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ON Z-CAUCHY SEQUENCES

Anar Nabiev, Serpil Pehlivan and Mehmet Gurdal

Abstract. The concept of Z-convergence is a generalization of statistical
convergence and it is dependent on the notion of the ideal Z of subsets of the
set N of positive integers. In this paper we prove a decomposition theorem for
Z-convergent sequences and we introduce the notions of Z Cauchy sequence
and Z*-Cauchy sequence, and then study their certain properties.

1. INTRODUCTION AND BACKGROUND

P. Kostyrko et al. [12] introduced the concept of Z-convergence of sequences
in a metric space and studied some properties of this convergence. Note that Z-
convergence is an interesting generalization of statistical convergence.

The concept of statistical convergence was introduced by Steinhaus [21] in 1951
(see also Fast [5]) and has been discussed and developed by many authors including
[2, 4, 7-9, 15-18, 20].

Let N denote the set of all positive integers and (X, p) be a linear metric space.
Recall that a sequence (z,,),,. Of elements of X is said to be statistically convergent
tox € X if theset A(e) = {n € N: p(x,,z) > e} has natural density zero for
each ¢ > 0.

In general, statistically convergent sequences satisfy many of the properties of
ordinary convergent sequences in metric spaces. For instance, a statistically conver-
gent sequence is statistically Cauchy, ([7, 19]) in an arbitrary metric space. In this
paper we investigate some properties of Z-convergent sequences in a linear metric
space. In section 2 we prove the decomposition theorem of Z-convergent sequences
in a linear metric space and give some results regarding this theorem. In section 3
we introduce the notions of Z-Cauchy sequence and Z*-Cauchy sequence, and study
their certain properties.
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Now we give some definitions and notations.

Definition 1. [14] Let Y # (. A family T c 2Y of subsets of Y is said to be
an ideal in Y provided that the following conditions hold:

@0ez

(b) A, BeZimply AUBeZ

(c) AeZ, BC Aimply BeT.

Definition 2. [11] Let Y # (. A non-empty family F c 2 is said to be a
filter on Y if the following are satisfied:

@0¢F

(b) A,Be Fimply AnBe F

c)Ae F,ACBCY imply Be F.

Lemma 1. [13] Let Z be a proper ideal in Y (i.e. Y ¢ 7), Y # (). Then the
family of sets
FZ)={McCY:3AeZ :M=Y\A}

is a filter in Y. It is called the filter associated with the ideal Z.

Definition 3. [13] A proper ideal Z is said to be admissible if {z} € Z for
each z € Y.

Definition 4. [12, 13] Let Z c 2 be a proper ideal in N and (X, p) be a
metric space. The sequence = = (x,,) of elements of X is said to be Z-convergent
to £ € X if foreache > 0theset A(e) ={n e N:p(x,,§) > e} belongs to Z.

If x = (z,) is Z-convergent to & then we write Z- lim z,, = &. In this case the

n—oo

element ¢ € X is called Z-limit of the sequence = = (z,) € X.

There are many examples of ideals Z 2V in [12, 13], and basic properties
of Z-convergence have been studied in these works. Note that the u-statistical
convergence of [1] is in a sense equivalent to Z-convergence (see [13]).

Definition 5. [12] An admissible ideal Z c 2" is said to have the property (AP)
if for any sequence {A;, Ao, ...} of mutually disjoint sets of Z, there is a sequence
{By, B, ...} of sets such that each symmetric difference A;AB; (i =1,2,...) is
finiteand |J B; € 7.

i=1
Definition 5 is similar to the condition (APO) used in [6].

In [12], the concept of Z*-convergence which is closely related to the Z-
convergence has been introduced.
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Definition 6. [12] A sequence x = {z,}, . Of elements of X is said to be
Z*-convergent to & € X if and only if there exists a set M € F(2),
M ={mi <mg < .. <mg < ..} CNsuch that klim p (zm,, &) =0.

—00

In paper [12] it is proved that Z and Z *-convergence are equivalent for admissible
ideals with property (AP).

Lemma 2. ([12]) Let Z 2" be an admissible ideal with the property (AP) and
(X, p) be an arbitrary metric space. Then Z- lim z,, = £ if and only if there exists

—00
aset Pe F(Z), P={p1 <p2<..<pg<..}suchthat klim p (zp,,€) = 0.
—00

Remark 1. LetZ = Z; and X = R with the usual metric, where 7, =
{ACN:d(A) =0}, and d(A) is the natural density of the set A C N. Then
Lemma 2 is equivalent to the relation between statistical convergence and ”almost
all” convergence of a real number sequence (z,) considered in [7].

2. THE DECOMPOSITION THEOREM
In this section we prove a decomposition theorem for Z -convergent sequences.

Theorem 1. Let (X, p) be a linear metric space, x = (z,) € X and Z C
2N be an admissible ideal with property (AP). Then the following conditions are
equivalent:

(a) I—nli_)rgloxn =¢

(b) There exist y = (y,) € X and z = (z,) € X such that x = y + z,
lim p (yn,&) = 0 and supp z € Z, where supp z = {n € N: z,, # 0} and 6 is the
7ero element of X.

Proof. Let Z- lim z,, = £. Then by Lemma 2 we conclude that there exists a
n—oo
set M € F(Z), M ={m; <mg<...<my <...} such that klim p (zm,, &) =0.
—00
Now define the sequence y = (y,,) in X as

Ty, ,MEM
(2.1) y:{g , neN\M

It is clear that lim p (y,,&) = 0. Further, put z, = x, — y,, n € N. Since
n—oo
{keN:zp#yr} € N\M € 7 we have {k € N: 2z, #0} € Z. It follows that
supp z € Z and by (2.1) we get x = y + z.
Now suppose that there exist two sequences y = (y,) € X and z = (z,) €
X such that z = y + 2z, lim p(y,,&) = 0 and supp z € Z. We will prove
n—oo
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that Z- lim x,, = £. Define M = {my} to be a subset of N such that M =

n—oo
{meN:z,=0}. Since supp = = {meN:z, #0} € Z, we have M €
F(Z), hence x,, = y, if n € M. Thus, we conclude that there exists a set
M = {mi<ms<..}, M € F(Z) such that k]imp(xmk,f) = 0. Now, by
—00

Lemma 2 it follows that Z- lim z,, = £. Hence the proof is complete. |

n—oo

Corollary 1. Z- lim z,, = £ if and only if there exist (y,,) € X and (z,,) € X
n—oo
such that z,, = y,, + 2z, lim p (y,, &) =0 and Z- lim z, = 0.
n—oo n—oo

Proof. Let z,, = x, — y,, Where (y,,) is the sequence defined by (2.1). Then
lim p (yn, &) = 0, and by Theorem 1 in [13] we conclude that Z- lim z, = 0.
n—oo

n—oo

Let z, = y, + 2, Where lim p(y,,§) = 0 and Z-limz, = 0. Since Z-
n—oo
lim y,, = &, then by Theorem 1 in [13] we get Z- lim z,, = &. ]
n—oo n—oo

Remark 2. From the proof of Theorem 1, it is clear that if (b) is satisfied
then the ideal Z need not have the property (AP). In fact, let x, = vy, + zn,
lim p (yn,&) = 0 and supp z € Z where 7 is an admissible ideal which has not
n—oo
the property (AP). Since A(e) ={n eN:p(2,,0) >} C{neN:z, #0}eZ
for each ¢ > 0, we have Z- lim z, = 0. Thus, we have Z- lim z,, = £.

n—oo n—oo

Remark 3. By Theorem 1 we can obtain the decomposition theorem for a

statistically convergent sequence considered in [1] and [20].

By Remark 2 and Theorem 1 we get the following theorem.

Theorem 2. Let Cp (Z, X) be the set of all sequences which are Z-convergent
to the zero element of the linear metric space (X, p) and let Supp (Z, X) be the set
of all sequences z € Cy (Z, X) with supp z € Z. Then Cy (Z, X) D Supp (Z, X)
for each admissible ideal 7.

3. 7-CAUCHY SEQUENCES
Now we introduce the notions of Z Cauchy sequence and Z*-Cauchy sequence.
Definition 7. Let (X, p) be a linear metric space and Z 2" be an admissible
ideal. Then a sequence {x,}, in X is called an Z-Cauchy sequence in X if for

every £ > 0 there exists N = N (e) such that

A()={neN:p(zp,zn)>c} €.
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Definition 8. Let (X, p) be a linear metric space and Z C 2N be an admissible
ideal. Then a sequence = = (z,) in X is called an Z*-Cauchy sequence if there
exists a set M = {m; <mg <..<mp<..} CN, M € F(Z) such that the
subsequence z s = (x,, ) is an ordinary Cauchy sequence in X, i.e.,

GJm p (@, 2m,) = 0.

Theorem 3. Let Z be an admissible ideal. If x = (z,) is an Z*-Cauchy
sequence then it is Z-Cauchy.

Proof. Let x = (x,) be an Z*-Cauchy sequence. Then by definition, there
exists a set M = {m; <mgo<..<mp<..} C N, M € F(Z) such that
P (Tmy, Tm,) < € for every e > 0 and for all k,p > ko = ko (¢).

Let N = N (¢) = my,+1. Then for every ¢ > 0, we have

p (@m,,zN) <€, k > ko.
Now let H = N\ M. It is clear that H € 7 and
(3.1) A)={neN:p(zp,zn)>e} CHU{m <mg < ..<myg}

Then the set on the right hand side of (3.1) belongs to Z. Therefore, for every e > 0
we can find an N = N () such that A (¢) € Z, i.e. (z,,) is Z-Cauchy. Hence the
proof is complete. n

Now we will prove that Z-convergence implies the Z-Cauchy condition.

Lemma 3. Let Z be an arbitrary admissible ideal. Then Z- lim x,, = £ implies
n—oo
that (x,,) is an Z-Cauchy sequence.

Proof. Let Z- lim x,, = £. Then for each ¢ > 0, we have A(¢) = {n e N:

n—oo

p(xn, &) > e} € Z. Since Z is an admissible ideal, there exists an ny € N such
that no ¢ A(e). Let B (¢) = {n € N: p(zp,xn,) > 2¢}. Taking into account the
inequality p (zn,&) + p (@ny,&) > p(@n,xn,) We observe that if n € B (e) then
p(@n, &) + p (Tn,, &) > 2e.

On the other hand, since ny ¢ A (¢) we have p (z,,, &) < €. Here we conclude
that p (z,,,&) > €, hence n € A(e). Observe that B (e) C A(e) € T for each
e > 0. This gives that B (¢) € Z, i.e. (z,) is an Z-Cauchy sequence. ]

To prove that an Z-Cauchy sequence coincides with an Z*-Cauchy sequence for
admissible ideals with property (AP), we need the following lemma.
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Lemma 4. Let {P;};°, be a countable collection of subsets of N such that
P, € F(I) for each i, where F (Z) is a filter associate with an admissible ideal
T with property (AP). Then there exists a set P C N such that P € F (Z) and the
set P\ P; is finite for all i.

Proof. Let A; = N\Pl, Ay = (N\PQ) \Al, Az = (N\Pg)\(Al UAQ), and
Ap = N\Pp)\ (A UAU...UA,,_1), m = 2,3,.... Itis easy to see that
A; € T for each i and A; N A; = 0, when ¢ # j. Then by (AP) property of Z we
conclude that there exists a countable family of sets { By, Bo, ...} such that A;AB;

9]
is a finite set for j € Nand B = |J B; € Z. Put P = N\B. It is clear that

J=1
PeF(I).
Now prove that the set P\P; is finite for each i. Assume that there exists
a jo € N such that P\P;, has infinitely many elements. Since each A;AB; (
j=1,2,...,jo) is a finite set, there exists ny € N such that

Jo Jo
(3.2) UBjﬂ{nEN:n>no}:UAjﬂ{neN:n>no}
=1 j=1

Jo Jo
If n >mngand n ¢ B, then n ¢ U B; and, by (3.2) n ¢ U A;. Since A, =

—1
(N\P; )\UAandnééAjO,n¢UAwehavene , for n > ng.

Therefore, for all n > ng we get n € P and n € Pj,. This shows that the set
P\ P}, has a finite number of elements. This contradicts to our assumption that the
set P\PjO is an infinite set. Hence the proof is complete. ]

Theorem 4. If Z is an admissible ideal with property (AP) then the concepts
Z-Cauchy sequence and Z*-Cauchy sequence coincide.

Proof. If a sequence is Z*-Cauchy, then it is Z-Cauchy by Theorem 3 where
7 need not have the (AP) property. Now it is sufficient to prove that x = (z,,) in
X is a Z*-Cauchy sequence under assumption that (z,,) is an Z-Cauchy sequence.
Let z = (x,,) in X be an Z-Cauchy sequence. Then by definition, there exists an
N = N (¢) such that

A() ={neN:p(zp,zn)>e} €T forevery e > 0.

Let P, = {n € N:p(zp, zm,) < 1},i=1,2,.. where m; = N (1) . It is clear
that P, € F (Z) for i = 1,2, .... Since Z has the (AP) property, then by Lemma 4
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there exists a set P C N such that P € F (Z), and P\P; is finite for all . Now
we show that
lim p(zp,zm) =0.
7,TN—00
m,neP

To prove this, lete > 0 and j € N such that j > % If m,n € P then P\ P; is a finite
set, so there exists k = k (j) such that m € P; and n € P; for all m,n > k (j).
Therefore, p (2, 2m,) < % and p (T, T, ) < % for all m,n > k(j). Hence it
follows that

P (xnv Ty) < p (xnv wm]-) +p (xmv wm]-)

<e for m,n>k(j).

Thus, for any ¢ > 0 there exists k = k (&) such that for n,m > k() and n,m €
PeF(I)
p (T, ) < €.

This shows that the sequence (z,,) in X is an Z*-Cauchy sequence. |
Note that all these results imply the similar theorems for statistically Cauchy
sequences which are investigated in [7] and [19].
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