TAIWANESE JOURNAL OF MATHEMATICS Vol. 10, No. 4, pp. 829-836, June 2006 This paper is available online at http://www.math.nthu.edu.tw/tjm/

PERIODIC ASPECTS OF SEQUENCES GENERATED BY TWO SPECIAL MAPPINGS

Wun-Seng Chou* and Peter J.-S. Shiue**

Abstract. Let $\beta = \frac{q}{p}$ be a fixed rational number, where p and q are positive integers with $2 \le p < q$ and gcd(p,q) = 1. Consider two real-valued functions $\sigma(x) = \beta^x \mod 1$ and $\tau(x) = \beta x \mod 1$. For each positive integer n, let $s(n) = \sigma(n) = \frac{s(n)_1}{p} + \dots + \frac{s(n)_n}{p^n}$ and $t(n) = \tau^n(1) = \frac{t(n)_1}{p} + \dots + \frac{t(n)_n}{p^n}$ be the p-ary representation. In this paper, we study the periods of both sequences $S_k = \{s(n+k)_n\}_{n=1}^{\infty}$ and $T_k = \{t(n+k)_n\}_{n=1}^{\infty}$ for any non-negative integer k.

1. INTRODUCTION

Given a real number $\beta > 1$, the function $\tau(x) = \beta x \mod 1$ (known as *beta* transformation whenever the domain is restricted to the unit interval [0, 1), Rényi [5], 1957) has been studied intensively. In this paper, we consider $\beta = \frac{q}{p}$ a rational number, where p and q are positive integers with $2 \le p < q$ and gcd(p,q) = 1. We consider the iterates τ^n defined by $\tau^1 = \tau$ and $\tau^n = \tau(\tau^{n-1})$ for $n \ge 2$. The orbit of 1 is the infinite sequence $\{\tau^n(1)\}_{n=1}^{\infty}$ (Devaney [1], 1989). Each term of this sequence can be written as p-ary representation

(1.1)
$$t(n) = \tau^n(1) = \frac{t(n)_1}{p} + \dots + \frac{t(n)_n}{p^n}$$

Let T_k be the sequence $T_k = \{t(n+k)_n\}_{n=1}^{\infty}$ for any non-negative integer k. We show that these sequences, T_k with $k \ge 0$, exhibit a certain periodic behavior.

Received August 5, 2004; revised November 25, 2004.

Communicated by Jing Yu.

2000 Mathematics Subject Classification: 11B99.

Key words and phrases: Congruence, Multiplicative order, *p*-ary representation, Period, Sequence. *This work is partially supported by the National Science Council under the grant number NSC91-2115-M-001-014.

^{**}Most of the work for this paper was done during a stay at the Institute of Mathematics, Academia Sinica, Taipei, Taiwan. The author thanks the Institute of Mathematics, Academia Sinica, Taipei, Taiwan for its support and for making the trip a pleasant stay.

Closely related to the sequence $\{t(n)\}_{n=1}^{\infty}$, of orbit is the sequence $\{s(n) = \sigma(n) = (\frac{q}{p})^n \mod 1\}_{n=1}^{\infty}$. The sequence $\{(\frac{3}{2})^n \mod 1\}_{n=1}^{\infty}$ is believed to be uniformly distributed modulo 1, but it is not known even to be dense in the closed interval [0, 1]. It is known that the sequence $\{(\frac{3}{2})^n \mod 1\}_{n=1}^{\infty}$ has infinitely many limit points in [0, 1] (Vijayaraghavan [7], 1940), but it is not yet known whether $\{(\frac{3}{2})^n \mod 1\}_{n=1}^{\infty}$ has infinitely many limit points in [0, 1] (Vijayaraghavan [7], 1940), but it is not yet known whether $\{(\frac{3}{2})^n \mod 1\}_{n=1}^{\infty}$ has infinitely many limit points in [0, 1/2) (see Flatto, Lagarias and Pollington [3], 1995). Mahler's famous $\frac{3}{2}$ -problem (Mahler [4], 1968), still unsolved, asks whether there exits a real number $\eta > 0$ such that the sequence $\{\eta(\frac{3}{2})^n \mod 1\}_{n=1}^{\infty}$, is contained in the interval $[0, \frac{1}{2})$. Tijdeman [6] (1972) came close to solving Mahler's problem by showing that for every $\beta > 2$ there exists $\eta > 0$ such that the sequence $\{\eta(\frac{3}{2})^n \mod 1\}_{n=1}^{\infty}$. For a recent reference to Mahler $\frac{3}{2}$ -problem see Drmota and Tichy [2], (1997).

We can also write each $s(n) = (\frac{q}{n})^n \mod 1$ in the *p*-ary representation as

(1.2)
$$s(n) = \frac{s(n)_1}{p} + \dots + \frac{s(n)_n}{p^n}$$

So, we can also consider the sequences $S_k = \{s(n+k)_n\}_{n=1}^{\infty}, k \ge 0$. These sequences will also exhibit a certain periodic behavior. We give the proofs of our results only for the case of the sequences $T_k, k \ge 0$. The proofs for the sequences $S_k, k \ge 0$, are quite similar.

2. MAIN RESULT

Let T_k be the sequence $T_k = \{t(n+k)_n\}_{n=1}^{\infty}$ for any integer $k \ge 0$ as in the last section. For each integer $n \ge 1$, define a function $a : \mathbf{N} \times (\mathbf{N} \cup \{0\}) \longrightarrow \mathbf{R}$ by $a(n,i) = (\frac{q}{p})^i t(n) \mod 1$, where \mathbf{N} is the set of all positive integers and \mathbf{R} is the set of all real numbers. So, a(n,0) = t(n). For each integer $i \ge 0$, we write the *p*-ary representation of a(n,i) as $a(n,i) = \frac{a(n,i)_1}{p} + \cdots + \frac{a(n,i)_{n+i}}{p^{n+i}}$, where $0 \le a(n,i)_1, \ldots, a(n,i)_{n+i} < p$. We have the following relation between a(n,i) and t(n+i) for all integers $n \ge 1$ and $i \ge 0$.

Lemma 2.1. For any positive integer n and for any non-negative integer i, $a(n,i)_j = t(n+i)_j$ for all $1+i \le j \le n+i$.

Proof. Fix $n \ge 1$. We prove this lemma by the induction on i. It is trivial that this lemma holds for i = 0 because a(n, 0) = t(n).

For any $i \ge 0$, write $(\frac{q}{p})^i t(n) = a_i + \frac{a(n,i)_1}{p} + \dots + \frac{a(n,i)_{n+i}}{p^{n+i}}$, where a_i is a non-negative integer, then

$$\left(\frac{q}{p}\right)^{i+1} t(n) = \left(a_i + \frac{a(n,i)_1}{p} + \dots + \frac{a(n,i)_i}{p^i}\right) \frac{q}{p}$$

830

+
$$\left(\frac{a(n,i)_{i+1}}{p^{i+1}} + \dots + \frac{a(n,i)_{n+i}}{p^{n+i}}\right) \frac{q}{p}.$$

Therefore, for $2 + i \leq j \leq n + i + 1$, the number $a(n, i + 1)_j$ is completely determined by the part $(\frac{a(n,i)_{i+1}}{p^{i+1}} + \dots + \frac{a(n,i)_{n+i}}{p^{n+i}})\frac{q}{p}$, which is equal to $(\frac{t(n+i)_{i+1}}{p^{i+1}} + \dots + \frac{t(n+i)_{n+i}}{p^{n+i}})\frac{q}{p})$ by the induction hypothesis. Since the number $t(n + i + 1)_j$ is also completely determined by $(\frac{t(n+i)_{i+1}}{p^{i+1}} + \dots + \frac{t(n+i)_{n+i}}{p^{n+i}})\frac{q}{p})$, we have $a(n, i + 1)_j = t(n + i + 1)_j$ for each $2 + i \leq j \leq n + i + 1$. This completes the proof.

We now define e_i to be the multiplicative order of q modulo p^{i+1} , $i \ge 0$.

Lemma 2.2. For any positive integer n, $t(n)_n \equiv q^n \mod p$. Therefore, the sequence $T_0 = \{t(n)_n\}_{n=1}^{\infty}$ is purely periodic with the period e_0 .

Proof. From the definition, $t(1)_1 \equiv q \mod p$. For any integer $n \geq 1$,

$$\frac{q}{p}t(n) = \left(\frac{t(n)_1}{p} + \dots + \frac{t(n)_n}{p^n}\right)\frac{q}{p}$$

and so

$$t(n+1)_{n+1} \equiv qt(n)_n \equiv q^{n+1} \bmod p$$

by the assumption of the induction. Hence, the sequence T_0 is purely periodic with the period e_0 .

The following theorem is our main result in this paper.

Theorem 2.3. For each non-negative integer k, the sequence T_k is purely periodic with the period m_k dividing e_k . Furthermore, for $k \ge 1$, let $d_k = \frac{e_k}{e_{k-1}}$ and write $p = p_{k,1}p_{k,2}$ where $gcd(d_k, p_{k,2}) = 1$ and a prime π divides d_k if and only if π divides $p_{k,1}$. Moreover, let μ_k be the largest factor of e_0 so that $q^{e_0/\mu_k} \equiv 1$ mod $p_{k,1}$ and $gcd(\mu_k, e_0/\mu_k) = 1 = gcd(\mu_k, d_k)$. Then either $\frac{e_k}{2\mu_k}$ divides m_k , whenever $k \ge 2$, $e_k \equiv \cdots \equiv e_1 \equiv 2 \equiv p \mod 4$, and $e_0 \equiv 1 \mod 2$, or $\frac{e_k}{\mu_k}$ divides m_k , otherwise.

Proof. Let $k \ge 1$. For any integer $n \ge 1$,

$$\begin{aligned} a(n+k,e_k) &= \frac{a(n+k,0)q^{e_k}}{p^{e_k}} \bmod 1 \\ &= \frac{a(n+k,0)(cp^{k+1}+1)}{p^{e_k}} \bmod 1 \end{aligned}$$

for some integer c because e_k is the multiplicative order of q modulo p^{k+1} . Hence, $t(n+e_k+k)_{n+e_k} = a(n+k, 0)_n = t(n+k)_n$ by Lemma 2.1. Since n is arbitrary, T_k is purely periodic with period m_k dividing e_k .

If $e_k = e_{k-1}$, then $d_k = 1$ and so, $p_{k,1} = 1$ and $\mu_k = e_0$. In this case, the last assertion of the theorem is true trivially.

From now on, let $e_k \neq e_{k-1}$. Since $q^{e_{k-1}} \equiv 1 \mod p^k$, we can write $q^{e_{k-1}} = h_{k+1}p^{k+1} + h_kp^k + 1$ for some non-negative integers h_{k+1} and h_k with $0 \leq h_k < p$. In fact, $1 \leq h_k < p$ because $e_k \neq e_{k-1}$. Notice that the number d_k is the smallest positive integer satisfying $h_k d_k \equiv 0 \mod p$ (i.e., $h_k = c_k p/d_k$ for some $1 \leq c_k < d_k$ with $gcd(c_k, d_k) = 1$) and so, $q^{ie_{k-1}} \equiv (h_kp^k + 1)^i \equiv ih_kp^k + 1 \mod p^{k+1}$ for all $0 \leq i < d_k$. For $n \geq 1$ and $d_k > i \geq 0$, $a(n+k, ie_{k-1}) = \frac{t(n+k)q^{ie_{k-1}}}{p^{ie_{k-1}}} \mod 1$ by the definition. From Lemma 2.1,

$$t(n + ie_{k-1} + k)_{n+ie_{k-1}} = a(n+k, ie_{k-1})_{n+ie_{k-1}}$$

$$\equiv a(n+k, 0)_{n+k}ih_k + a(n+k, 0)_n \mod p$$

$$\equiv t(n+k)_{n+k}ih_k + t(n+k)_n \mod p.$$

So, for any $n \ge 1$, numbers $t(n + ie_{k-1} + k)_{n+ie_{k-1}}$, $0 \le i < d_k$, are all distinct because $gcd(t(n+k)_{n+k}, p) = 1$.

We have seen that $t(n + e_{k-1} + k)_{n+e_{k-1}} \equiv a(n+k, 0)_n + a(n+k, 0)_{n+k}h_k$ mod p for arbitrary positive integer n. We also have $t(n+m_k+e_{k-1}+k)_{n+m_k+e_{k-1}} \equiv a(n+k, m_k)_{n+m_k} + a(n+k, m_k)_{n+m_k+k}h_k \mod p$. Since m_k is the period of T_k , we have $t(n + e_{k-1} + k)_{n+e_{k-1}} = t(n + m_k + e_{k-1} + k)_{n+m_k+e_{k-1}}$ and $a(n+k, 0)_n = t(n+k)_n = t(n+m_k+k)_{n+m_k} = a(n+k, m_k)_{n+m_k}$. These imply $a(n+k, 0)_{n+k}h_k \equiv a(n+k, m_k)_{n+m_k+k}h_k \mod p$. But from Lemmas 2.1 and 2.2, we have $a(n+k, 0)_{n+k} = t(n+k)_{n+k} \equiv q^{n+k} \mod p$ and $a(n+k, m_k)_{n+m_k+k} = t(n+m_k+k)_{n+m_k+k} \equiv q^{n+k+m_k} \mod p$. So, $h_k q^{n+k+m_k} \equiv h_k q^{n+k} \mod p$ and thus $h_k q^{m_k} \equiv h_k \mod p$. This implies that q^{m_k} is of the form $q^{m_k} = 1 + rd_k$ for some integer r > 0. So, if $\mu_{k,1}$ is the multiplicative order of q modulo $p_{k,1}$, then $\mu_{k,1}$ divides m_k .

Write $u_k = \frac{e_k}{m_k}$ because m_k divides e_k . Let $v_k = \gcd(u_k, d_k)$ and $w_k = \frac{d_k}{v_k}$. Then, $m_k | w_k e_{k-1}$ and so, $t(n+k)_n = t(n+k+w_k e_{k-1})_{n+w_k e_{k-1}}$. If $v_k > 1$, then $1 \le w_k < d_k$, and the last equality contradicts that $t(n+k+ie_{k-1})_{n+ie_{k-1}}$, $0 \le i < d_k$, are all distinct for arbitrary $n \ge 1$. Hence, $v_k = 1$ and so, $w_k = d_k$. We have shown that $\frac{e_k}{m_k}$ and d_k are relatively prime. Combining this with the fact that $\mu_{k,1}$ divides m_k from the last paragraph, we have that the multiplicative order of q modulo $p_{k,1}^{k+1}$ divides m_k .

Let u be a prime with $u|u_k$ and let ℓ be the positive integer satisfying $u^{\ell}||e_k$. From $gcd(d_k, u_k) = 1$ and $u_k|e_k$, we have $u^{\ell}||e_{k-1}$. Let i_0 be the smallest integer satisfying $u^{\ell}||e_{i_0}$, then $i_0 \leq k-1$. If $i_0 = 0$ for every prime factor u of u_k , then $u_k|e_0$ and thus $u_k|\mu_k$ from the definition of μ_k . Finally, consider $i_0 \neq 0$ for some u. Then u divides p and moreover, u = 2. In this case, $\ell = 1 = i_0$ and so $e_0 \equiv 1 \mod 2$. Trivially, we also have $e_k \equiv \cdots \equiv e_1 \equiv 2 \equiv p \mod 4$ and $u_k|2\mu_k$. This completes the proof.

The following is the most important case for $m_k = e_k$.

Corollary 2.4. If every prime factor of p divides $\frac{e_k}{e_{k-1}}$ (in particular, $\frac{e_k}{e_{k-1}} = p$), then the period m_k of T_k equals e_k .

Proof. Since every prime factor of p divides $d_k = \frac{e_k}{e_{k-1}}$, we have $\mu_k = 1$ from the definition of μ_k in the last theorem. This implies $m_k = \frac{e_k}{\mu_k} = e_k$.

In the Theorem 2.3, the period m_k of T_k satisfies either $\frac{e_k}{\mu_k}|m_k$ or $\frac{e_k}{2\mu_k}|m_k$, but m_k may not equal it (respectively). For instance, consider $\frac{q_1}{p_1} = \frac{55}{6}$ and $\frac{q_2}{p_2} = \frac{271}{6}$. Then both of them have the same orders $e_0 = 1$, $e_1 = 2 = e_2$, and $e_3 = 6$ and thus both have $\mu_3 = 1$. From Theorem 2.3, $\frac{e_3}{2\mu_3} = 3$ divides both m_3 , but they are not equal. Indeed, periods of the first four sequences generated by $\frac{q_1}{p_1}$ are $m_0 = 1$, $m_1 = 2 = m_2$, and $m_3 = 3 = \frac{e_3}{2\mu_3}$, while periods of the first four sequences generated by $\frac{q_2}{p_2}$ are $m_0 = 1$, $m_1 = 2 = m_2$, and $m_3 = 6 = 2\frac{e_3}{2\mu_3}$.

We now consider the sequences S_k generated by the function $\sigma(n) = (\frac{q}{p})^n \mod 1$ as described before. It is easy to see that Lemma 2.2 is also true for S_0 , i.e., the period of S_0 is e_0 . In general, we have the following theorem for S_k which is an analogous result of Theorem 2.3 for T_k . The proof of the following theorem is omitted because it is similar to the proof of Theorem 2.3 with a suitable modification.

Theorem 2.5. For each non-negative integer k, the sequence S_k is purely periodic with the period m_k dividing e_k . The period m_0 of the sequence S_0 is e_0 . For $k \ge 1$, let $d_k = \frac{e_k}{e_{k-1}}$ and write $p = p_{k,1}p_{k,2}$ where $gcd(d_k, p_{k,2}) = 1$ and a prime π divides d_k if and only if π divides $p_{k,1}$. Moreover, let μ_k be the largest factor of e_0 so that $q^{e_0/\mu_k} \equiv 1 \mod p_{k,1}$ and $gcd(\mu_k, e_0/\mu_k) = 1 = gcd(\mu_k, d_k)$. Then either $\frac{e_k}{2\mu_k}$ divides m_k , if $k \ge 2$, $e_k \equiv \cdots \equiv e_1 \equiv 2 \equiv p \mod 4$, and $e_0 \equiv 1 \mod 2$, or $\frac{e_k}{\mu_k}$ divides m_k , otherwise.

Notice that Corollary 2.4 does also hold for S_k from the last theorem.

3. Special Cases

We still consider first the sequence T_k for any integer k > 0. It is trivial that if $e_k = 1$, then the period length of T_k is 1. But if $e_k = e_{k-1} \ge 2$, the period length

of T_k may not be equal to e_k . For instance, if $\frac{q}{p} = \frac{809}{6}$, then $e_3 = e_2 = e_1 = e_0 = 2$ and the period length of T_3 is $1 \neq e_3$. Note that $e_k = e_{k-1}$ cannot occur anywhere. The following proposition gives a constraint for k with $e_k = e_{k-1}$.

Proposition 3.1. Let p and q be positive integers with $p \ge 2$ and gcd(p, q) = 1. For each integer $n \ge 0$, let e_n be the multiplicative order of q modulo p^{n+1} . Let $k \ge 0$ be a fixed integer. If $e_{k+2} = e_{k+1} > e_k$, then k = 0, $p \equiv 2 \mod 4$, and $e_2 = e_1 = 2e_0$ with e_0 odd.

Proof. Since $e_{k+1} > e_k$ and $q^{e_k} \equiv 1 \mod p^{k+1}$, we can write $q^{e_k} = h_{k+1}p^{k+1} + 1$ for some non-negative integer $h_{k+1} \not\equiv 0 \mod p$. Since $e_k | e_{k+1}$, we write $d_{k+1} = \frac{e_{k+1}}{e_k}$, then d_{k+1} is the smallest positive integer satisfying $h_{k+1}d_{k+1} \equiv 0 \mod p$ and $d_{k+1}|p$. So, $1 < d_{k+1} \le p$ and $h_{k+1}d_{k+1} \not\equiv 0 \mod p^2$. Now,

$$q^{e_{k+1}} = q^{e_k d_{k+1}} = (h_{k+1}p^{k+1} + 1)^{d_{k+1}}$$

$$\equiv 1 + d_{k+1}h_{k+1}p^{k+1} + \frac{d_{k+1}(d_{k+1} - 1)}{2}h_{k+1}^2p^{2k+2} \mod p^{k+3}.$$

Since $e_{k+2} = e_{k+1}$, $q^{e_{k+1}} \equiv 1 \mod p^{k+3}$, this implies k = 0 because $h_{k+1}d_{k+1} \neq 0 \mod p^2$. So, $d_1h_1 + \frac{d_1(d_1-1)h_1^2p}{2} \equiv 0 \mod p^2$. Since $h_1d_1 \equiv 0 \mod p$ and $h_1d_1 \neq 0 \mod p^2$, we have $\frac{d_1(d_1-1)h_1^2}{2} \neq 0 \mod p$, and thus $p \equiv 0 \equiv d_1 \mod 2$ and $h_1 \equiv 1 \mod 2$. From $h_1d_1 \equiv 0 \mod p$ again, we have $\frac{d_1(d_1-1)h_1^2}{2} \equiv \frac{p}{2} \mod p$ and so, $d_1h_1 \equiv \frac{p}{2}p \mod p^2$. This implies $d_1 \equiv 2 \mod 4$. If there were an odd prime u dividing d_1 , then u would be an odd prime factor of p and thus would divide $\frac{e_2}{e_1}$. So, $d_1 = 2$ and thus $p \equiv 2 \mod 4$ and $h_1 \equiv \frac{p^2}{4} \mod p^2$. Hence, $e_2 = e_1 = 2e_0$.

If there exists a positive integer k satisfying $e_k = e_{k-1}$, then we have either $e_k = e_{k-1} = \cdots = e_1 = e_0$ or $e_k = e_{k-1} = \cdots = e_1 = 2e_0$ with e_0 odd and $p \equiv 2 \mod 4$ from Proposition 3.1. Unfortunately, we are unable to determine the period of sequences T_i for each $1 \le i \le k$ with these conditions. However, we can determine some special cases. Indeed, we are going to study periods of sequences T_k (and S_k) whenever either $e_k = e_{k-1} = \cdots = e_1 = e_0 = 2$ or $e_k = e_{k-1} = \cdots = e_1 = 2$ and $e_0 = 1$.

Now, let k_0 be the largest positive integer of k such that $e_k = e_1 = 2$, then for any integer $k > k_0$, we have $e_k > e_{k-1}$. For determining the period of T_k with $1 \le k \le k_0$, we need the following lemma, which is stated in a general situation.

Lemma 3.2. For any positive integer k, $t(ie_k + k)_{ie_k} = 0$ for all positive integers *i*.

Proof. From $t(k+1) = \frac{q}{p}t(k) \mod 1 = \left(\frac{t(k)_1}{p} + \dots + \frac{t(k)_k}{p^k}\right)\frac{q}{p} \mod 1$, we have $t(k+1)_1p^k + \dots + t(k+1)_kp + t(k+1)_{k+1} \equiv (t(k)_1p^{k-1} + \dots + t(k)_k)q \mod p^{k+1}$. Since $a(k+1, ie_k - 1) = t(k+1)(\frac{q}{p})^{ie_k - 1} \mod 1 = \frac{t(k+1)q^{ie_k - 1}}{p^{ie_k - 1}} \mod 1$, we have, from Lemma 2.1, that

$$t(ie_{k} + k)_{ie_{k}}p^{k} + \dots + t(ie_{k} + k)_{ie_{k} + k}$$

= $a(k+1, ie_{k} - 1)p^{k} + \dots + a(k+1, ie_{k} - 1)_{ie_{k} + k}$
 $\equiv (t(k+1)_{1}p^{k} + \dots + t(k+1)_{k}p + t(k+1)_{k+1})q^{ie_{k} - 1} \mod p^{k+1}$
 $\equiv (t(k)_{1}p^{k-1} + \dots + t(k)_{k})q^{ie_{k}} \mod p^{k+1}.$

Hence, we have $t(ie_k + k)_{ie_k} = 0$ because $q^{ie_k} \equiv 1 \mod p^{k+1}$.

The following proposition is easy to see from Lemma 3.2 and its proof is omitted.

Proposition 3.3. Let k_0 be the largest positive integer such that for all integers $1 \le k \le k_0$, $e_k = e_1 = 2$ with either $e_0 = 2$ or $e_0 = 1$ and $p \equiv 2 \mod 4$, then for each $1 \le k \le k_0$, the period m_k of the sequence T_k is either 1 or 2 and m_k is 1 if and only if $t(1 + k)_1 = 0$.

In the Proposition 3.3, the case $e_1 = 2$ can be determined explicitly, namely the period m_1 of T_1 is 2 whenever $e_1 = 2$. Indeed, write $q = q_2p^2 + q_1p + q_0$, where $0 \le q_1, q_0 < p$ and $q_2 \ge 0$. If $e_0 = 1$ and $p \equiv 2 \mod 4$, then $q_0 = 1$ and $q_1 = p/2$. In this case, $t(2)_1 = p/2$ and so, $m_1 = 2$. If $e_0 = 2$, then $q^2 \equiv 2q_1q_0p + q_0^2 \mod p^2$. Notice that q_0^2 can be written as $q_0^2 = a_1p + 1$ with $1 \le a_1 < p$. From $q^2 \equiv 1 \mod p^2$, we have $p|(2q_1q_0 + a_1)$ and $p \nmid (q_1q_0 + a_1)$. So, in the case $e_1 = 2 = e_0, 0 \ne t(2)_1 \equiv q_1 + a_1 \mod p$ and thus m_1 equals 2.

Notice also that it can occur that the period m_k of T_k equals 1 when $k \ge 2$ and $e_k = e_{k-1} = 2$. For instance, let $\frac{q}{p} = \frac{487}{6}$. It is easy to check that $e_0 = 1$, $e_1 = e_2 = e_3 = 2$ and $e_4 = 4$. And T_0 has the period 1, both T_1 and T_2 have the same period 2, and T_3 has the period 1. Indeed, $t(0) = \frac{1}{6}$, $t(1) = \frac{3}{6} + \frac{1}{6^2}$, $t(2) = \frac{5}{6} + \frac{0}{6^2} + \frac{1}{6^3}$, and $t(3) = \frac{0}{6} + \frac{0}{6^2} + \frac{3}{6^3} + \frac{1}{6^4}$.

We now study the periods of the sequences S_k in these special cases. We state them in the following proposition without proof because its proof follows easily from the fact that $s(ie_k)_{ie_k-k} = 0$ for all positive integers k and i with $ie_k > k$.

Proposition 3.4. Let k_0 be the largest positive integer so that for all $1 \le k \le k_0$, $e_k = e_1 = 2$ with either $e_0 = 2$ or $e_0 = 1$ and $p \equiv 2 \mod 4$. Write $q = q_0 + q_1 p + \cdots + q_{k_0} p^{k_0} + q_{k_0+1} p^{k_0+1}$, where $0 \le q_{k_0+1}$ and $0 \le q_k < p$ for each $0 \le k \le k_0$, then for each $1 \le k \le k_0$, the period of the sequence S_k is either 1 or 2 and the period of S_k is 1 if and only if $q_k = 0$.

It should be noted that the period of S_k can be 1 when $e_k = e_{k-1} = 2$. For example, let $\frac{q}{p} = \frac{33615}{14}$, then $e_0 = 1$, $e_1 = e_2 = e_3 = e_4 = 2$, and $e_5 = 14$. The period of S_0 is 1, the periods of S_1 , S_2 , and S_3 are all equal to 2, and the period of S_4 is 1. Indeed, $33615 = 1 + 7 \times (14) + 3 \times (14)^2 + 12 \times (14)^3$.

ACKNOWLEDGMENT

The authors wish to express their sincere thanks to the referee for invaluable comments and corrections that led to an improved/revised version of the original manuscript.

REFERENCES

- R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd Ed., Addison-Wesley, Redwood City, California, 1989.
- M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Mathematics, Vol. 1651, Springer-Verlag, Berlin-Heidelberg-New York, 1997.
- 3. L. Flatto, J. C. Lagarias and A. D. Pollington, On the range of fractional parts $\{\xi(p/q)^n\}$, Acta Arith., **70** (1995), 125-147.
- 4. K. Mahler, An unsolved problem on power of 3/2, *J. Austral. Math. Soc.*, **8** (1968), 313-321.
- 5. A. Rényi, Representations for real numbers and their ergodic properties, *Acta Math. Acad. Sci. Hungar.*, **8** (1957), 472-493.
- 6. R. Tijdeman, Note on Mahler's 3/2-problem, K. Norske Vid. Selsk. Skr., 16 (1972), 1-4.
- T. Vijayaraghavan, On the fractional parts of the powers of a number, I, J. London Math. Soc., 15 (1940), 159-160.

Wun-Seng Chou Institute of Mathematics, Academia Sinica, Nankang, Taipei 11529, Taiwan, R.O.C. E-mail: macws@ccvax.sinica.edu.tw

Peter J.-S. Shiue Department of Mathematical Sciences, University of Nevada, Las Vegas, NV 89154-4020, U.S.A. E-mail: shiue@unlv.edu