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WEIGHTED BOUNDEDNESS OF MULTILINEAR OPERATORS FOR
THE EXTREME CASES

Liu Lanzhe

Abstract. In this paper, the weighted boundedness of multilinear operators
related to some non-convolution operators for the extreme cases are obtained.
The operators include Littlewood-Paley operator, Marcinkiewicz operator and
Bochner-Riesz operator.

1. INTRODUCTION

Let T be a Calderon-Zygmund operator, a classical result of Coifman, Rochberg
and Weiss (see [8]) states that the commutator [b, 7] = bT'f — T'(bf)(where b €
BMO(R™)) is bounded on LP(R"™) for 1 < p < oo; Chanillo (see [2]) proved a
similar result when T is replaced by the fractional integral operator. In [11], the
endpoint boundedness of the commutators are obtained. The main purpose of this
paper is to discuss the weighted endpoint boundedness of multilinear operators re-
lated to some non-convolution operators. In fact, we shall establish the weighted
boundedness in the extreme cases of p for the multilinear operators related to some
non-convolution operator only under certain size conditions of the operators. As ap-
plication, the weighted endpoint boundedness of the multilinear operators related to
the Littlewood-Paley operator, Marcinkiewicz operator and Bochner-Riesz operator
are obtained.

2. PRELIMINARIES

Throughout this paper, @ will denote a cube of R™ with sides parallel to the
axes. For a cube @ and a locally integrable function f, let f(Q) = fQ f(z)dx,
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fo =1QI™" [, f(a)dz and f#(z) = sug\Q\—l Jo | f(y) — fqldy. Moreover, for
Tre

a weight function w, f is said to belong to BMO(w) if f# ¢ L (w) and define
£l Baroqw) = 1F#]| L), if w =1, we denote that BMO(w) = BMO(R™).
Also, we give the concepts of the atom and weighted H' space. A function a is
called a H'* atom if there exists a cube @ such that a is supported on @, [[al| () <
w(Q)~tand [a(z)dx = 0. Itis well known that the weighted Hardy space H!(w )

has the atomic decomposmon characterization(see[1] [10]).

In this paper, we will consider a class of multilinear operators related to some
integral operators as follows.

Let m be a positive integer and A be a function on R™. We denote

Rsi(Air,y) = Al) = 3~ (a—y)"DA(y)

loo|<m

and
Qmi1(4;2,y) = Rin(A; 2, y) Z y) D A(z).

Definition 1. Let F'(x,y,t) be a function defined on R™ x R™ x [0, +0c0), and
let

F(P@) = [ Pl )y

and
Riyi1(Asz,y)

BN = [

Let H be a Banach space H = {h : ||h|| < oo} such that F;(f)(x) and FA(f)(x)
may be viewed as a mapping from [0, +oc0) to H for each fixed z € R*. Then, the
multilinear operators related to F; is defined by

T4(f)(@) = IF (N @)]l-

We also define that T'(f)(z) = || EL(f)(z)]].
In particular, we shall study the following sublinear operators.

Definition 2. Lete > 0 and v be a fixed function which satisfies the following
properties:

(D) Jpa(x)dr =0,
) |¢(x)] < C(1 +[af)= D),
Q) [¥(z+y) —v(@)| < Clyl (1 + [a]) (" HFE) for 2]y| < |z,
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The multilinear Littlewood-Paley operator is defined by

[CEmer)”

0 t

e = (

where
Riyi1(A;z,y)

no o —ylm

FA(S) () = / il — ) F(y)dy,

and ¢ (x) =t " (x/t) for t > 0. Let F,(f) = ¢ = f. We also define

1/2

w0 = ([T IE@EE)

which is the Littlewood-Paley g function (see [17]).
We also consider the variant of 91‘2, which is defined by

e = ([TIE L)

where
Qmi1(A;7,y)

rn T —y|™

FA(f)(a) = Yi(x —y)f(y)dy.

Definition 3. Let0 < v < 1 and 2 be homogeneous of degree zero on R" such
that [q,—1 Q(z')do(z) = 0 . Assume that Q € Lip,(S™ 1), that is, there exists a
constant M > 0 such that for any z,y € S"~1, |Q(x) — Q(y)| < M|z — y|.

We denote I'(z) = {(y,t) € R : |x — y| < t} and the characteristic of T'(z)
by Xr(z)- The multilinear Marcinkiewicz operator is defined by

(3] 1/2
= | [T nors] "
" r- [ ey BBl g,
t jo—yi<t £ —yl" eyl
Let

F(f) () = /| =Y ri)ay,

z—y|<t ‘(L‘ - y‘n

We also define that

@ = ([T iEn@re) ",
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where the last is the Marcinkiewicz operator (see [18]). Also, the variant of 4 is

defined by
o 1/2
i@ = ([T E o)

where

= A _ Qzr—y) Qmsi(45z,y)
R R

f(y)dy.

Definition 4. Let BY(f)(€) = (1 — 2[¢]?)J. f(£). We denote

Ry1(Asz,y

B = [ ) B3 (e — )1 () dy,

no o —ylm

where B)(z) = t™"B%(z/t) for t > 0. The maximal multilinear Bochner-Riesz
operator is defined by

Bj,(f)(x) = sup|Bg,(f)(@)].

t>0

We also define
B (f)(x) = sup | B} (f) ()],

>0
which is the maximal Bochner-Riesz operator (see [12][14][15]). The variant of
Bj, is defined by

BiL(f)(x) = sup | Biy(f)(2)],

>0
where

~ Qm+1(A;z,y)

Bl (f)(x) = P BY(z —y) f(y)dy.

For gy, let H be the space H = {h: 1Rl = (fy° \h(t)\2dt/t)1/2 < oo}. Then

for each fixed » € R", FA(f)(x) and F,(f)(xz) may be viewed as the mapping
from [0, +00) to H. It is clear that

go(f)(@) = [|F(f) ()l and g (f) (@) = [|F(f)(@)I];

For ug, let H be the space H = {h: [|h]| = ([ |h(t)]2dt/t3)"? < col. Then
0

for each fixed x € R*, FA(f)(x) and Fi(f)(x) may be viewed as the mapping
from (0, +00) to H, and it is clear that

ko (f) (@) = |1 (f) ()| and pa(f)(z) = |IE(f) (@)
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For Bs.., let H be the space H = {h :||h]] = sup |h(t)| < oo}. Then it is clear
>0

that
BY(f)(x) = |IB(f)(x)]| and Bs.(f)(x) = || Bsy(f)(@)]]-

It is obvious that Definition 2, 3 and 4 are the particular examples of Definition
1. Note that when m = 0, T4, g}, uig; and By, is just the commutators generated
by F, and A(see[12-14][18]). It is well-known that multilinear operator, as an
extension of commutator, is of great interest in harmonic analysis and has been

widely studied by many authors (see [3-7, 9]).
We shall prove the following theorems in Section 3.

Theorem 1. Let w € A; and D*A € BMO(R") for all o with |o| = m.
Then

(i) g;) is bounded from L>°(w) to BMO(w);

(i) g A is bounded from H '(w) to L'(w);

(iii) g7} is bounded from H!(w) to weak L'(w);
)

(iv If for any H'(w)-atom a supported on certain cube Q and u € 3Q \ 2Q,
there is

Jar

then g;; is bounded from H'(w) to L' (w);

(v) If for any cube @ and u € 3Q \ 2Q), there is
w0 || X A - o) [ ) )y
la|=m

w(z)dz < C|| f[| Lo ()

w(z)dr < C,

1(x—u) S Al alv)d
R ALy >/QD (w)aly)dy

al |z —ul™
la]=m

(u—y)*

then g;} is bounded from L (w) to BMO(w).

Theorem 2. Let w € A; and D*A € BMO(R") for all a with |a| = m.
Then
(i) pg is bounded from L°°(w) to BMO(w);
(ii) fia is bounded from H!(w) to L (w);
(ii) p4 is bounded from H'(w) to weak L'(w).
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(iv) If for any H'(w)-atom a supported on certain cube @ and u € 3Q \ 2Q,
there is

Jar

then g is bounded from H!(w) to L'(w);
(v) If for any cube @ and u € 3Q \ 2Q), there is

Q(z —u)
ww u‘m‘x u‘n—l I'(z

w(z)dr<C,

() /Q DA(y)a(y)dy

1 1 o o
0@ o Mma(D A(z)—(D*A)q)

/ (u—y)* Uu—y)xrw(Y,t)

(1) lu—y[™ |u—y|n—1

F)dy||w(x)dz <C||f|] Lo (w),

then £, is bounded from L*°(w) to BMO(w).

Theorem 3. Let w € A; and D*A € BMO(R™) for all a with |a| = m. If
d > (n—1)/2, then

(i) Bj', is bounded from L°°(w) to BMO(w);
(i) B3, is bounded from H'(w) to L' (w);
(iii) By, is bounded from H'(w) to weak L*(w).
)

(iv) If for any H'(w)-atom a supported on certain cube @ and u € 3Q \ 2Q,
there is

Jar

then B;', is bounded from H'(w) to L' (w);
(v) If for any cube @ and u € 3Q \ 2Q), there is

w(z)dr < C,

i(UU_UJ)OCB‘SQU—U, DYA(y)a(y)d
) 3 >/Q (v)a(y)dy

al |z —ul™
la|=m

L i « ) — o (u—y) 5 "
w(Q) |O;m a!(D Al@)=(D A)Q)/(4Q) lu—y|m Bi (u—y)f(y)dy

w(z)dz < C|[f]|poo (),

then B!, is bounded from L (w) to BMO(w).
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A A A 171
Remark. In general, Gyr 1 and Bj', are not (H', L") bounded.

3. MaIN TEoREM AND PRrROOF
We first prove a general theorem.

Main Theorem. Letw € A; and D*A € BMO(R") for all « with |a| =
Suppose that F;, T, T4 are the same as in Definition 1 and that 7" is bounded on
LP(w) for any 1 < p < oo. If T satisfies the size condition:

IE(F)(@) = B () o)lll < ClID*Allpacol f 1| oe(w)

for any cube @ with suppf C (2Q)¢ and = € Q. Then T is bounded from
BMO(w) to L*™(w).

To prove the theorem, we need the following lemma.

Lemma 1. (see [6]) Let A be a function on R™ and D“A € L(R") for all «
with |a| = m and some ¢ > n. Then

1/q
1
|Rim(A;z,y)| < Clo —y[™ Z <m ” )\DaA(Z)\qu> ;
) z,y

la|=m
where Q(z, %) is the cube centered at = and having side length 5 \/n|z — y|.
Proof of Main Theorem. It is only to prove that there exists a constant C'g such

that
w10y T @)~ Calutade < i~

holds for any cube Q. Fix a cube Q = Q(zo,d). Let @ = 5/nQ and A(z) =
A(z) = 3 (DA)pz*, then Ry (A;z,y) = Ry(A;2,y) and D*A = DA —
la|=m

(D*A)g for || = m. We write, for fi = fx5 and fo = fXpm\o0

R = [ W (@00 i)y

-2 / @006 =97 pe ) fu(w)ay

il \w—y\m

+/ Rm+1(1‘~1§$7y)
no |z —ylm
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then
TA(f) () - TAfZ xo|—|HFA D@ = IFE () o)
< || @ = R o)
< (5% )

+ l}: ( ‘ " ped f1> (z)

= I(x)+ [I(x)+ I11(x),

+|[FA @) - B e

thus,
w(lQ /‘TA ~ (0)‘w(w)dw
1 1
< m/cgl(x)w(x)dx—i—m/Qll(x)w(x)dw—i—m/cglll(x)w(x)dx
= I+ 11+ 111

Now, let us estimate I, I7 and I 11, respectively. First, for z € Q and y € Q, using
Lemma 1, we get

Ron(A;z,y) < Clz — y|™ Z || D“Al|Baro,
|a|l=m

thus, by the L°°(w)-boundedness of T', we get
e /
I < —— T D“A z)|w(z)dx
<z@l (|O4ZWH paro i) (@)|w(z)

< C ) IID*Allpmol | T(fi)ll ()

la]=m

< C Y 1ID*Allpyollf || o (u);

la]=m

Secondly, since w € A;, w satisfies the reverse of Holder’ inequality:

(\Q\/ qu)l/q a fve

for all cube @ and some 1 < g < oo(see[10]), thus, taking p > 1, by the LP(w)-
boundedness of 7" and the Holder’ inequality, we gain
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17

IN

% /Q T( Y (DA~ (D*A)5) i) (x) w(x)de

IN

1 N o g ) 1/p
c ;m(m /Q T((DA — (D A)g) 1) ()] w(x)dx)

IN

> (g7 [ 10" - (0 )it >\pw<x>dx)1/p
la|=m

, 1/pd
Y w(@ ( / DO A(z) — (D A) P dw)

la]=m

(f wtayraz) R
< C Z <‘ ol / |D*A(x) — (DO‘A)Q\pq/dx)l/pq/ (ﬁ /@ w(x)qu)l/pq

1/p
(%) 1)

¢ S ID*Allswo (5 [t >dx)1/p (%)Up\\f\\m(w)

la]=m

IN

IN

IN

C > IID*Allsaoll fll e (w)

la|=m
For 111, by the size condition of 7', we have
111 <C Y |ID*Allpyol| Il L)
la|=m
This completes the proof of Main theorem.
To prove Theorem 1, 2 and 3, we need the following lemma.

Lemma 2. Letwe A, 1<p<oo, d>(n—1)/2and D*A € BMO(R")
for all a with || = m. Then g;}, u and B2 are all bounded on L?(w).

Proof. By Minkowski’ inequality , we get

ma1(A; x, 00 1/2
g (f)(@) < /n ‘f(y)H\ij;(‘m )| (/0 Wt(w—y)\Z%) N
Lf (W) Riny1(A; 2, )] o0 t—2n dt 1/2
< C Rr lz —y|m (/0 (1 + |o —y|/t)2(+D) 7) dy
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|Rini1(A;s 2, y)

e 2w lan

R T —

1/2
‘Q(m - y)HRm—I—l(A; x, y)‘ oo dt
/n |z — y|mtn—1 |f(y)] </|m_y| t_3> dy

Rpy1(A;z,y
%Wn)‘\f(y)\dy,

IN

1o (f)(x)

IN

C
Rn ‘fI: —

and
1BS(z — y)| < Cr(1+ |z — y| /r)~+D/2)

r 6—(n—1)/2 1
=C (7) —— <[z —y|™",
T+ |z -yl (r+ |z —y[)"

Ryy1(A;z,y
%‘Wm)‘\f@)\d%

thus,
Bls(f)(x) < C
’ rr T —

so that, the lemma follows from [9].

Proof of Theorem 1. (i) First, by the proof of Lemma 2, we get
/()]

Ro T —y™

gy(f)(z) <C dy,

thus, gy is LP(w)-bounded for p > 1 by [2]. Now, it suffices to verify that g,
satisfies the size condition in Main Theorem. For suppf C (2Q)¢, let A(z) =

Ax) — | |Z L(D*A)ga®.
Write

FA (f)(2) — FA(f) (o) = / [W ) ¢t<x0‘y)]Rm<A;x,y>f<y>dy

[z —ylm™ |z —y|™
L =9I W) e G ) — R (A 30, 9)]dy

R o —y™

S al/ﬂ(%% y)(z —y)® wt(wo—y)(wo—y)o‘>DaA(y)f(y)dy

|z —y|™ lzo — y|™

la]=m

=11 + Iy + Is.

Note that |z — y| ~ |zg —y| for x € Q and y € R"\ . By Lemma 1 and the
following inequality (see [16])

0@, = ba,| < Clog(|Q2|/1Q1])[bl|ro for @1 C @,
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we know that, for z € Q and y € 2811 Q \ 2+ Q,
|Ron(A; 2, y)| < Clo —y|™ Z (I[1D*Al|Bymo + [(D*A) g, — (D A)g])

loo|=m
< Chlz —y|™ Y 11D Allpuro.

la]=m

Thus, similar to the proof of Lemma 2, we get

il =€ [ (G + e ) Bl )y
_ e
<cy a0 [ k(e S0l
<C Z HDO‘AHBMOHfHLoo(w)Zk(Q_k+2_6k)
o= k=1
< C > DAl syol | f]] oo guy;
loo|=m
For I, by the formula (see [6]):
Rm(fl;x,y) R,, A 1 T0, Y Z ﬁ' m—18)( D Az xo)(x—y)ﬂ
|Bl<m

and Lemma 1, we have

Bn(As2) = R Aszo,9)| < € D7 D fa—aol™ e~y DAl paso,
|8]<m |al=m

similar to the estimates of I, we get

Ll<c Y HD“AHBMoz/ 7?2‘“\1% )ldy

o= k+1Q\2kQ ‘1‘0 -

< C > DAl syol £l oo uwy;
la|=m

For I3, similar to the estimates of I;, we get

|z — o |x — xol° ) -
|II5]] < C / ( + DA d
1Ll <C Y Z i \mo — g1 T Tog — g ) DT AWIS W)ldy

la]=m

<0 Y S ) (1201 [ 1046~ (0" A)glas 1m0

jaf=m k=1

< C Y [ID*Allpmollf |l oo u)-

la]=m
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Thus )
1E(fo) ()

la]=m

(it). It suffices to show that there exists a constant C' > 0 such that for every

H!(w)-atom a, we have
135 (@)1 (w) < C.
We write

| @@

For J, by the following equality

x)dx =

Qm+1(A;z,y)

la]=m

we have, similar to the proof of Lemma 2,

/2Q +/(2Q)c] i (a) (z)w

= Rpmt1(4;2,y) + Z é(x — y)*(D*A(z) —

~ A (R) o)l < C 3 1DAllsasol £l ss:

(z)dx:=J+ JJ.

@ < gl o Y [ A

la]=m

thus,

J < Cl|§5"(@)|| oo (uyw

To obtain the estimate of .J.J, we denote that A(z) =
Then Qum(A;z,y) =
for x € (2Q)¢,

m(4; 2, y)

Fa)a) = [ Cr= R

yﬁa“‘(”‘ la(y)|dy,

gﬁ is L>°(w)-bounded by Lemma 2 and [2]. We get
(2Q) < Cllal| poo (wyw

] A() =Y jajm (D" A)2qa.
Qm(A; z,y). We write, by the vanishing moment of a and

Q) <C.

Rn |z —y|™ a(v)dy
-3 % 5 Yi(z — y)‘fix‘;(‘fn)(w —y)° ()dy

la]=m

N /R H;(f;‘ii) -

+ —¢t($ — 2)a(y) [Rm(fl; x,y)
Rn \xo —z|™

Yi(x — 950)]

|z — @o|™

o

R (As 2, 9)a(y)dy

— Ru(A; z, x0))dy
(@ — o) (x — 20)®

- Z / [wtx\;—yg\cm_y)

DaA(x)a(y)dy,
=JNh +JJ+ JJs.

| — xo|™

D*A(y)),
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Similar to the proof of Lemma 2 and (i), we obtain, for z € (2Q)°,

ol |ly — @0l i
il <o [ |t e llatay

< C > IDAllprow(Q) 7!

la]=m

(11 — gl + QP — g ),

R (A; m(A; z,
\w— W”
lzo — ylla(y)]
< C DA 20 I g
< ||Z 10" Al | ot iy
< C Y ID* Al parow(Q) QMM a — w7,
la|=m
JRll < C DYA(x d
H 3H = Q\x—y\”“ Z ‘ )‘ Y

la]=m

c \Dafl(w)\w(Q)_l‘(\Q\M/“\w—wo\_”—l+\Q\H‘€/”\w—wo\_’”) .

la]=m

IN

Note that if w € Ay, w(Qs) ' ) Q1, Q2 with Q1 C Q-.
Thus, by the Holder’ mequa‘lty and the reverse of Holder’ inequality for w € Aq,
we obtain

I < / 1T Ty + T Ty + T Js|[w(z)de
(0)¢

o kL gmehy Q| w(QkHQ))
<C Z |D AHBMOZ (27" +27 <w(Q) 2FH1Q)

la]=m

—k —ek ‘Q‘ 1 a f q e
o X St G (g [, P Ae )

la|=m k=1

1 . 1/q
(gt Lo o)
- 9k+1
< 0 X DAl 3okt + 27 (S AL

la|=m k=1
< C.

(iii). By the equality
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R1(A;,5) = Qur (A;7,9) + 3 (o = )" (D"A(x) — D A(y)),

la]=m

similar to the proof of Lemma 2, we get

g (N)@) < Go () +C Z

la]=m

\D A ) “Aly)

|
y‘n £ (y)ldy,

by (i)(ii) and [2], we obtain
w({z € R": g5(f)(x) > A})
w({z € R": g (f)(x) > A/2})

({xeR”' [ s (y)f(y)dy>CA})

jaf=m
< Cllf1arw)/ A

(iv). Let a be H'(w)-atom with suppa C Q = Q(zo,d). We write, by the
vanishing moment of « and for u € 3Q \ 2Q,

F'(a)(2) = xaq(@)F{(a)(2) + x(1g)e (%)

/ Ron(A; 2, 9)¢s(z — ) B Ron(A; 2, u)tpy(x — u)

|z —y|™ jz —ul™
1
—X(1Q)< () Z ol

la]=m

/ [wtu — Y —-y)* diz—u(z—w)*

[z —y|™ \w —ul™

] a(y)dy

] D A(y)a(y)dy

(I,'—’U,

~Xor Za, [ e - 0D Aat)dy

then

95 (a)(@) = || F{H(a)(@)]] < xaq(@) ||F () ()|

+X(q)e(2) / ) Rm(A;‘j;y)j:,Sx S Rm(A;‘ij_u )jﬁsx — u)] a(y)dy
Pruare)| 55 [ [ Ay
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IS & [ E e - wpataty)iy

X Q) ( iz — um

la]=m
= I(z) + L(x,u) + I3(x,u) + I4(x, u).

Similar to the proof of (i), we get

| B@w@)s < llg}@)lweEQ) ™ < Clal|mww(@) " < ¢

xD
ly — ul ly —ul®
ng,uwxdeCE/ /( +
/n ( ) ( ) — 2k +1Q\2+Q JQ ‘x_y‘m—H’H—l ‘x_y‘m—H’H—e

| Rin (A 2, y)\la(y) |dyw (z) de

a ‘y_u‘
£ D AHBMoz/WQ\ZkQ/Q e law)

la]=m

dyw(x)dx

¢y e AHBMOZ/

la]=m

d &
((de)n+1 +_(2kd)n+e> ||al| oo () |Qlw () dz

. o 0(21Q) Q)
<C 2P A”BMOZ’“ @2 w@

IN

k+1Q\2kQ

la]=m

C;
ly — ul ly —ul®
Is(z,v)w(x)dx < C / / < 4

IOéI*

IN

ID*A(y )H (y >\dyw< )dz

d 1 o
@ 5 3 (e o (i)
llal] 1o ()| Qw (25T Q)

S(?E:\UTUWBMOE:Q ko og=eky L

la]=m

< C.

IN

w(2"'Q) |9
241Q] w(Q)

Thus, using the condition of I,(z, u), we obtain

/n g{f(a)(x)w(x)dm <C.
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(v). For any cube Q = Q(xo, d), we write, for f = fxiq + fxug)y = f1 + f2
and u € 3Q \ 2Q,

FA()(x) = FtA(fl)(x)Jr/ Rin(4;2,y)

re T —yl™

= Y DA - (D)) [

la]=m

Vﬂw—w@—yw_ﬂwu—wm—yw

|z — y|™ lu —y|™

Yi(x —y) fa(y)dy

n

] foy)dy

- 3 DA - (D)) [ ) i
|a|=m

then

IN
3
—
=
—
&
!
N
B
=)
|
3
ol
N~
—
8
N

IN
=
—~
=
=
&

Mﬁ;}’)wc _ y>] faly)dy

Yi(z —y) —

|zo —

+| X A - (07a)g) [

. n
loe|=m

(oo —y)(z = y)" _ dlu—y)(u— y)a] f2<y>dyH

|z —y|™ lu —y|™

o

_l’_

> (DA - (D) [ LY

oo re lu—y|™

= Ji(x) + Jo(z) + J3(x, u) + Ja(z, u).

Yi(u —y) fa(y)dy

Similar to the proof of (i) and (iv), we get

1

M/QJl(x)w(w)dm < w(Q)_l/pHgﬁ(fl)HLp(w)
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IN

Cw(Q) 7| fill Le(wy < ClIFI oo ()

1 1 0o
m/égh(ﬂﬁ)w(m)dw < CM/Qg/ZkHQ\%Qk
<‘x\0w_—ya‘c2\+l | ‘x:;ﬁjﬁ) |f(y)|dyw(x)da
< CllAllzeq) Z’f 27F 4+ 27R) < O ]| 1oy
’ l/r
@/Qh(x ww(z)dr < C Z <\Q\ / D A(z) — (D A)g) dx)

(@ / w(x)rdw)l/r\cz\w@)-l

dE
x Z < de n+1 (de)n+5> ‘QkQH‘fHL‘X’(w)

< CY @7+ 27F)| 1l 1) < OIS pou)-
k=2

Thus, using the condition of J,(x, u), we obtain

@ /Q A @) - g0 <Mf> (o)

w(z)dz < C||f||Loo(w)-
‘xO _‘m ( ) = H HL (w)
This completes the proof of Theorem 1.

Proof of Theorem 2.
(i) First, by the proof of Lemma 2, we get

|f(y)] dy.

R T —yl™

po(f)(z) <C

thus, g is LP(w)-bounded for p > 1. Now, it suffices to verify that pq satisfies
the size condition in Main Theorem. For suppf C (2Q)°¢, let A(z) be the same as
the proof of Theorem 1. We write

IEA () (@) — FACS) (o)

- ( /°° / Oz — ) Run(4; 2, 7)
0 |z—y| <t

f(y)dy

|z =yt
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It 2
_ / Q({L‘O — y)l%m(fl7 X0, y)f(y)dy
lzo—y|<t

o
0

/ (Q(w—y)(w—y)o‘
|a)]=m |z—y|<t ‘1‘ - y‘m—i—n—l

_ / Qzo — y) (w0 — y)*
lzo—y|<t

‘xo — y‘m—I—n—l

2 1/2
dt
3

~ 9 1/2
- 2z — y)||Rul(A; 2, y)| dt
< |t
N </0 [/Im—ylét, |lzo—y|>t |z — y|mtn-t |/ ()ldy 13

i 2 1/2
0o ‘Q(TL’O - y)HRm(A (L'ij)‘ dt
“\L a &
( 0 |z—y|>t, |zo—y|<t |rg — y|mtn—1 |f(y)|dy 3

> D*A(y) f(y)dy

x
0 |z —y|<t,|zo—y|<t

Q({L‘ B y)Rm(/L x, y)

‘{I; — y‘m-f-n—l
Pt 2 1/2
Qo — y) Rm(A; x0, ) dt
\960 _ y‘m—i—n—l ‘f(y)‘dy t_g

G =

_ / Qzo — y)(x0 — y)
lzo—y|<t

\960 _ y‘m-f—n—l

+Z</O°°

la]=m

) D A(y) fly)dy

2 1/2
dt
3

= K1+ Ky + K3+ Ky.

Since |z — y| = |zo — y| when y € (2Q)¢, we get

K, <C |F ()| Bn(A; 7, 9)| </ dt>1/2dy
|

- ) =
R™\Q ‘(I,‘ - y‘m—i—n z—y|<t<|z0—Y| t

||| Rm(A; z, y)| |xo — z|1/?

<
= amg -yt [y

dy<C Y ||D* Al pasol| f1] oo (w);

la|=m
Similarly, we get K> < C' 2, [[D*Al[ Brol| f1| oo (w)-
For K3, by the following inequality (see [18]):
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Qz —y) Qo —y) <<\9€—9€0\+ |z — 0|7 )
~ \Jzo—y|"  |xo—yln 1T )7

=yl Joo — g

we gain
Ky < C Y ID4llswo [
|O;m RM\@Q
ol ool at) "
r — X0 r — X0
+ - / = f()ldy
<‘x0_y‘n ‘xo_y‘n 1+’7) < |xo—y|<t,|z—y|<t t3> ‘ ( ‘
< C YD Allpao Y k27 + 27| £l oo w)
la|=m k=1
< C Y ID*Allsyoll fl] L (w);
la|=m

For K4, similar to the proof of K7, K> and K3, we obtain

x
|z — x| \x—xo\l/Q | — xo|?
K, < C / N N
g:m; 2FF1Q\2+Q <\$0 —yl™t o fme —y[" T2 | — g

|D*A(y)l|.f (y)|dy

C Y ID*Allsro Y k@7 + 2752 4 27%) || £ Loy

<
la|=m k=1

< C Y |ID*Allsmoll fl]1(w):
la|=m

A same argument as in the proof of Theorem 1 will get the proof of (ii),(iii),(iv)
and (v), we omit the details. This completes the proof of Theorem 2.
Proof of Theorem 3.(i) First, by the proof of Lemma 2, we get

@l

Ro T —y™

Bis(f)(x) <C ,
thus, B. s is LP(w)-bounded for p > 1. Now, it suffices to verify that B, ; satisfies
the size condition in Main Theorem. For suppf C (2Q(zo,d))¢, let A(z) be the
same as the proof of Theorem 1. We write

Bj(x—y) Bio—y i
tw=y) Bl =] 10y i)y
|z — | |0 — |

B @ - B D= |

B?(IIIQ B y) A. _ A €T
_f_/Rn W[Rm(Aw,y) R (A; 20, 9) f(y)dy
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-y » /n< (z—y)* —Bg(xO_yﬂxO_y)&)Do‘fl(y)f(y)dy

|af=m ‘x y‘m lzo—y[™

= L1+ Lo+ Ls.

We consider the following two cases:
Case 1. 0 <t <d. In this case, notice that (see [14])
|B(2)] < e(1+ |2])~CFHmD/),

we obtain
R, 121; , B
‘Ll‘ Sct—n/ ~ ‘f(y)H ( mx y)‘(l + ‘1‘ _ y\/t) (6+(n+1)/2)dy
RGO |ro—yl
<0 2. D" Allmarot” ”Zk / g @2 = g1/ 2y

la|=m
<C Y [ID*A||puo(t/d)’ 1/ Z k2H D270 £ o)
la|=m k=1

<C > [ID*Allpyollf || o),

la]=m

|Ly| <Ct™ ] [f [ B (As 2, ) _mRm(A§ 20, Y)| (1 —y| /1) deltarn) /2) g,
RMQ |z0—y|
<CZ HD AHBMot%Z/ w(l_i_‘x_y‘/t)—w—l—(n-i—l)/%dy

2k Q\2kQ \xo—y\

la]=m

<C > [ID*Allpyollf || o),

la]=m

L3 <C ¢ [[D*A(y)|(1 + |zo — y|/t)~OHP+D/2)g
50 S0 70 [ VORI 20— ) ’
o—(n-1)/ k((n—1)/2-9) a a ~
<O X (A O [ DA (D gl
la|=m k=0
<C > |ID*Al|sarol|f1] oo uw)-
la|=m

Case 2. t > d. In this case, we choose ¢y such that (n — 1)/2 < §p <
min(d, (n + 1)/2), notice that (see [15])

B’ (@ — y) = B (z0 = y)| < Cla — ao|(1+ |z —y|) " CH+D/2),
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similar to the proof of Case 1, we obtain

Y Ri(4;z, — (So(n
o [ Il i1t = ey

A:
—I-Ct_n_l/ ‘f(y)HRm( 7x7y)"xo_x‘(1+‘x0_y‘/t)—(50+(n-|—1)/2)dy
RGO lro—yl™

<C Y ID*Allparo(d/t) D270 7 oM D2=00 ) oo

|a)]=m k=1

<C Y IID*Allpyollf Il (w).

la]=m

Rm "217‘7:7 _Rm "217‘7: )
‘L2‘ SCt—nAn\Q‘f(y)“ ( y) ( 0 y)‘(1+‘x0_y‘/t)—(60-|—(n-|—1)/2)dy

|lzo—y|™
<C Y |ID™Allpao(d/t) /200 % oM D/2=00)| £ ey
loe|=m k=1
<C Y ID*Allsmollf || oew):
la|=m
o 1 B
Lal<C d/t)(nt1)/2=d0 9k((n—1)/2—6o) _ DYA()d
mi<c 3 @ > G0 g NP A0
<cY Zka((n—l)ﬂ—(so); [FIID*A(y) — (D*A)gldy

241Q)| Sk

laf=m k=1

<C Y ID*Allpyollf || (w)-

la]=m

These yield the desired results. A same argument as in the proof of Theorem 1 will
give the proof of (ii), (iii), (iv) and (v), we omit the details. This completes the
proof of Theorem 3.
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