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PERIODIC ASPECTS OF SEQUENCES GENERATED BY TWO SPECIAL
MAPPINGS

Wun-Seng Chou∗ and Peter J.-S. Shiue∗∗

Abstract. Let β = q
p

be a fixed rational number, where p and q are positive
integers with 2 ≤ p < q and gcd(p, q) = 1. Consider two real-valued functions
σ(x) = βx mod 1 and τ (x) = βx mod 1. For each positive integer n, let
s(n) = σ(n) = s(n)1

p + · · ·+ s(n)n

pn and t(n) = τn(1) = t(n)1
p + · · ·+ t(n)n

pn be
the p-ary representation. In this paper, we study the periods of both sequences
Sk = {s(n+k)n}∞n=1 and Tk = {t(n+k)n}∞n=1 for any non-negative integer
k.

1. INTRODUCTION

Given a real number β > 1, the function τ(x) = βx mod 1 (known as beta
transformation whenever the domain is restricted to the unit interval [0, 1), R ényi
[5], 1957) has been studied intensively. In this paper, we consider β = q

p a rational
number, where p and q are positive integers with 2 ≤ p < q and gcd(p, q) = 1. We
consider the iterates τn defined by τ1 = τ and τn = τ(τn−1) for n ≥ 2. The orbit
of 1 is the infinite sequence {τ n(1)}∞n=1 (Devaney [1], 1989). Each term of this
sequence can be written as p-ary representation

(1.1) t(n) = τn(1) =
t(n)1

p
+ · · ·+ t(n)n

pn
.

Let Tk be the sequence Tk = {t(n + k)n}∞n=1 for any non-negative integer k. We
show that these sequences, Tk with k ≥ 0, exhibit a certain periodic behavior.
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Closely related to the sequence {t(n)}∞n=1, of orbit is the sequence {s(n) =
σ(n) = ( q

p)n mod 1}∞n=1. The sequence {( 3
2)n mod 1}∞n=1 is believed to be

uniformly distributed modulo 1, but it is not known even to be dense in the closed
interval [0, 1]. It is known that the sequence {( 3

2)n mod 1}∞n=1 has infinitely many
limit points in [0, 1] (Vijayaraghavan [7], 1940), but it is not yet known whether
{( 3

2)n mod 1}∞n=1 has infinitely many limit points in [0, 1/2) (see Flatto, Lagarias
and Pollington [3], 1995). Mahler’s famous 3

2 -problem (Mahler [4], 1968), still
unsolved, asks whether there exits a real number η > 0 such that the sequence
{η( 3

2)
n mod 1}∞n=1, is contained in the interval [0, 1

2). Tijdeman [6] (1972) came
close to solving Mahler’s problem by showing that for every β > 2 there exists
η > 0 such that the sequence {η( 3

2)
n mod 1}∞n=1 is contained in the interval

[0, 1
β−1 ]. For a recent reference to Mahler 3

2 -problem see Drmota and Tichy [2],
(1997).

We can also write each s(n) = ( q
p)n mod 1 in the p-ary representation as

(1.2) s(n) =
s(n)1

p
+ · · ·+ s(n)n

pn
.

So, we can also consider the sequences Sk = {s(n + k)n}∞n=1, k ≥ 0. These
sequences will also exhibit a certain periodic behavior. We give the proofs of our
results only for the case of the sequences Tk, k ≥ 0. The proofs for the sequences
Sk, k ≥ 0, are quite similar.

2. MAIN RESULT

Let Tk be the sequence Tk = {t(n + k)n}∞n=1 for any integer k ≥ 0 as in the
last section. For each integer n ≥ 1, define a function a : N × (N ∪ {0}) −→ R
by a(n, i) = (q

p)it(n) mod 1, where N is the set of all positive integers and R
is the set of all real numbers. So, a(n, 0) = t(n). For each integer i ≥ 0, we
write the p-ary representation of a(n, i) as a(n, i) = a(n,i)1

p + · · ·+ a(n,i)n+i

pn+i , where
0 ≤ a(n, i)1, . . . , a(n, i)n+i < p. We have the following relation between a(n, i)
and t(n + i) for all integers n ≥ 1 and i ≥ 0.

Lemma 2.1. For any positive integer n and for any non-negative integer i,
a(n, i)j = t(n + i)j for all 1 + i ≤ j ≤ n + i.

Proof. Fix n ≥ 1. We prove this lemma by the induction on i. It is trivial that
this lemma holds for i = 0 because a(n, 0) = t(n).

For any i ≥ 0, write (q
p)it(n) = ai + a(n,i)1

p + · · · + a(n,i)n+i

pn+i , where ai is a
non-negative integer, then(

q

p

)i+1

t(n) =
(

ai +
a(n, i)1

p
+ · · ·+ a(n, i)i

pi

)
q

p



Periodic Aspects of Sequences Generated by Two Special Mappings 831

+
(

a(n, i)i+1

pi+1
+ · · ·+ a(n, i)n+i

pn+i

)
q

p
.

Therefore, for 2 + i ≤ j ≤ n + i + 1, the number a(n, i + 1)j is completely deter-
mined by the part (a(n,i)i+1

pi+1 + · · ·+ a(n,i)n+i

pn+i ) q
p , which is equal to ( t(n+i)i+1

pi+1 + · · ·+
t(n+i)n+i

pn+i ) q
p by the induction hypothesis. Since the number t(n + i + 1)j is also

completely determined by (t(n+i)i+1

pi+1 + · · · + t(n+i)n+i

pn+i ) q
p , we have a(n, i + 1)j =

t(n + i + 1)j for each 2 + i ≤ j ≤ n + i + 1. This completes the proof.

We now define ei to be the multiplicative order of q modulo pi+1, i ≥ 0.

Lemma 2.2. For any positive integer n, t(n)n ≡ qn mod p. Therefore, the
sequence T0 = {t(n)n}∞n=1 is purely periodic with the period e 0.

Proof. From the definition, t(1)1 ≡ q mod p. For any integer n ≥ 1,

q

p
t(n) =

(
t(n)1

p
+ · · ·+ t(n)n

pn

)
q

p

and so
t(n + 1)n+1 ≡ qt(n)n ≡ qn+1 mod p

by the assumption of the induction. Hence, the sequence T0 is purely periodic with
the period e0.

The following theorem is our main result in this paper.

Theorem 2.3. For each non-negative integer k, the sequence Tk is purely
periodic with the period mk dividing ek . Furthermore, for k ≥ 1, let dk = ek

ek−1

and write p = pk,1pk,2 where gcd(dk, pk,2) = 1 and a prime π divides dk if and
only if π divides pk,1. Moreover, let µk be the largest factor of e0 so that qe0/µk ≡ 1
mod pk,1 and gcd(µk, e0/µk) = 1 = gcd(µk, dk). Then either ek

2µk
divides mk,

whenever k ≥ 2, ek ≡ · · · ≡ e1 ≡ 2 ≡ p mod 4, and e0 ≡ 1 mod 2, or ek
µk

divides mk , otherwise.

Proof. Let k ≥ 1. For any integer n ≥ 1,

a(n + k, ek) =
a(n + k, 0)qek

pek
mod 1

=
a(n + k, 0)(cpk+1 + 1)

pek
mod 1
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for some integer c because ek is the multiplicative order of q modulo pk+1. Hence,
t(n + ek + k)n+ek

= a(n + k, 0)n = t(n + k)n by Lemma 2.1. Since n is arbitrary,
Tk is purely periodic with period mk dividing ek.

If ek = ek−1, then dk = 1 and so, pk,1 = 1 and µk = e0. In this case, the last
assertion of the theorem is true trivially.

From now on, let ek �= ek−1. Since qek−1 ≡ 1 mod pk , we can write qek−1 =
hk+1p

k+1 +hkpk +1 for some non-negative integers hk+1 and hk with 0 ≤ hk < p.
In fact, 1 ≤ hk < p because ek �= ek−1. Notice that the number dk is the smallest
positive integer satisfying hkdk ≡ 0 mod p (i.e., hk = ckp/dk for some 1 ≤ ck < dk

with gcd(ck, dk) = 1) and so, qiek−1 ≡ (hkp
k + 1)i ≡ ihkpk + 1 mod pk+1 for all

0 ≤ i < dk. For n ≥ 1 and dk > i ≥ 0, a(n + k, iek−1) = t(n+k)qiek−1

piek−1
mod 1 by

the definition. From Lemma 2.1,

t(n + iek−1 + k)n+iek−1
= a(n + k, iek−1)n+iek−1

≡ a(n + k, 0)n+kihk + a(n + k, 0)n mod p

≡ t(n + k)n+kihk + t(n + k)n mod p.

So, for any n ≥ 1, numbers t(n + iek−1 + k)n+iek−1
, 0 ≤ i < dk, are all distinct

because gcd(t(n + k)n+k, p) = 1.
We have seen that t(n + ek−1 + k)n+ek−1

≡ a(n + k, 0)n + a(n + k, 0)n+khk

mod p for arbitrary positive integer n. We also have t(n+mk+ek−1+k)n+mk+ek−1
≡

a(n + k, mk)n+mk
+ a(n + k, mk)n+mk+khk mod p. Since mk is the period

of Tk, we have t(n + ek−1 + k)n+ek−1
= t(n + mk + ek−1 + k)n+mk+ek−1

and a(n + k, 0)n = t(n + k)n = t(n + mk + k)n+mk
= a(n + k, mk)n+mk

.
These imply a(n + k, 0)n+khk ≡ a(n + k, mk)n+mk+khk mod p. But from
Lemmas 2.1 and 2.2, we have a(n + k, 0)n+k = t(n + k)n+k ≡ qn+k mod p
and a(n + k, mk)n+mk+k = t(n + mk + k)n+mk+k ≡ qn+k+mk mod p. So,
hkqn+k+mk ≡ hkq

n+k mod p and thus hkq
mk ≡ hk mod p. This implies that

qmk is of the form qmk = 1 + rdk for some integer r > 0. So, if µk,1 is the
multiplicative order of q modulo pk,1, then µk,1 divides mk.

Write uk = ek
mk

because mk divides ek. Let vk = gcd(uk, dk) and wk = dk
vk

.
Then, mk|wkek−1 and so, t(n + k)n = t(n + k + wkek−1)n+wkek−1

. If vk > 1,
then 1 ≤ wk < dk, and the last equality contradicts that t(n + k + iek−1)n+iek−1

,
0 ≤ i < dk, are all distinct for arbitrary n ≥ 1. Hence, vk = 1 and so, wk = dk.
We have shown that ek

mk
and dk are relatively prime. Combining this with the fact

that µk,1 divides mk from the last paragraph, we have that the multiplicative order
of q modulo pk+1

k,1 divides mk .
Let u be a prime with u|uk and let � be the positive integer satisfying u�||ek.

From gcd(dk, uk) = 1 and uk|ek, we have u�||ek−1. Let i0 be the smallest integer
satisfying u�||ei0 , then i0 ≤ k − 1. If i0 = 0 for every prime factor u of uk , then
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uk|e0 and thus uk|µk from the definition of µk . Finally, consider i0 �= 0 for some
u. Then u divides p and moreover, u = 2. In this case, � = 1 = i0 and so e0 ≡ 1
mod 2. Trivially, we also have ek ≡ · · · ≡ e1 ≡ 2 ≡ p mod 4 and uk|2µk. This
completes the proof.

The following is the most important case for mk = ek .

Corollary 2.4. If every prime factor of p divides ek
ek−1

(in particular, ek
ek−1

= p),
then the period mk of Tk equals ek .

Proof. Since every prime factor of p divides dk = ek
ek−1

, we have µk = 1 from
the definition of µk in the last theorem. This implies mk = ek

µk
= ek .

In the Theorem 2.3, the period mk of Tk satisfies either ek
µk
|mk or ek

2µk
|mk, but

mk may not equal it (respectively). For instance, consider q1
p1

= 55
6 and q2

p2
= 271

6 .
Then both of them have the same orders e0 = 1, e1 = 2 = e2, and e3 = 6 and
thus both have µ3 = 1. From Theorem 2.3, e3

2µ3
= 3 divides both m3, but they are

not equal. Indeed, periods of the first four sequences generated by q1
p1

are m0 = 1,
m1 = 2 = m2, and m3 = 3 = e3

2µ3
, while periods of the first four sequences

generated by q2

p2
are m0 = 1, m1 = 2 = m2, and m3 = 6 = 2 e3

2µ3
.

We now consider the sequences Sk generated by the function σ(n) = (q
p)n

mod 1 as described before. It is easy to see that Lemma 2.2 is also true for S0,
i.e., the period of S0 is e0. In general, we have the following theorem for Sk

which is an analogous result of Theorem 2.3 for Tk. The proof of the following
theorem is omitted because it is similar to the proof of Theorem 2.3 with a suitable
modification.

Theorem 2.5. For each non-negative integer k, the sequence Sk is purely
periodic with the period mk dividing ek. The period m0 of the sequence S0 is e0.
For k ≥ 1, let dk = ek

ek−1
and write p = pk,1pk,2 where gcd(dk, pk,2) = 1 and a

prime π divides dk if and only if π divides pk,1. Moreover, let µk be the largest
factor of e0 so that qe0/µk ≡ 1 mod pk,1 and gcd(µk, e0/µk) = 1 = gcd(µk, dk).
Then either ek

2µk
divides mk, if k ≥ 2, ek ≡ · · · ≡ e1 ≡ 2 ≡ p mod 4, and e0 ≡ 1

mod 2, or ek
µk

divides mk, otherwise.

Notice that Corollary 2.4 does also hold for Sk from the last theorem.

3. SPECIAL CASES

We still consider first the sequence Tk for any integer k > 0. It is trivial that if
ek = 1, then the period length of Tk is 1. But if ek = ek−1 ≥ 2, the period length
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of Tk may not be equal to ek. For instance, if q
p = 809

6 , then e3 = e2 = e1 = e0 = 2
and the period length of T3 is 1 �= e3. Note that ek = ek−1 cannot occur anywhere.
The following proposition gives a constraint for k with ek = ek−1.

Proposition 3.1. Let p and q be positive integers with p ≥ 2 and gcd(p, q) = 1.
For each integer n ≥ 0, let en be the multiplicative order of q modulo p n+1. Let
k ≥ 0 be a fixed integer. If ek+2 = ek+1 > ek , then k = 0, p ≡ 2 mod 4, and
e2 = e1 = 2e0 with e0 odd.

Proof. Since ek+1 > ek and qek ≡ 1 mod pk+1, we can write qek =
hk+1p

k+1 + 1 for some non-negative integer hk+1 �≡ 0 mod p. Since ek|ek+1, we
write dk+1 = ek+1

ek
, then dk+1 is the smallest positive integer satisfying hk+1dk+1 ≡

0 mod p and dk+1|p. So, 1 < dk+1 ≤ p and hk+1dk+1 �≡ 0 mod p2. Now,

qek+1 = qekdk+1 = (hk+1p
k+1 + 1)dk+1

≡ 1 + dk+1hk+1p
k+1 +

dk+1(dk+1 − 1)
2

h2
k+1p

2k+2 mod pk+3.

Since ek+2 = ek+1, qek+1 ≡ 1 mod pk+3, this implies k = 0 because hk+1dk+1 �≡
0 mod p2. So, d1h1 + d1(d1−1)h2

1p
2 ≡ 0 mod p2. Since h1d1 ≡ 0 mod p and

h1d1 �≡ 0 mod p2, we have d1(d1−1)h2
1

2 �≡ 0 mod p, and thus p ≡ 0 ≡ d1 mod 2

and h1 ≡ 1 mod 2. From h1d1 ≡ 0 mod p again, we have d1(d1−1)h2
1

2 ≡ p
2

mod p and so, d1h1 ≡ p
2p mod p2. This implies d1 ≡ 2 mod 4. If there were an

odd prime u dividing d1, then u would be an odd prime factor of p and thus would
divide e2

e1
. So, d1 = 2 and thus p ≡ 2 mod 4 and h1 ≡ p2

4 mod p2. Hence,
e2 = e1 = 2e0.

If there exists a positive integer k satisfying ek = ek−1, then we have either
ek = ek−1 = · · · = e1 = e0 or ek = ek−1 = · · · = e1 = 2e0 with e0 odd and p ≡ 2
mod 4 from Proposition 3.1. Unfortunately, we are unable to determine the period of
sequences Ti for each 1 ≤ i ≤ k with these conditions. However, we can determine
some special cases. Indeed, we are going to study periods of sequences Tk (and Sk)
whenever either ek = ek−1 = · · · = e1 = e0 = 2 or ek = ek−1 = · · · = e1 = 2 and
e0 = 1.

Now, let k0 be the largest positive integer of k such that ek = e1 = 2, then for
any integer k > k0, we have ek > ek−1. For determining the period of Tk with
1 ≤ k ≤ k0, we need the following lemma, which is stated in a general situation.

Lemma 3.2. For any positive integer k, t(iek + k)iek
= 0 for all positive

integers i.
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Proof. From t(k + 1) = q
pt(k) mod 1 =

(
t(k)1

p + · · ·+ t(k)k

pk

)
q
p mod 1, we

have t(k + 1)1pk + · · ·+ t(k + 1)kp + t(k + 1)k+1 ≡ (t(k)1pk−1 + · · ·+ t(k)k)q
mod pk+1. Since a(k + 1, iek − 1) = t(k + 1)( q

p)iek−1 mod 1 = t(k+1)qiek−1

piek−1

mod 1, we have, from Lemma 2.1, that

t(iek + k)iek
pk + · · ·+ t(iek + k)iek+k

= a(k + 1, iek − 1)pk + · · ·+ a(k + 1, iek − 1)iek+k

≡ (t(k + 1)1pk + · · ·+ t(k + 1)kp + t(k + 1)k+1)qiek−1 mod pk+1

≡ (t(k)1pk−1 + · · ·+ t(k)k)qiek mod pk+1.

Hence, we have t(iek + k)iek
= 0 because qiek ≡ 1 mod pk+1.

The following proposition is easy to see from Lemma 3.2 and its proof is omitted.

Proposition 3.3. Let k0 be the largest positive integer such that for all integers
1 ≤ k ≤ k0, ek = e1 = 2 with either e0 = 2 or e0 = 1 and p ≡ 2 mod 4, then
for each 1 ≤ k ≤ k0, the period mk of the sequence Tk is either 1 or 2 and mk is
1 if and only if t(1 + k)1 = 0.

In the Proposition 3.3, the case e1 = 2 can be determined explicitly, namely
the period m1 of T1 is 2 whenever e1 = 2. Indeed, write q = q2p

2 + q1p + q0,
where 0 ≤ q1, q0 < p and q2 ≥ 0. If e0 = 1 and p ≡ 2 mod 4, then q0 = 1
and q1 = p/2. In this case, t(2)1 = p/2 and so, m1 = 2. If e0 = 2, then
q2 ≡ 2q1q0p + q2

0 mod p2. Notice that q2
0 can be written as q2

0 = a1p + 1 with
1 ≤ a1 < p. From q2 ≡ 1 mod p2, we have p|(2q1q0 + a1) and p � (q1q0 + a1).
So, in the case e1 = 2 = e0, 0 �= t(2)1 ≡ q1 + a1 mod p and thus m1 equals 2.

Notice also that it can occur that the period mk of Tk equals 1 when k ≥ 2
and ek = ek−1 = 2. For instance, let q

p = 487
6 . It is easy to check that e0 = 1,

e1 = e2 = e3 = 2 and e4 = 4. And T0 has the period 1, both T1 and T2 have
the same period 2, and T3 has the period 1. Indeed, t(0) = 1

6 , t(1) = 3
6 + 1

62 ,
t(2) = 5

6 + 0
62 + 1

63 , and t(3) = 0
6 + 0

62 + 3
63 + 1

64 .
We now study the periods of the sequences Sk in these special cases. We state

them in the following proposition without proof because its proof follows easily
from the fact that s(iek)iek−k = 0 for all positive integers k and i with iek > k.

Proposition 3.4. Let k0 be the largest positive integer so that for all 1 ≤
k ≤ k0, ek = e1 = 2 with either e0 = 2 or e0 = 1 and p ≡ 2 mod 4. Write
q = q0 + q1p + · · ·+ qk0p

k0 + qk0+1p
k0+1, where 0 ≤ qk0+1 and 0 ≤ qk < p for

each 0 ≤ k ≤ k0, then for each 1 ≤ k ≤ k0, the period of the sequence Sk is either
1 or 2 and the period of Sk is 1 if and only if qk = 0.
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It should be noted that the period of Sk can be 1 when ek = ek−1 = 2. For
example, let q

p = 33615
14 , then e0 = 1, e1 = e2 = e3 = e4 = 2, and e5 = 14. The

period of S0 is 1, the periods of S1, S2, and S3 are all equal to 2, and the period
of S4 is 1. Indeed, 33615 = 1 + 7 × (14) + 3 × (14)2 + 12× (14)3.
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