PERIODIC ASPECTS OF SEQUENCES GENERATED BY TWO SPECIAL MAPPINGS

Wun-Seng Chou* and Peter J.-S. Shiue**

Abstract

Let $\beta=\frac{q}{p}$ be a fixed rational number, where p and q are positive integers with $2 \leq p<q$ and $\operatorname{gcd}(p, q)=1$. Consider two real-valued functions $\sigma(x)=\beta^{x} \bmod 1$ and $\tau(x)=\beta x \bmod 1$. For each positive integer n, let $s(n)=\sigma(n)=\frac{s(n)_{1}}{p}+\cdots+\frac{s(n)_{n}}{p^{n}}$ and $t(n)=\tau^{n}(1)=\frac{t(n)_{1}}{p}+\cdots+\frac{t(n)_{n}}{p^{n}}$ be the p-ary representation. In this paper, we study the periods of both sequences $S_{k}=\left\{s(n+k)_{n}\right\}_{n=1}^{\infty}$ and $T_{k}=\left\{t(n+k)_{n}\right\}_{n=1}^{\infty}$ for any non-negative integer k.

1. Introduction

Given a real number $\beta>1$, the function $\tau(x)=\beta x \bmod 1$ (known as beta transformation whenever the domain is restricted to the unit interval $[0,1$), Rényi [5], 1957) has been studied intensively. In this paper, we consider $\beta=\frac{q}{p}$ a rational number, where p and q are positive integers with $2 \leq p<q$ and $\operatorname{gcd}(p, q)=1$. We consider the iterates τ^{n} defined by $\tau^{1}=\tau$ and $\tau^{n}=\tau\left(\tau^{n-1}\right)$ for $n \geq 2$. The orbit of 1 is the infinite sequence $\left\{\tau^{n}(1)\right\}_{n=1}^{\infty}$ (Devaney [1], 1989). Each term of this sequence can be written as p-ary representation

$$
\begin{equation*}
t(n)=\tau^{n}(1)=\frac{t(n)_{1}}{p}+\cdots+\frac{t(n)_{n}}{p^{n}} \tag{1.1}
\end{equation*}
$$

Let T_{k} be the sequence $T_{k}=\left\{t(n+k)_{n}\right\}_{n=1}^{\infty}$ for any non-negative integer k. We show that these sequences, T_{k} with $k \geq 0$, exhibit a certain periodic behavior.

[^0]Closely related to the sequence $\{t(n)\}_{n=1}^{\infty}$, of orbit is the sequence $\{s(n)=$ $\left.\sigma(n)=\left(\frac{q}{p}\right)^{n} \bmod 1\right\}_{n=1}^{\infty}$. The sequence $\left\{\left(\frac{3}{2}\right)^{n} \bmod 1\right\}_{n=1}^{\infty}$ is believed to be uniformly distributed modulo 1 , but it is not known even to be dense in the closed interval $[0,1]$. It is known that the sequence $\left\{\left(\frac{3}{2}\right)^{n} \bmod 1\right\}_{n=1}^{\infty}$ has infinitely many limit points in $[0,1]$ (Vijayaraghavan [7], 1940), but it is not yet known whether $\left\{\left(\frac{3}{2}\right)^{n} \bmod 1\right\}_{n=1}^{\infty}$ has infinitely many limit points in $[0,1 / 2)$ (see Flatto, Lagarias and Pollington [3], 1995). Mahler's famous $\frac{3}{2}$-problem (Mahler [4], 1968), still unsolved, asks whether there exits a real number $\eta>0$ such that the sequence $\left\{\eta\left(\frac{3}{2}\right)^{n} \bmod 1\right\}_{n=1}^{\infty}$, is contained in the interval $\left[0, \frac{1}{2}\right)$. Tijdeman [6] (1972) came close to solving Mahler's problem by showing that for every $\beta>2$ there exists $\eta>0$ such that the sequence $\left\{\eta\left(\frac{3}{2}\right)^{n} \bmod 1\right\}_{n=1}^{\infty}$ is contained in the interval $\left[0, \frac{1}{\beta-1}\right]$. For a recent reference to Mahler $\frac{3}{2}$-problem see Drmota and Tichy [2], (1997).

We can also write each $s(n)=\left(\frac{q}{p}\right)^{n} \bmod 1$ in the p-ary representation as

$$
\begin{equation*}
s(n)=\frac{s(n)_{1}}{p}+\cdots+\frac{s(n)_{n}}{p^{n}} . \tag{1.2}
\end{equation*}
$$

So, we can also consider the sequences $S_{k}=\left\{s(n+k)_{n}\right\}_{n=1}^{\infty}, k \geq 0$. These sequences will also exhibit a certain periodic behavior. We give the proofs of our results only for the case of the sequences $T_{k}, k \geq 0$. The proofs for the sequences $S_{k}, k \geq 0$, are quite similar.

2. Main Result

Let T_{k} be the sequence $T_{k}=\left\{t(n+k)_{n}\right\}_{n=1}^{\infty}$ for any integer $k \geq 0$ as in the last section. For each integer $n \geq 1$, define a function $a: \mathbf{N} \times(\mathbf{N} \cup\{0\}) \longrightarrow \mathbf{R}$ by $a(n, i)=\left(\frac{q}{p}\right)^{i} t(n) \bmod 1$, where \mathbf{N} is the set of all positive integers and \mathbf{R} is the set of all real numbers. So, $a(n, 0)=t(n)$. For each integer $i \geq 0$, we write the p-ary representation of $a(n, i)$ as $a(n, i)=\frac{a(n, i)_{1}}{p}+\cdots+\frac{a(n, i)_{n+i}}{p^{n+i}}$, where $0 \leq a(n, i)_{1}, \ldots, a(n, i)_{n+i}<p$. We have the following relation between $a(n, i)$ and $t(n+i)$ for all integers $n \geq 1$ and $i \geq 0$.

Lemma 2.1. For any positive integer n and for any non-negative integer i, $a(n, i)_{j}=t(n+i)_{j}$ for all $1+i \leq j \leq n+i$.

Proof. Fix $n \geq 1$. We prove this lemma by the induction on i. It is trivial that this lemma holds for $i=0$ because $a(n, 0)=t(n)$.

For any $i \geq 0$, write $\left(\frac{q}{p}\right)^{i} t(n)=a_{i}+\frac{a(n, i)_{1}}{p}+\cdots+\frac{a(n, i)_{n+i}}{p^{n+i}}$, where a_{i} is a non-negative integer, then

$$
\left(\frac{q}{p}\right)^{i+1} t(n)=\left(a_{i}+\frac{a(n, i)_{1}}{p}+\cdots+\frac{a(n, i)_{i}}{p^{i}}\right) \frac{q}{p}
$$

$$
+\left(\frac{a(n, i)_{i+1}}{p^{i+1}}+\cdots+\frac{a(n, i)_{n+i}}{p^{n+i}}\right) \frac{q}{p} .
$$

Therefore, for $2+i \leq j \leq n+i+1$, the number $a(n, i+1)_{j}$ is completely determined by the part $\left(\frac{a(n, i)_{i+1}}{p^{2+1}}+\cdots+\frac{a(n, i)_{n+i}}{p^{n+2}}\right) \frac{q}{p}$, which is equal to $\left(\frac{t(n+i)_{i+1}}{p^{2+1}}+\cdots+\right.$ $\left.\frac{t(n+i)_{n+i}}{p^{n+i}}\right) \frac{q}{p}$ by the induction hypothesis. Since the number $t(n+i+1)_{j}$ is also completely determined by $\left(\frac{t(n+i)_{i+1}}{p^{2+1}}+\cdots+\frac{t(n+i)_{n+i}}{p^{n+i}}\right) \frac{q}{p}$, we have $a(n, i+1)_{j}=$ $t(n+i+1)_{j}$ for each $2+i \leq j \leq n+i+1$. This completes the proof.

We now define e_{i} to be the multiplicative order of q modulo $p^{i+1}, i \geq 0$.
Lemma 2.2. For any positive integer $n, t(n)_{n} \equiv q^{n}$ mod p. Therefore, the sequence $T_{0}=\left\{t(n)_{n}\right\}_{n=1}^{\infty}$ is purely periodic with the period e_{0}.

Proof. From the definition, $t(1)_{1} \equiv q \bmod p$. For any integer $n \geq 1$,

$$
\frac{q}{p} t(n)=\left(\frac{t(n)_{1}}{p}+\cdots+\frac{t(n)_{n}}{p^{n}}\right) \frac{q}{p}
$$

and so

$$
t(n+1)_{n+1} \equiv q t(n)_{n} \equiv q^{n+1} \bmod p
$$

by the assumption of the induction. Hence, the sequence T_{0} is purely periodic with the period e_{0}.

The following theorem is our main result in this paper.
Theorem 2.3. For each non-negative integer k, the sequence T_{k} is purely periodic with the period m_{k} dividing e_{k}. Furthermore, for $k \geq 1$, let $d_{k}=\frac{e_{k}}{e_{k-1}}$ and write $p=p_{k, 1} p_{k, 2}$ where $\operatorname{gcd}\left(d_{k}, p_{k, 2}\right)=1$ and a prime π divides d_{k} if and only if π divides $p_{k, 1}$. Moreover, let μ_{k} be the largest factor of e_{0} so that $q^{e_{0} / \mu_{k}} \equiv 1$ $\bmod p_{k, 1}$ and $\operatorname{gcd}\left(\mu_{k}, e_{0} / \mu_{k}\right)=1=\operatorname{gcd}\left(\mu_{k}, d_{k}\right)$. Then either $\frac{e_{k}}{2 \mu_{k}}$ divides m_{k}, whenever $k \geq 2, e_{k} \equiv \cdots \equiv e_{1} \equiv 2 \equiv p \bmod 4$, and $e_{0} \equiv 1 \bmod 2$, or $\frac{e_{k}}{\mu_{k}}$ divides m_{k}, otherwise.

Proof. Let $k \geq 1$. For any integer $n \geq 1$,

$$
\begin{aligned}
a\left(n+k, e_{k}\right) & =\frac{a(n+k, 0) q^{e_{k}}}{p^{e_{k}}} \bmod 1 \\
& =\frac{a(n+k, 0)\left(c p^{k+1}+1\right)}{p^{e_{k}}} \bmod 1
\end{aligned}
$$

for some integer c because e_{k} is the multiplicative order of q modulo p^{k+1}. Hence, $t\left(n+e_{k}+k\right)_{n+e_{k}}=a(n+k, 0)_{n}=t(n+k)_{n}$ by Lemma 2.1. Since n is arbitrary, T_{k} is purely periodic with period m_{k} dividing e_{k}.

If $e_{k}=e_{k-1}$, then $d_{k}=1$ and so, $p_{k, 1}=1$ and $\mu_{k}=e_{0}$. In this case, the last assertion of the theorem is true trivially.

From now on, let $e_{k} \neq e_{k-1}$. Since $q^{e_{k-1}} \equiv 1 \bmod p^{k}$, we can write $q^{e_{k-1}}=$ $h_{k+1} p^{k+1}+h_{k} p^{k}+1$ for some non-negative integers h_{k+1} and h_{k} with $0 \leq h_{k}<p$. In fact, $1 \leq h_{k}<p$ because $e_{k} \neq e_{k-1}$. Notice that the number d_{k} is the smallest positive integer satisfying $h_{k} d_{k} \equiv 0 \bmod p$ (i.e., $h_{k}=c_{k} p / d_{k}$ for some $1 \leq c_{k}<d_{k}$ with $\left.\operatorname{gcd}\left(c_{k}, d_{k}\right)=1\right)$ and so, $q^{i e_{k-1}} \equiv\left(h_{k} p^{k}+1\right)^{i} \equiv i h_{k} p^{k}+1 \bmod p^{k+1}$ for all $0 \leq i<d_{k}$. For $n \geq 1$ and $d_{k}>i \geq 0, a\left(n+k, i e_{k-1}\right)=\frac{t(n+k) q^{i e_{k-1}}}{p^{i e_{k-1}}} \bmod 1$ by the definition. From Lemma 2.1,

$$
\begin{aligned}
t\left(n+i e_{k-1}+k\right)_{n+i e_{k-1}} & =a\left(n+k, i e_{k-1}\right)_{n+i e_{k-1}} \\
& \equiv a(n+k, 0)_{n+k} i h_{k}+a(n+k, 0)_{n} \quad \bmod p \\
& \equiv t(n+k)_{n+k} i h_{k}+t(n+k)_{n} \quad \bmod p
\end{aligned}
$$

So, for any $n \geq 1$, numbers $t\left(n+i e_{k-1}+k\right)_{n+i e_{k-1}}, 0 \leq i<d_{k}$, are all distinct because $\operatorname{gcd}\left(t(n+k)_{n+k}, p\right)=1$.

We have seen that $t\left(n+e_{k-1}+k\right)_{n+e_{k-1}} \equiv a(n+k, 0)_{n}+a(n+k, 0)_{n+k} h_{k}$ $\bmod p$ for arbitrary positive integer n. We also have $t\left(n+m_{k}+e_{k-1}+k\right)_{n+m_{k}+e_{k-1}} \equiv$ $a\left(n+k, m_{k}\right)_{n+m_{k}}+a\left(n+k, m_{k}\right)_{n+m_{k}+k} h_{k} \bmod p$. Since m_{k} is the period of T_{k}, we have $t\left(n+e_{k-1}+k\right)_{n+e_{k-1}}=t\left(n+m_{k}+e_{k-1}+k\right)_{n+m_{k}+e_{k-1}}$ and $a(n+k, 0)_{n}=t(n+k)_{n}=t\left(n+m_{k}+k\right)_{n+m_{k}}=a\left(n+k, m_{k}\right)_{n+m_{k}}$. These imply $a(n+k, 0)_{n+k} h_{k} \equiv a\left(n+k, m_{k}\right)_{n+m_{k}+k} h_{k} \bmod p$. But from Lemmas 2.1 and 2.2, we have $a(n+k, 0)_{n+k}=t(n+k)_{n+k} \equiv q^{n+k} \bmod p$ and $a\left(n+k, m_{k}\right)_{n+m_{k}+k}=t\left(n+m_{k}+k\right)_{n+m_{k}+k} \equiv q^{n+k+m_{k}} \bmod p$. So, $h_{k} q^{n+k+m_{k}} \equiv h_{k} q^{n+k} \bmod p$ and thus $h_{k} q^{m_{k}} \equiv h_{k} \bmod p$. This implies that $q^{m_{k}}$ is of the form $q^{m_{k}}=1+r d_{k}$ for some integer $r>0$. So, if $\mu_{k, 1}$ is the multiplicative order of q modulo $p_{k, 1}$, then $\mu_{k, 1}$ divides m_{k}.

Write $u_{k}=\frac{e_{k}}{m_{k}}$ because m_{k} divides e_{k}. Let $v_{k}=\operatorname{gcd}\left(u_{k}, d_{k}\right)$ and $w_{k}=\frac{d_{k}}{v_{k}}$. Then, $m_{k} \mid w_{k} e_{k-1}$ and so, $t(n+k)_{n}=t\left(n+k+w_{k} e_{k-1}\right)_{n+w_{k} e_{k-1}}$. If $v_{k}>1$, then $1 \leq w_{k}<d_{k}$, and the last equality contradicts that $t\left(n+k+i e_{k-1}\right)_{n+i e_{k-1}}$, $0 \leq i<d_{k}$, are all distinct for arbitrary $n \geq 1$. Hence, $v_{k}=1$ and so, $w_{k}=d_{k}$. We have shown that $\frac{e_{k}}{m_{k}}$ and d_{k} are relatively prime. Combining this with the fact that $\mu_{k, 1}$ divides m_{k} from the last paragraph, we have that the multiplicative order of q modulo $p_{k, 1}^{k+1}$ divides m_{k}.

Let u be a prime with $u \mid u_{k}$ and let ℓ be the positive integer satisfying $u^{\ell} \| e_{k}$. From $\operatorname{gcd}\left(d_{k}, u_{k}\right)=1$ and $u_{k} \mid e_{k}$, we have $u^{\ell} \| e_{k-1}$. Let i_{0} be the smallest integer satisfying $u^{\ell} \| e_{i_{0}}$, then $i_{0} \leq k-1$. If $i_{0}=0$ for every prime factor u of u_{k}, then
$u_{k} \mid e_{0}$ and thus $u_{k} \mid \mu_{k}$ from the definition of μ_{k}. Finally, consider $i_{0} \neq 0$ for some u. Then u divides p and moreover, $u=2$. In this case, $\ell=1=i_{0}$ and so $e_{0} \equiv 1$ $\bmod 2$. Trivially, we also have $e_{k} \equiv \cdots \equiv e_{1} \equiv 2 \equiv p \bmod 4$ and $u_{k} \mid 2 \mu_{k}$. This completes the proof.

The following is the most important case for $m_{k}=e_{k}$.
Corollary 2.4. If every prime factor of p divides $\frac{e_{k}}{e_{k-1}}$ (in particular, $\frac{e_{k}}{e_{k-1}}=p$), then the period m_{k} of T_{k} equals e_{k}.

Proof. Since every prime factor of p divides $d_{k}=\frac{e_{k}}{e_{k-1}}$, we have $\mu_{k}=1$ from the definition of μ_{k} in the last theorem. This implies $m_{k}=\frac{e_{k}}{\mu_{k}}=e_{k}$.

In the Theorem 2.3, the period m_{k} of T_{k} satisfies either $\left.\frac{e_{k}}{\mu_{k}} \right\rvert\, m_{k}$ or $\left.\frac{e_{k}}{2 \mu_{k}} \right\rvert\, m_{k}$, but m_{k} may not equal it (respectively). For instance, consider $\frac{q_{1}}{p_{1}}=\frac{55}{6}$ and $\frac{q_{2}}{p_{2}}=\frac{271}{6}$. Then both of them have the same orders $e_{0}=1, e_{1}=2=e_{2}$, and $e_{3}=6$ and thus both have $\mu_{3}=1$. From Theorem 2.3, $\frac{e_{3}}{2 \mu_{3}}=3$ divides both m_{3}, but they are not equal. Indeed, periods of the first four sequences generated by $\frac{q_{1}}{p_{1}}$ are $m_{0}=1$, $m_{1}=2=m_{2}$, and $m_{3}=3=\frac{e_{3}}{2 \mu_{3}}$, while periods of the first four sequences generated by $\frac{q_{2}}{p_{2}}$ are $m_{0}=1, m_{1}=2=m_{2}$, and $m_{3}=6=2 \frac{e_{3}}{2 \mu_{3}}$.

We now consider the sequences S_{k} generated by the function $\sigma(n)=\left(\frac{q}{p}\right)^{n}$ $\bmod 1$ as described before. It is easy to see that Lemma 2.2 is also true for S_{0}, i.e., the period of S_{0} is e_{0}. In general, we have the following theorem for S_{k} which is an analogous result of Theorem 2.3 for T_{k}. The proof of the following theorem is omitted because it is similar to the proof of Theorem 2.3 with a suitable modification.

Theorem 2.5. For each non-negative integer k, the sequence S_{k} is purely periodic with the period m_{k} dividing e_{k}. The period m_{0} of the sequence S_{0} is e_{0}. For $k \geq 1$, let $d_{k}=\frac{e_{k}}{e_{k-1}}$ and write $p=p_{k, 1} p_{k, 2}$ where $\operatorname{gcd}\left(d_{k}, p_{k, 2}\right)=1$ and a prime π divides d_{k} if and only if π divides $p_{k, 1}$. Moreover, let μ_{k} be the largest factor of e_{0} so that $q^{e_{0} / \mu_{k}} \equiv 1 \bmod p_{k, 1}$ and $\operatorname{gcd}\left(\mu_{k}, e_{0} / \mu_{k}\right)=1=\operatorname{gcd}\left(\mu_{k}, d_{k}\right)$. Then either $\frac{e_{k}}{2 \mu_{k}}$ divides m_{k}, if $k \geq 2, e_{k} \equiv \cdots \equiv e_{1} \equiv 2 \equiv p \bmod 4$, and $e_{0} \equiv 1$ $\bmod 2$, or $\frac{e_{k}}{\mu_{k}}$ divides m_{k}, otherwise.

Notice that Corollary 2.4 does also hold for S_{k} from the last theorem.

3. Special Cases

We still consider first the sequence T_{k} for any integer $k>0$. It is trivial that if $e_{k}=1$, then the period length of T_{k} is 1 . But if $e_{k}=e_{k-1} \geq 2$, the period length
of T_{k} may not be equal to e_{k}. For instance, if $\frac{q}{p}=\frac{809}{6}$, then $e_{3}=e_{2}=e_{1}=e_{0}=2$ and the period length of T_{3} is $1 \neq e_{3}$. Note that $e_{k}=e_{k-1}$ cannot occur anywhere. The following proposition gives a constraint for k with $e_{k}=e_{k-1}$.

Proposition 3.1. Let p and q be positive integers with $p \geq 2$ and $\operatorname{gcd}(p, q)=1$. For each integer $n \geq 0$, let e_{n} be the multiplicative order of q modulo p^{n+1}. Let $k \geq 0$ be a fixed integer. If $e_{k+2}=e_{k+1}>e_{k}$, then $k=0, p \equiv 2 \bmod 4$, and $e_{2}=e_{1}=2 e_{0}$ with e_{0} odd.

Proof. Since $e_{k+1}>e_{k}$ and $q^{e_{k}} \equiv 1 \bmod p^{k+1}$, we can write $q^{e_{k}}=$ $h_{k+1} p^{k+1}+1$ for some non-negative integer $h_{k+1} \not \equiv 0 \bmod p$. Since $e_{k} \mid e_{k+1}$, we write $d_{k+1}=\frac{e_{k+1}}{e_{k}}$, then d_{k+1} is the smallest positive integer satisfying $h_{k+1} d_{k+1} \equiv$ $0 \bmod p$ and $d_{k+1} \mid p$. So, $1<d_{k+1} \leq p$ and $h_{k+1} d_{k+1} \not \equiv 0 \bmod p^{2}$. Now,

$$
\begin{aligned}
q^{e_{k+1}} & =q^{e_{k} d_{k+1}}=\left(h_{k+1} p^{k+1}+1\right)^{d_{k+1}} \\
& \equiv 1+d_{k+1} h_{k+1} p^{k+1}+\frac{d_{k+1}\left(d_{k+1}-1\right)}{2} h_{k+1}^{2} p^{2 k+2} \bmod p^{k+3} .
\end{aligned}
$$

Since $e_{k+2}=e_{k+1}, q^{e_{k+1}} \equiv 1 \bmod p^{k+3}$, this implies $k=0$ because $h_{k+1} d_{k+1} \not \equiv$ $0 \bmod p^{2}$. So, $d_{1} h_{1}+\frac{d_{1}\left(d_{1}-1\right) h_{1}^{2} p}{2} \equiv 0 \bmod p^{2}$. Since $h_{1} d_{1} \equiv 0 \bmod p$ and $h_{1} d_{1} \not \equiv 0 \bmod p^{2}$, we have $\frac{d_{1}\left(d_{1}-1\right) h_{1}^{2}}{2} \not \equiv 0 \bmod p$, and thus $p \equiv 0 \equiv d_{1} \bmod 2$ and $h_{1} \equiv 1 \bmod 2$. From $h_{1} d_{1} \equiv 0 \bmod p$ again, we have $\frac{d_{1}\left(d_{1}-1\right) h_{1}^{2}}{2} \equiv \frac{p}{2}$ $\bmod p$ and so, $d_{1} h_{1} \equiv \frac{p}{2} p \bmod p^{2}$. This implies $d_{1} \equiv 2 \bmod 4$. If there were an odd prime u dividing d_{1}, then u would be an odd prime factor of p and thus would divide $\frac{e_{2}}{e_{1}}$. So, $d_{1}=2$ and thus $p \equiv 2 \bmod 4$ and $h_{1} \equiv \frac{p^{2}}{4} \bmod p^{2}$. Hence, $e_{2}=e_{1}=2 e_{0}$.

If there exists a positive integer k satisfying $e_{k}=e_{k-1}$, then we have either $e_{k}=e_{k-1}=\cdots=e_{1}=e_{0}$ or $e_{k}=e_{k-1}=\cdots=e_{1}=2 e_{0}$ with e_{0} odd and $p \equiv 2$ $\bmod 4$ from Proposition 3.1. Unfortunately, we are unable to determine the period of sequences T_{i} for each $1 \leq i \leq k$ with these conditions. However, we can determine some special cases. Indeed, we are going to study periods of sequences T_{k} (and S_{k}) whenever either $e_{k}=e_{k-1}=\cdots=e_{1}=e_{0}=2$ or $e_{k}=e_{k-1}=\cdots=e_{1}=2$ and $e_{0}=1$.

Now, let k_{0} be the largest positive integer of k such that $e_{k}=e_{1}=2$, then for any integer $k>k_{0}$, we have $e_{k}>e_{k-1}$. For determining the period of T_{k} with $1 \leq k \leq k_{0}$, we need the following lemma, which is stated in a general situation.

Lemma 3.2. For any positive integer $k, t\left(i e_{k}+k\right)_{i e_{k}}=0$ for all positive integers i.

Proof. From $t(k+1)=\frac{q}{p} t(k) \bmod 1=\left(\frac{t(k)_{1}}{p}+\cdots+\frac{t(k)_{k}}{p^{k}}\right) \frac{q}{p} \bmod 1$, we have $t(k+1)_{1} p^{k}+\cdots+t(k+1)_{k} p+t(k+1)_{k+1} \equiv\left(t(k)_{1} p^{k-1}+\cdots+t(k)_{k}\right) q$ $\bmod p^{k+1}$. Since $a\left(k+1, i e_{k}-1\right)=t(k+1)\left(\frac{q}{p}\right)^{i e_{k}-1} \bmod 1=\frac{t(k+1) q^{i e_{k}-1}}{p^{i e_{k}-1}}$ $\bmod 1$, we have, from Lemma 2.1, that

$$
\begin{aligned}
& t\left(i e_{k}+k\right)_{i e_{k}} p^{k}+\cdots+t\left(i e_{k}+k\right)_{i e_{k}+k} \\
& =a\left(k+1, i e_{k}-1\right) p^{k}+\cdots+a\left(k+1, i e_{k}-1\right)_{i e_{k}+k} \\
& \equiv\left(t(k+1)_{1} p^{k}+\cdots+t(k+1)_{k} p+t(k+1)_{k+1}\right) q^{i e_{k}-1} \\
& \bmod p^{k+1} \\
& \equiv\left(t(k)_{1} p^{k-1}+\cdots+t(k)_{k}\right) q^{i e_{k}} \quad \bmod p^{k+1}
\end{aligned}
$$

Hence, we have $t\left(i e_{k}+k\right)_{i e_{k}}=0$ because $q^{i e_{k}} \equiv 1 \bmod p^{k+1}$.
The following proposition is easy to see from Lemma 3.2 and its proof is omitted.
Proposition 3.3. Let k_{0} be the largest positive integer such that for all integers $1 \leq k \leq k_{0}, e_{k}=e_{1}=2$ with either $e_{0}=2$ or $e_{0}=1$ and $p \equiv 2 \bmod 4$, then for each $1 \leq k \leq k_{0}$, the period m_{k} of the sequence T_{k} is either 1 or 2 and m_{k} is 1 if and only if $t(1+k)_{1}=0$.

In the Proposition 3.3, the case $e_{1}=2$ can be determined explicitly, namely the period m_{1} of T_{1} is 2 whenever $e_{1}=2$. Indeed, write $q=q_{2} p^{2}+q_{1} p+q_{0}$, where $0 \leq q_{1}, q_{0}<p$ and $q_{2} \geq 0$. If $e_{0}=1$ and $p \equiv 2 \bmod 4$, then $q_{0}=1$ and $q_{1}=p / 2$. In this case, $t(2)_{1}=p / 2$ and so, $m_{1}=2$. If $e_{0}=2$, then $q^{2} \equiv 2 q_{1} q_{0} p+q_{0}^{2} \bmod p^{2}$. Notice that q_{0}^{2} can be written as $q_{0}^{2}=a_{1} p+1$ with $1 \leq a_{1}<p$. From $q^{2} \equiv 1 \bmod p^{2}$, we have $p \mid\left(2 q_{1} q_{0}+a_{1}\right)$ and $p \nmid\left(q_{1} q_{0}+a_{1}\right)$. So, in the case $e_{1}=2=e_{0}, 0 \neq t(2)_{1} \equiv q_{1}+a_{1} \bmod p$ and thus m_{1} equals 2 .

Notice also that it can occur that the period m_{k} of T_{k} equals 1 when $k \geq 2$ and $e_{k}=e_{k-1}=2$. For instance, let $\frac{q}{p}=\frac{487}{6}$. It is easy to check that $e_{0}=1$, $e_{1}=e_{2}=e_{3}=2$ and $e_{4}=4$. And T_{0} has the period 1 , both T_{1} and T_{2} have the same period 2 , and T_{3} has the period 1. Indeed, $t(0)=\frac{1}{6}, t(1)=\frac{3}{6}+\frac{1}{6^{2}}$, $t(2)=\frac{5}{6}+\frac{0}{6^{2}}+\frac{1}{6^{3}}$, and $t(3)=\frac{0}{6}+\frac{0}{6^{2}}+\frac{3}{6^{3}}+\frac{1}{6^{4}}$.

We now study the periods of the sequences S_{k} in these special cases. We state them in the following proposition without proof because its proof follows easily from the fact that $s\left(i e_{k}\right)_{i e_{k}-k}=0$ for all positive integers k and i with $i e_{k}>k$.

Proposition 3.4. Let k_{0} be the largest positive integer so that for all $1 \leq$ $k \leq k_{0}, e_{k}=e_{1}=2$ with either $e_{0}=2$ or $e_{0}=1$ and $p \equiv 2 \bmod 4$. Write $q=q_{0}+q_{1} p+\cdots+q_{k_{0}} p^{k_{0}}+q_{k_{0}+1} p^{k_{0}+1}$, where $0 \leq q_{k_{0}+1}$ and $0 \leq q_{k}<p$ for each $0 \leq k \leq k_{0}$, then for each $1 \leq k \leq k_{0}$, the period of the sequence S_{k} is either 1 or 2 and the period of S_{k} is 1 if and only if $q_{k}=0$.

It should be noted that the period of S_{k} can be 1 when $e_{k}=e_{k-1}=2$. For example, let $\frac{q}{p}=\frac{33615}{14}$, then $e_{0}=1, e_{1}=e_{2}=e_{3}=e_{4}=2$, and $e_{5}=14$. The period of S_{0} is 1 , the periods of S_{1}, S_{2}, and S_{3} are all equal to 2 , and the period of S_{4} is 1 . Indeed, $33615=1+7 \times(14)+3 \times(14)^{2}+12 \times(14)^{3}$.

Acknowledgment

The authors wish to express their sincere thanks to the referee for invaluable comments and corrections that led to an improved/revised version of the original manuscript.

References

1. R. L. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd Ed., AddisonWesley, Redwood City, California, 1989.
2. M. Drmota and R. F. Tichy, Sequences, Discrepancies and Applications, Lecture Notes in Mathematics, Vol. 1651, Springer-Verlag, Berlin-Heidelberg-New York, 1997.
3. L. Flatto, J. C. Lagarias and A. D. Pollington, On the range of fractional parts $\left\{\xi(p / q)^{n}\right\}$, Acta Arith., 70 (1995), 125-147.
4. K. Mahler, An unsolved problem on power of 3/2, J. Austral. Math. Soc., 8 (1968), 313-321.
5. A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar., 8 (1957), 472-493.
6. R. Tijdeman, Note on Mahler's 3/2-problem, K. Norske Vid. Selsk. Skr., 16 (1972), 1-4.
7. T. Vijayaraghavan, On the fractional parts of the powers of a number, I, J. London Math. Soc., 15 (1940), 159-160.

Wun-Seng Chou

Institute of Mathematics,
Academia Sinica,
Nankang, Taipei 11529,
Taiwan, R.O.C.
E-mail: macws@ccvax.sinica.edu.tw

Peter J.-S. Shiue

Department of Mathematical Sciences,
University of Nevada,
Las Vegas, NV 89154-4020,
U.S.A.

E-mail: shiue@unlv.edu

[^0]: Received August 5, 2004; revised November 25, 2004.
 Communicated by Jing Yu.
 2000 Mathematics Subject Classification: 11B99.
 Key words and phrases: Congruence, Multiplicative order, p-ary representation, Period, Sequence.
 ${ }^{*}$ This work is partially supported by the National Science Council under the grant number NSC91-2115-M-001-014.
 ${ }^{* *}$ Most of the work for this paper was done during a stay at the Institute of Mathematics, Academia Sinica, Taipei, Taiwan. The author thanks the Institute of Mathematics, Academia Sinica, Taipei, Taiwan for its support and for making the trip a pleasant stay.

