has been discussed and developed by many authors including
[2, 4, 7-9, 15-18, 20].

Let N denote the set of all positive integers and (X, ρ) be a linear metric space.
Recall that a sequence (xn)n∈N

of elements of X is said to be statistically convergent
to x ∈ X if the set A (ε) = {n ∈ N : ρ (xn, x) ≥ ε} has natural density zero for
each ε > 0.

In general, statistically convergent sequences satisfy many of the properties of
ordinary convergent sequences in metric spaces. For instance, a statistically conver-
gent sequence is statistically Cauchy, ([7, 19]) in an arbitrary metric space. In this
paper we investigate some properties of I-convergent sequences in a linear metric
space. In section 2 we prove the decomposition theorem of I-convergent sequences
in a linear metric space and give some results regarding this theorem. In section 3
we introduce the notions of I-Cauchy sequence and I∗-Cauchy sequence, and study
their certain properties.
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Now we give some definitions and notations.

Definition 1. [14] Let Y �= ∅. A family I ⊂ 2Y of subsets of Y is said to be
an ideal in Y provided that the following conditions hold:

(a) ∅ ∈ I
(b) A, B ∈ I imply A ∪ B ∈ I
(c) A ∈ I, B ⊂ A imply B ∈ I.

Definition 2. [11] Let Y �= ∅. A non-empty family F ⊂ 2Y is said to be a
filter on Y if the following are satisfied:

(a) ∅ /∈ F
(b) A, B ∈ F imply A ∩ B ∈ F
(c) A ∈ F , A ⊂ B ⊂ Y imply B ∈ F .

Lemma 1. [13] Let I be a proper ideal in Y (i.e. Y /∈ I), Y �= ∅. Then the
family of sets

F (I) = {M ⊂ Y : ∃A ∈ I : M = Y \A}
is a filter in Y. It is called the filter associated with the ideal I.

Definition 3. [13] A proper ideal I is said to be admissible if {x} ∈ I for
each x ∈ Y.

Definition 4. [12, 13] Let I ⊂ 2N be a proper ideal in N and (X, ρ) be a
metric space. The sequence x = (xn) of elements of X is said to be I-convergent
to ξ ∈ X if for each ε > 0 the set A (ε) = {n ∈ N : ρ (xn, ξ) ≥ ε} belongs to I.

If x = (xn) is I-convergent to ξ then we write I- lim
n→∞xn = ξ. In this case the

element ξ ∈ X is called I-limit of the sequence x = (xn) ∈ X.
There are many examples of ideals I ⊂ 2N in [12, 13], and basic properties

of I-convergence have been studied in these works. Note that the µ-statistical
convergence of [1] is in a sense equivalent to I-convergence (see [13]).

Definition 5. [12] An admissible ideal I ⊂ 2 N is said to have the property (AP)
if for any sequence {A1, A2, ...} of mutually disjoint sets of I, there is a sequence
{B1, B2, ...} of sets such that each symmetric difference Ai∆Bi (i = 1, 2, ...) is

finite and
∞⋃
i=1

Bi ∈ I.

Definition 5 is similar to the condition (APO) used in [6].
In [12], the concept of I∗-convergence which is closely related to the I-

convergence has been introduced.
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Definition 6. [12] A sequence x = {xn}n∈N
of elements of X is said to be

I∗-convergent to ξ ∈ X if and only if there exists a set M ∈ F (I) ,
M = {m1 < m2 < ... < mk < ...} ⊂ N such that lim

k→∞
ρ (xmk

, ξ) = 0.

In paper [12] it is proved that I and I ∗-convergence are equivalent for admissible
ideals with property (AP).

Lemma 2. ([12]) Let I ⊂ 2N be an admissible ideal with the property (AP) and
(X, ρ) be an arbitrary metric space. Then I- lim

n→∞xn = ξ if and only if there exists
a set P ∈ F (I) , P = {p1 < p2 < ... < pk < ...} such that lim

k→∞
ρ (xpk

, ξ) = 0.

Remark 1. Let I = Id and X = R with the usual metric, where Id =
{A ⊂ N : d (A) = 0} , and d (A) is the natural density of the set A ⊂ N. Then
Lemma 2 is equivalent to the relation between statistical convergence and ”almost
all” convergence of a real number sequence (xn) considered in [7].

2. THE DECOMPOSITION THEOREM

In this section we prove a decomposition theorem for I -convergent sequences.

Theorem 1. Let (X, ρ) be a linear metric space, x = (xn) ∈ X and I ⊂
2N be an admissible ideal with property (AP). Then the following conditions are
equivalent:

(a) I- lim
n→∞xn = ξ

(b) There exist y = (yn) ∈ X and z = (zn) ∈ X such that x = y + z,
lim

n→∞ρ (yn, ξ) = 0 and supp z ∈ I, where supp z = {n ∈ N : zn �= θ} and θ is the
zero element of X.

Proof. Let I- lim
n→∞xn = ξ. Then by Lemma 2 we conclude that there exists a

set M ∈ F (I) , M = {m1 < m2 < ... < mk < ...} such that lim
k→∞

ρ (xmk
, ξ) = 0.

Now define the sequence y = (yn) in X as

(2.1) y =
{

xn , n ∈ M
ξ , n ∈ N\M

It is clear that lim
n→∞ρ (yn, ξ) = 0. Further, put zn = xn − yn, n ∈ N. Since

{k ∈ N : xk �= yk} ⊂ N\M ∈ I we have {k ∈ N : zk �= 0} ∈ I. It follows that
supp z ∈ I and by (2.1) we get x = y + z.

Now suppose that there exist two sequences y = (yn) ∈ X and z = (zn) ∈
X such that x = y + z, lim

n→∞ρ (yn, ξ) = 0 and supp z ∈ I. We will prove
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that I- lim
n→∞xn = ξ. Define M = {mk} to be a subset of N such that M =

{m ∈ N : zm = 0} . Since supp z = {m ∈ N : zm �= 0} ∈ I, we have M ∈
F (I) , hence xn = yn if n ∈ M. Thus, we conclude that there exists a set
M = {m1 < m2 < ...} , M ∈ F (I) such that lim

k→∞
ρ (xmk

, ξ) = 0. Now, by
Lemma 2 it follows that I- lim

n→∞xn = ξ. Hence the proof is complete.

Corollary 1. I- lim
n→∞xn = ξ if and only if there exist (yn) ∈ X and (zn) ∈ X

such that xn = yn + zn, lim
n→∞ρ (yn, ξ) = 0 and I- lim

n→∞zn = 0.

Proof. Let zn = xn − yn, where (yn) is the sequence defined by (2.1). Then
lim

n→∞ρ (yn, ξ) = 0, and by Theorem 1 in [13] we conclude that I- lim
n→∞zn = 0.

Let xn = yn + zn, where lim
n→∞ρ (yn, ξ) = 0 and I-lim zn = 0. Since I-

lim
n→∞yn = ξ, then by Theorem 1 in [13] we get I- lim

n→∞xn = ξ.

Remark 2. From the proof of Theorem 1, it is clear that if (b) is satisfied
then the ideal I need not have the property (AP). In fact, let xn = yn + zn,
lim

n→∞ρ (yn, ξ) = 0 and supp z ∈ I where I is an admissible ideal which has not
the property (AP). Since A (ε) = {n ∈ N : ρ (zn, 0) ≥ ε} ⊂ {n ∈ N : zn �= 0} ∈ I
for each ε > 0, we have I- lim

n→∞zn = 0. Thus, we have I- lim
n→∞xn = ξ.

Remark 3. By Theorem 1 we can obtain the decomposition theorem for a
statistically convergent sequence considered in [1] and [20].

By Remark 2 and Theorem 1 we get the following theorem.

Theorem 2. Let C0 (I, X) be the set of all sequences which are I-convergent
to the zero element of the linear metric space (X, ρ) and let Supp (I, X) be the set
of all sequences z ∈ C0 (I, X) with supp z ∈ I. Then C0 (I, X) ⊃ Supp (I, X)
for each admissible ideal I.

3. I-CAUCHY SEQUENCES

Now we introduce the notions of I Cauchy sequence and I∗-Cauchy sequence.

Definition 7. Let (X, ρ) be a linear metric space and I ⊂ 2N be an admissible
ideal. Then a sequence {xn}n∈N

in X is called an I-Cauchy sequence in X if for
every ε > 0 there exists N = N (ε) such that

A (ε) = {n ∈ N : ρ (xn, xN) ≥ ε} ∈ I.
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Definition 8. Let (X, ρ) be a linear metric space and I ⊂ 2N be an admissible
ideal. Then a sequence x = (xn) in X is called an I∗-Cauchy sequence if there
exists a set M = {m1 < m2 < ... < mk < ...} ⊂ N, M ∈ F (I) such that the
subsequence xM = (xmk

) is an ordinary Cauchy sequence in X, i.e.,

lim
k,p→∞

ρ
(
xmk

, xmp

)
= 0.

Theorem 3. Let I be an admissible ideal. If x = (xn) is an I∗-Cauchy
sequence then it is I-Cauchy.

Proof. Let x = (xn) be an I∗-Cauchy sequence. Then by definition, there
exists a set M = {m1 < m2 < ... < mk < ...} ⊂ N, M ∈ F (I) such that
ρ

(
xmk

, xmp

)
< ε for every ε > 0 and for all k, p > k0 = k0 (ε).

Let N = N (ε) = mk0+1. Then for every ε > 0, we have

ρ (xmk
, xN) < ε, k > k0.

Now let H = N\M. It is clear that H ∈ I and

(3.1) A (ε) = {n ∈ N : ρ (xn, xN) ≥ ε} ⊂ H ∪ {m1 < m2 < ... < mk0}

Then the set on the right hand side of (3.1) belongs to I. Therefore, for every ε > 0
we can find an N = N (ε) such that A (ε) ∈ I, i.e. (xn) is I-Cauchy. Hence the
proof is complete.

Now we will prove that I-convergence implies the I-Cauchy condition.

Lemma 3. Let I be an arbitrary admissible ideal. Then I- lim
n→∞xn = ξ implies

that (xn) is an I-Cauchy sequence.

Proof. Let I- lim
n→∞xn = ξ. Then for each ε > 0, we have A (ε) = {n ∈ N :

ρ (xn, ξ) ≥ ε} ∈ I. Since I is an admissible ideal, there exists an n0 ∈ N such
that n0 /∈ A (ε) . Let B (ε) = {n ∈ N : ρ (xn, xn0) ≥ 2ε} . Taking into account the
inequality ρ (xn, ξ) + ρ (xn0 , ξ) ≥ ρ (xn, xn0) we observe that if n ∈ B (ε) then
ρ (xn, ξ) + ρ (xn0 , ξ) ≥ 2ε.

On the other hand, since n0 /∈ A (ε) we have ρ (xn0 , ξ) < ε. Here we conclude
that ρ (xn, ξ) > ε, hence n ∈ A (ε) . Observe that B (ε) ⊂ A (ε) ∈ I for each
ε > 0. This gives that B (ε) ∈ I, i.e. (xn) is an I-Cauchy sequence.

To prove that an I-Cauchy sequence coincides with an I∗-Cauchy sequence for
admissible ideals with property (AP), we need the following lemma.



574 Anar Nabiev, Serpil Pehlivan and Mehmet Gürdal

Lemma 4. Let {Pi}∞i=1 be a countable collection of subsets of N such that
Pi ∈ F (I) for each i, where F (I) is a filter associate with an admissible ideal
I with property (AP). Then there exists a set P ⊂ N such that P ∈ F (I) and the
set P\Pi is finite for all i.

Proof. Let A1 = N\P1, A2 = (N\P2) \A1, A3 = (N\P3) \ (A1 ∪ A2) , and
Am = (N\Pm) \ (A1 ∪ A2 ∪ ... ∪ Am−1) , m = 2, 3, .... It is easy to see that
Ai ∈ I for each i and Ai ∩ Aj = ∅, when i �= j. Then by (AP) property of I we
conclude that there exists a countable family of sets {B1, B2, ...} such that Aj∆Bj

is a finite set for j ∈ N and B =
∞⋃

j=1
Bj ∈ I. Put P = N\B. It is clear that

P ∈ F (I) .

Now prove that the set P\Pi is finite for each i. Assume that there exists
a j0 ∈ N such that P\Pj0 has infinitely many elements. Since each Aj∆Bj (
j = 1, 2, ..., j0) is a finite set, there exists n0 ∈ N such that

(3.2)
j0⋃

j=1

Bj ∩ {n ∈ N : n > n0} =
j0⋃

j=1

Aj ∩ {n ∈ N : n > n0}

If n > n0 and n /∈ B, then n /∈
j0⋃

j=1
Bj and, by (3.2) n /∈

j0⋃
j=1

Aj . Since Aj0 =

(N\Pj0) \
j0−1⋃
j=1

Aj and n /∈ Aj0 , n /∈
j0−1⋃
j=1

Aj we have n ∈ Pj0 for n > n0.

Therefore, for all n > n0 we get n ∈ P and n ∈ Pj0 . This shows that the set
P\Pj0 has a finite number of elements. This contradicts to our assumption that the
set P\Pj0 is an infinite set. Hence the proof is complete.

Theorem 4. If I is an admissible ideal with property (AP) then the concepts
I-Cauchy sequence and I∗-Cauchy sequence coincide.

Proof. If a sequence is I∗-Cauchy, then it is I-Cauchy by Theorem 3 where
I need not have the (AP) property. Now it is sufficient to prove that x = (xn) in
X is a I∗-Cauchy sequence under assumption that (xn) is an I-Cauchy sequence.
Let x = (xn) in X be an I-Cauchy sequence. Then by definition, there exists an
N = N (ε) such that

A (ε) = {n ∈ N : ρ (xn, xN) ≥ ε} ∈ I for every ε > 0.

Let Pi =
{
n ∈ N : ρ (xn, xmi) < 1

i

}
, i = 1, 2, ... where mi = N

(
1
i

)
. It is clear

that Pi ∈ F (I) for i = 1, 2, ... . Since I has the (AP) property, then by Lemma 4



On I-Cauchy Sequences 575

there exists a set P ⊂ N such that P ∈ F (I) , and P\Pi is finite for all i. Now
we show that

lim
n,m→∞
m,n∈P

ρ (xn, xm) = 0.

To prove this, let ε > 0 and j ∈ N such that j > 2
ε . If m, n ∈ P then P\Pj is a finite

set, so there exists k = k (j) such that m ∈ Pj and n ∈ Pj for all m, n > k (j) .
Therefore, ρ

(
xn, xmj

)
< 1

j and ρ
(
xm, xmj

)
< 1

j for all m, n > k (j) . Hence it
follows that

ρ (xn, xm) < ρ
(
xn, xmj

)
+ ρ

(
xm, xmj

)
< ε for m, n > k (j) .

Thus, for any ε > 0 there exists k = k (ε) such that for n, m > k (ε) and n, m ∈
P ∈ F (I)

ρ (xn, xm) < ε.

This shows that the sequence (xn) in X is an I∗-Cauchy sequence.

Note that all these results imply the similar theorems for statistically Cauchy
sequences which are investigated in [7] and [19].
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